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DYNAMIC PROPERTIES OF SAND IN CONSTANT-VOLUME 
AND CONSTANT-LOAD TESTS 

 
Jafarzadeh, F.                                                Sadeghi, H. 
Sharif University of Technology                    Sharif University of Technology 
Tehran, Iran 11365-9313                                Tehran, Iran 11365-9313 
 
 
 
ABSTRACT 
 
Constant-volume and constant-load tests were performed on Babolsar and Toyoura sands by using a modified SGI cyclic simple shear 
device which provides the capability of back pressure saturation. All tests were shear strain controlled and conducted under different 
values of relative density, vertical effective stress and shear strain amplitude. Results revealed that Dr, σ′v and γ affect shear modulus 
and damping ratio under both constant-volume and constant-load conditions in similar ways except the shear strain amplitude which 
has no important influence on damping of constant-volume tests. The effects of Dr, σ′v, γ and the number of cycles on variations of 
shear modulus and damping ratio of sand were found to be more pronounced under constant-load condition. It seems that the 
differences between the results may be due to the different fabric produced in two kinds of test samples rather than to the test method. 
However, further study is needed to clarify this issue. 
 
 
INTRODUCTION 
 
Wide application of dynamic properties of soil in geotechnical 
earthquake engineering problems (such as the analysis of soil-
structure interactions, dynamic bearing capacity of machines 
foundations, soil structures subjected to cyclic loadings) has 
made researchers to investigate a variety of factors which 
affect shear modulus and damping ratio of soil (e.g. Hardin 
and Drnevich 1972a) and to develop various field and 
laboratory tests methods so far (Kramer 1996). A cyclic 
simple shear test is a convenient laboratory test method in 
evaluating G and D of soil, especially at large shear strains.  

Results of truly undrained and conventional constant-volume 
tests by using a developed NGI direct simple shear device 
were compared by Dyvik et al. 1987. On the basis of static 
tests on clay, they concluded that the results obtained by two 
methods are equivalent for saturated soils. Theoretically, since 
there is no real pore pressure generation in the specimen under 
constant-volume condition, it is not necessary to saturate the 
specimen. However, poor saturation can modify soil resistance 
(Vanden Berghe et al. 2001).  

The main objective of the present study is to investigate shear 
modulus and damping ratio of cyclically loaded sand under 
constant-volume and constant-load conditions. Additionally, 
the effects of some parameters on dynamic properties of sand 
under mentioned conditions will be presented and discussed. 

LABORATORY PROCEDURE 
 
Test Materials 
 
Two poorly graded sands, Babolsar and the Japanese standard 
Toyoura sand were selected as test materials. The former is 
natural sand obtained from the South coast of Caspian Sea. 
Particle size distribution curves of sands are shown in Fig. 1.  

 

 
Fig. 1. Gradation curves of test materials.  
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Principal index tests were performed following the procedure 
of the ASTM standards. The physical properties of soils 
utilized in the all conducted tests are summarized in Table 1. 
 

Table 1. Physical properties of test materials 

Soil type Specific gravity emax emin
Babolsar sand 2.753 0.777 0.549 
Toyoura sand 2.645 0.973 0.609 

Standard 
designation ASTM D854–02 ASTM 

D4254–00 
ASTM 

D4253–00
 
 
Apparatus 
 
A servo-controlled pneumatic SGI cyclic simple shear, CSS; 
apparatus manufactured by Wykeham Farrance Co. was used 
in order to perform the cyclic loading of soil samples. This 
apparatus is capable of conducting stress and strain controlled 
tests in the both horizontal and vertical directions. Loading 
forces are applied through the pneumatic actuators mounted 
horizontally and vertically. A circular specimen is mounted 
between the base pedestal and piston top cap and surrounded 
by a number of circular rings to prevent lateral displacement 
during consolidation or shearing stages. Indeed, the specimen 
can be laterally restrained by rigid boundary plates 
(Cambridge-type device), a wire-reinforced membrane (NGI-
type device), or a series of stacked rings (SGI-type device) 
according to the description of Kramer 1996. 

 

 
Fig. 2. Schematic view of cyclic simple shear (SGI type) 

apparatus and pressure test device.  

