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(\ Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, ltafl March 11-15, 1991, St. Louis, Missouri, Paper No. 1.14 

Modeling the Monotonic and Cyclic Viscoplastic Soil Behavior 
Renaldo I. Borja 
Assistant Professor of Civil Engineering, Stanford University, 
Stanford, CA 94305 

SYNOPSIS: We describe a class of viscoplastic constitutive models capable of simulating the monotonic and cyclic rate-dependent soil 
behavior. These models are developed by enriching their inviscid counterparts with a viscous character to model the irreversible deformation 
that develops with time. The viscoplastic strain rate is of the Duvaut-Lions type whose magnitude increases with the distance of the 
stress point from its projection onto the inviscid solution. With appropriate choice of an inviscid elasto-plastic soil model, one can generate 
quasipreconsolidation effects during creep and account for the influence of frequency on the shape and width of hysteresis loops formed during 
cyclic loading. 

INTRODUCTION 

Considerable attention has been directed in recent years to the study 
of stress-strain-time aspects of soils for investigating the effects of 
time and rate of strain on the soil's shearing strength and defor­
mation behavior (Murayama and Shibata 1964; Sin&h and Mitchell 
1968; Borja and Kavazanjian 1985, to name a few). The viscous 
response of soils manifests not only during monotonic loading but 
also, and perhaps more distinctively, during cyclic testing where the 
frequency of loading affects the shape and width of hysteresis loops 
as well as the number of cycles that a soil could sustain prior to fail­
ure (Mroz and Norris 1982). While rate-dependent theory appears 
to be most suitable for mathematically describing real soil behav­
ior, viscoplastic models for soils are scarce and have not received 
the same level of treatment and sophistication that many robust 
rate-independent plasticity models enjoy. 

In this paper, we explore an elasto-viscoplastic constitutive law orig­
inally proposed by Duvaut and Lions (1976) and elaborated further 
by Simo et al. (1988) for characterizing the rate-dependent soil be­
havior. The mathematical formulation involves a simple enrichment 
of an inviscid elasto-plastic law with a viscous character to model the 
time-dependent soil deformation behavior. In essence, the inviscid 
solution is viewed as one to which the viscoplastic solution will tend 
in the limit as time approaches infinity. The idea and the mathemat­
ical formulation are appealing since all of the features that pertain 
to the inviscid model upon which the viscoplastic model is based are 
captured automatically. We also describe a conceptual framework for 
capturing quasipreconsolidation effects in creeping soils in the con­
text of bounding surface plasticity models. Finally, we show some 
preliminary results of numerical experiments designed to expand the 
capability of a deviatoric plasticity model with linear combination 
of isotropic and kinematic hardening to include viscous behavior. 

ELASTO-VISCOPLASTIC CONSTITUTIVE LAW 

Consider the following rate-constitutive equation: 

(1) 

where u = Cauchy stress tensor; E = small strain tensor; Ee, Evp 

= elastic and viscoplastic components of E, respectively; c• = rank­
four elasticity tensor; and the superimposed dots imply material 
rates. The idea in the subject viscoplastic model is that the stress­
point u may fall outside a yield surface, but will get attracted to 
its projection iT on the yield surface. The farther is u from iT, the 
larger is the magnitude of the viscoplastic strain rate. In the context 
of the Prandtl-Reuss constitutive law, iT is simply the orthogonal 
(or radial) projection of u on the (convex) yield surface in the usual 
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Euclidean sense (Duvaut and Lions 1976). More generally, iT may be 
thought of as the closest point projection, in some specified metric, 
of u on the yield surface. Clearly, iT represents the inviscid solution 
of the rate-constitutive relation. 