The apparatus was equipped with a pressure test device made 
by ELE. The pressure test device which can introduce water 
pressure into the specimen was utilized in order to improve the 
apparatus so that it can be used in conducting undrained tests 
on fully saturated samples. On the other hand, the capability of 
saturating the specimen with back pressure has been possible 
using this ancillary device. A schematic illustration of the 
modified CSS apparatus is given in Fig. 2. 
 
 
Sample Preparation 
 
Constant-Volume Tests. Solid cylindrical samples with the 
nominal diameter of 70 mm and height of 22 mm were used in 
cyclic simple shear tests. Samples were prepared by using the 
moist placement method suggested by Ishihara 1996. The 
mixture of soil with 5% water content was poured in the mold 
with a spoon and the specimen was compacted until 
approaching the desired density. The relative density of the 
specimen was controlled by adjusting its height using a 0.01 
mm digital caliper. This method of sample preparation was 
utilized in constant-volume and constant-load tests. 
 
Estimation of Pore Pressure Parameter. Use of Skempton’s 
pore pressure parameter, B value; in triaxial loading condition 
as a guide to achieve full saturation is conventional but, for the 
stress conditions other than triaxial condition e.g. where the 
specimen is consolidated under K0 condition (Fig. 3a), there is 
no criteria for assuring full saturation of the sample. It seems 
that a proper evaluation of pore pressure parameter under this 
special loading condition is inevitable. Figure 3a shows a 
saturated soil element subjected to an increase of total stress in 
which the intermediate and minor principal stresses are equal. 
The pore water pressure will grow by ∆u if drainage is not 
allowed from the soil. The change in the volume of pore water 
due to the increase of pore pressure by an amount of ∆u can be 
expressed as (Das 1983): 

∆V nV C ∆u (1)

 
where n is porosity, V0 is the original volume of soil element 
and Cp is the compressibility of pore water.  

On the other hand, the change in volume of the soil skeleton 
due to the effective stress increment indicated in Fig. 3b will 
be: 

∆V C V ∆σ ∆σ ∆σ C V ∆σ 2∆σ  (2a)

 
where ∆σ′1, ∆σ′2 and ∆σ′3 are principal effective stresses as 
shown in Fig. 3b corresponding to the total stresses in Fig. 3a 
and Cc is the compressibility of the soil skeleton. Figure 3c 
shows the determination of Cc from laboratory compression 
test results under uniaxial stress application with zero excess 
pore water pressure. By simplifying Equation 2a, we obtain: 

∆V C V ∆σ 2K ∆σ C V ∆σ 1 2K  (2b)
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Fig. 3. (a) Total stresses and (b) Effective stresses imposed on 
a saturated soil element consolidated under K0 condition and 
(c) Definition of compressibility of soil skeleton (Das 1983). 

 
where K0 is the coefficient of at‒rest earth pressure. After 
substitute of ∆σ1‒ ∆u for ∆σ′1 in Equation 2b we have: 

∆V C V ∆σ ∆u 1 2K  (2c)
 
 

If the soil element is fully saturated with water, the change in 
the volume of both pore water and soil skeleton under the 
application of three principal total stresses plotted in Fig. 3a 
must be equal. So, a comparison of Equations 1 and 2c gives: 

nV C ∆u C V ∆σ ∆u 1 2K  (3)
 
The pore pressure parameter, ∆u/∆σ1, is extracted from 
Equation 3 as: 

∆u ∆σ⁄ 1 2K nC C 1 2K⁄⁄  (4a)
 
Finally, by more simplification of Equation 4a, the pore 
pressure parameter can be estimated based on Equation 4b: 

∆u ∆σ⁄ 1 1 nC C 1 2K⁄⁄  (4b)
 
Since the compressibility of water is much smaller than 
compressibility of soil skeleton, the value of Cp/Cc converges 
to zero. So it would appear that, the value of ∆u/∆σ1 mainly 
depends on Cp/Cc than n/(1+2K0). Hence, the effect of K0 
value on the estimation of pore pressure parameter can be 
neglected. However, the value of n/(1+2K0) is less than unity 
and makes the term, nCp/[Cc(1+2K0)] to decrease more. 
Subsequently, it can be inferred from the above expressions 
that, the upper limit of pore pressure parameter where the 
specimen is consolidated under the application of K0 
condition, is equal to one. 

Traditionally, the value of pore pressure parameter under 
triaxial stress conditions, B value, equals to 0.95 is accepted as 
representing virtually full saturation in laboratory reports. As 
an alternative, if several successive equal increments of 
confining pressure give identical values of B, full saturation of 
the specimen could be assured (Head 1998). 

Constant-Load Tests. After preparation of samples on the 
basis of wet tamping method, CO2 was percolated through the 
specimens and de-aired water was then introduced into the soil 
sample, while the vertical stress was kept at 15 kPa to prevent 
the sample disturbance. After one stage of saturation using 25 
kPa of vertical stress and 15 kPa of back pressure was taken, 
back pressure was raised following the vertical stress increase 
to the next step by 10 kPa and the procedure of raising the 
vertical stress and back pressure was then repeated. 
Considering the mentioned criteria for assuring full saturation, 
the saturation of the specimens by the application of back 
pressure was continued until two or three equal increments of 
vertical stress give identical values of pore pressure parameter, 
∆u/∆σ1. The samples were then consolidated to a given 
vertical consolidation stress. The values of total vertical stress, 
effective consolidation stress and back pressure as well as the 
corresponding ratio of pore water pressure parameter, ∆u/∆σ1, 
at the last step of saturation for 16 undrained tests are 
summarized in Table 2. 
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Table 2. Measured ∆u/∆σ1 in constant-load tests at the end of 
saturation stage 

Test no. Dr  
(%) 

σ 
v  

(kPa) 
Back pressure  

(kPa) 
σ′v  

(kPa) ∆u/∆σ1

9 (B*) 31 175 125 50 0.90 
10 (B) 35 175 125 50 0.88 
11 (B) 71 205 155 50 0.88 
12 (B) 67 205 155 50 0.88 
13 (B) 32 275 125 150 0.89 
14 (B) 30 275 125 150 0.87 
15 (B) 74 305 155 150 0.90 
16 (B) 71 305 155 150 0.89 

25 (T**) 32 175 125 50 0.91 
26 (T) 33 175 125 50 0.90 
27 (T) 71 205 155 50 0.88 
28 (T) 70 205 155 50 0.85 
29 (T) 28 275 125 150 0.86 
30 (T) 39 275 125 150 0.91 
31 (T) 68 305 155 150 0.82 
32 (T) 70 305 155 150 0.83 

B*: Babolsar sand, T**: Toyoura sand 
 
 
Test Program 
 
Whereas the after consolidation relative density should be 
taken into account, a series of calibration consolidation tests 
were conducted to specify the initial relative density of the 
partially and fully saturated specimens. The values of initial Dr 
for different vertical σ′v and post consolidation relative 
densities as results of preliminary tests are reported in Table 3. 

The main experimental program included tests with different 

values of σ′v, Dr and γ which were performed under constant-
volume and constant-load conditions. Unsaturated samples 
were sheared under equivalently undrained or constant-
volume condition. On the other hand, truly undrained tests 
were carried out on fully saturated specimens under constant-
load condition. Half of the specimens were consolidated to 50 
kPa and the others to 150 kPa. Test samples had two different 
post-consolidation relative densities 30, 70% representing 
loose and medium dense conditions; respectively. All tests 
were shear strain-controlled with an approximately sinusoidal 
shape of cyclic straining at large shear strain amplitudes of 1.0 
and 1.5%. The frequency of cyclic loading was 0.5 Hz and the 
number of loading cycles varied from 1 to 200 or to the cycle 
of initial liquefaction, which ever occurred first. General 
testing conditions at the beginning of cyclic shear stage are 
listed in Table 4 for 32 cyclic simple shear tests. 