Based on a metric defined by the elasticity tensor c•, Simo et al. 
(1988) proposed a simple form for ;,vp as follows: 

(2) 

where Tf = fluidity-like parameter. For the Prandtl-Reuss model, 
(2) degenerates to the expression originally proposed by Duvaut and 
Lions (1976): 

i:vp = _!_(u- iT) (3) 
2Tf 

with Tf taking on a parallel meaning. In (3), i:vp is assumed coaxial 
with the stress difference u- iT. The foregoing idea allows the con­
struction of more elaborate models to define i:vp, but for simplicity 
and illustration purposes, we consider the form (2) for now. 

Substituting (2) in (1) yields 

· · tr 1 ( -) u=u -- u-u 
Tf 

(4) 

where o-tr = ce : i: is the usual trial rate-of-stress. Equation ( 4) is 
a first order ordinary differential equation in u which can be inte­
grated, e.g., by the stable backward difference scheme to yield 

u~r+l + (/::;.tfTf)Un+l 
Un+l = 1 + (!::,.tJTf) (5) 

Clearly, all of the features of an inviscid model are captured in (5) 
via the projection stress iTn+l· Since Un+I is a linear function of 
Un+l, it follows that all aspects of a stress point integration algo­
rithm, inc! uding the attendant problem of linearization, are rendered 
trivial once the algorithm for the inviscid problem has been set up. 
Furthermore, one obtains the elastic solution from (5) as /::;.tfTf--> 0, 
while the inviscid solution is recovered as /::;.tfTf --> oo. 

RATE-DEPENDENT DEVIATORIC PLASTICITY 

In this section we consider specializations of the previous ideas to the 
simple case of deviatoric viscoplasticity. The resulting formulation 
is not intended to model real soil behavior, but rather, to illustrate 
how one can incorporate other, more robust rate-independent models 



into the viscoplastic framework. 

We consider in particular an elasto-plastic constitutive theory with 
Mises yield surface, associative flow rule, and linear combination of 
isotropic and kinematic hardening. The evolution equations for this 
theory are summarized in Hughes (1984). Specifically, the radius 
R of the yield surface is assumed to vary according to the effective 
plastic strain, while the back stress a is assumed to evolve accord­
ing to Prager's translation rule. An effective technique for integrat­
ing stresses with this model is embodied in the generalized radial­
return concept of Krieg and Key (1976), which is also summarized 
in Hughes (1984). This integration algorithm produces the time­
discrete evolution equations for the in viscid solutions Un+l, Rn+l, 
and Un+l· 

For the viscoplastic case, we now postulate the following specializa­
tions of the Duvaut-Lions model to deviatoric yielding with com­
bined isotropic and kinematic hardening: 

Time-discrete evolution equation for radius: 

R _ Rn + (!::,.tjry)Rn+l 
n+l - 1 + (!::,.tjry) (6) 

Time-discrete evolution equation for back-stress: 

an+ (!::,.tjry)an+l 
fin+l = 1 + (!::,.tjry) (7) 

As before, the time-discrete evolution equation for Un+l is given in 
( 5). 

Note that the linearization of Un+l usually required to construct 
the consistent tangent operator is rendered trivial once the time­
discrete evolution equation for un+l has been set up. For example, 
with application to deviatoric viscoplasticity, (5) can simply be dif­
ferentiated with respect to total strain fn+l to obtain the desired 
consistent tangential moduli: 

1 ( ) c< + (!::,.t/7J) u~+ 1 (en+l) 
un+l fn+l = 1 + (!::,.tjry) (8) 

where u~+l ( fn+l) is simply the consistent rate-independent tangen­
tial moduli of Simo and Taylor (1985). 

STRESS RELAXATION, CREEP, AND QUASIPRECON­
SOLIDATION 

In order for the viscoplastic theory to be useful in practice, it must 
have the capability to model many of the most important rate­
dependent features of soil behavior. Stress-relaxation is obviously 
contained in equation (5), as one may simply consider a soil sub­
ject.ed to sustained deformation over a long period of time. In this 
case, the stress intensity Un+l relaxes from its initial value u~\1 , 
just after instantaneous loading, to the inviscid solution Un+l as 
time approaches infinity (Fig. 1 ). Assuming that ( 5) is invertible, ei­
ther explicitly or implicitly, so that the strain fn+l can be expressed 
in terms of Un+l, then one can also capture creep effects by imposing 
a sustained stress. In this case, the soil experiences delayed deforma­
tion during the time that the yield surface grows until it reaches a 
size in the limit where the projection stress Un+l contacts the stress 
point Un+l (Fig. 2). 