 
Table 4. Tests conditions at the beginning of cyclic stage 

Test no. Sand 
type 

Vertical load 
condition 

Dr 
(%) 

γ 
(%) 

σ′v 
(kPa)

1, 2 B* Constant-volume 32, 29 1.0, 1.5 50 
3, 4 B Constant-volume 69, 69 1.0, 1.5 50 
5, 6 B Constant-volume 29, 30 1.0, 1.5 150 
7, 8 B Constant-volume 70, 69 1.0, 1.5 150 
9, 10 B Constant-load 31, 35 1.0, 1.5 50 

11, 12 B Constant-load 71, 67 1.0, 1.5 50 
13, 14 B Constant-load 32, 30 1.0, 1.5 150 
15, 16 B Constant-load 74, 71 1.0, 1.5 150 
17, 18 T** Constant-volume 31, 29 1.0, 1.5 50 
19, 20 T Constant-volume 70, 69 1.0, 1.5 50 
21, 22 T Constant-volume 29, 30 1.0, 1.5 150 
23, 24 T Constant-volume 69, 69 1.0, 1.5 150 
25, 26 T Constant-load 32, 33 1.0, 1.5 50 
27, 28 T Constant-load 71, 70 1.0, 1.5 50 
29, 30 T Constant-load 28, 39 1.0, 1.5 150 
31, 32 T Constant-load 68, 70 1.0, 1.5 150 

B*: Babolsar sand, T**: Toyoura sand 
 
 
Calculation of G and D 
 
Dynamic stiffness and damping ratio of each cycle can be 
determined from a graph of stress against strain, knowing as 
hysteresis loop. Figure 4 illustrates a schematic hysteresis loop 
and how secant modulus and damping can be determined 
based on data achieved from stress-strain curve. By using 50 
data point per cycle which transferred through CDAS to PC, 
the area of hysteresis loop can be estimated precisely 
according to Equation 5. 
 
A 0.5

γ γ
τ τ

γ γ
τ τ

γ γ
τ τ  (5)

 
in which Aloop is the area of hysteresis loop with vertices of 
(γ1, τ1), (γ2, τ2)…(γ50, τ50) and γi, τi are shear strain and shear 
stress at ith point; respectively. Jafarzadeh and Sadeghi 2009 

 
Table 3. Preliminary tests results 

Test no. Test condition 
Post 

consolidation 
Dr (%) 

σ′v 
(kPa) 

Initial Dr
(%) 

P1–B* Constant-volume 30 50 23.2 
P2–B Constant-volume 70 50 64.9 
P3–B Constant-volume 30 150 16.6 
P4–B Constant-volume 70 150 59.5 
P5–B Constant-load 30 50 3.5 
P6–B Constant-load 70 50 57.9 
P7–B Constant-load 30 150 – 3.7 
P8–B Constant-load 70 150 52.0 

P9– T** Constant-volume 30 50 25.0 
P10–T Constant-volume 70 50 65.7 
P11–T Constant-volume 30 150 20.5 
P12–T Constant-volume 70 150 62.1 
P13–T Constant-load 30 50 4.5 
P14–T Constant-load 70 50 62.7 
P15–T Constant-load 30 150 – 1.7 
P16–T Constant-load 70 150 58.3 

B*: Babolsar sand, T**: Toyoura sand 
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The following can be drawn on the basis of the current 
experimental study. 

An increase in Dr and σ′v as well as a decrease in γ, result in a 
growth in shear modulus along with a reduction in damping 
ratio under constant-load condition. These parameters have 
similar effects on shear modulus and damping ratio under 
constant-volume condition except the shear strain amplitude 
which has no significant effect on damping ratio. Trends of 
shear modulus variations with the number of cycles are in 
descending order under both conditions. Damping didn’t 
widely vary with the number of cycles until 10 cycles to Nl 
under constant-load condition and afterward a significant 
growth in damping values were observed. Conversely, 
damping ratio of constant-volume tests decreases with the 
number of cycles and the trend is complicated to be judged. 

Comparisons between the results of constant-volume and 
constant-load tests reveal that, shear modulus and damping 
ratio are much affected by Dr, σ′v, γ and the number of cycles 
under constant-load condition. It is found that some 
differences exist between two kinds of samples prepared for 
tests which should be taken into account. First, saturated 
samples are more homogenous than unsaturated samples. 
Second, capillary forces affect the response of constant-
volume test samples during the whole cyclic stage whereas 
such effects do not exist in saturated specimens. So, it would 
appear that observed differences between the results of 
constant-volume and constant-load tests may be because of the 
different fabric produced in saturated and unsaturated samples 
rather than of the vertical load controlling mode. However, 
further work is needed to compare the results of constant-
volume tests on completely dry and saturated sand with 
constant-load test results on saturated sand. 
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