Quasipreconsolidation, or increase in soil strength with time, is an­
other important rate-dependent feature of soil behavior that ana­
lysts have long failed to incorporate in their constitutive models un­
til recently (Kavazanjian and Mitchell 1980; Borja and Kavazanjian 
1985). In the present viscoplastic framework, what we seek to model 
is the growth of the yield surface with time while the stress point is 
still inside the yield surface. Since the growth of the yield surface 
is contingent upon the development of an irreversible deformation, 
quasipreconsolidation can be modeled only by allowing plastic defor­
mation to take place inside the yield surface. This idea is embodied 
in so-called bounding surface plasticity models. 
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STRESS SPACE 

Fig. 1. Stress relaxation: stress relaxes from the trial elastic predictor to 
the in viscid elasto-plastic solution. 

STRESS SPACE 

Fig. 2. Creep: projection stress approaches the sustained stress asymp­
totically while yield surface expands. 

Assume that the inviscid model upon which the viscoplastic model 
is based is of the bounding-surface type. This includes the model of 
Dafalias and Herrmann (1982) and the two-yield-surface theory with 
a vanishing elastic region of Mroz and Norris (1982). To each stress 
point Un+l inside the bounding surface we associate an image stress 
u~+l on the bounding surface which can be determined, e.g., using 
the simple radial rule of Dafalias and Herrmann or the intersection 
rule of Mroz and Norris. Note that the image stress u~+l is not the 
same as the projection stress Un+l· In fact, one can clearly make 
the distinction between the two stress terms if the notion of two­
yield-surface with a vanishing elastic region of Mroz and Norris is 
employed. In this case, 

STRESS SPACE 

BOUNDING SURFACE 
EXPANDS AS SOIL CREEPS 

VANISHING ELASTIC 
REGION 

Fig. 3. Quasipreconsolidation: bounding surface expands as the 
vanishing elastic region approaches the stress point asymptotically. 



Un+l = On+l (9) 
i.e., the projection stress on the interior yield surface, which van­
ishes to a point, coincides with the back stress (see Fig. 3). Thus, 
during creep under a sustained stress, the projection stress Un+1 ap­
proaches the fixed stress point Un+1 asymptotically with time, as 
delayed deformation accumulates. The bounding surface then grows 
concurrently with plastic deformation so that the image stress u~+l 
moves away from O"n+h thus resembling the effects of quasiprecon­
solidation. 

PRELIMINARY RESULTS 

In this section we present some preliminary results of our numeri­
cal experiments with the simple rate-dependent deviatoric plasticity 
model. We show that despite a relatively simple formulation, one 
can generate curves that reflect the rate-dependent character of most 
soils. 

The soil was assumed to have an undrained modulus Eu = 4, 000 
kPa; Poisson's ratio v = 0.3; and an initial undrained shear strength 
of Su = 20 kPa (e.g., medium to soft clay). Thus, the equivalent 
initial radius of the yield surface is Ro = 1.63su = 32.6 kPa. The 
parameters we controlled in our study are the hardening modulus 
H 1 (hardening if H' > 0, perfect plasticity if H' = 0, and softening 
if H' < 0) and the yield surface translation parameter fJ (isotropic 
hardenin~ if fJ = 1, kinematic hardening if fJ = 0, and combined 
isotropicjkinematic hardening if 0 < fJ < 1 ). If we assume a con­
stant strain rate, then a third parameter, !:l.t/TJ, describes the rate­
dependent character of the model (very viscous if !:l.t/TJ -> 0 and 
nearly inviscid if !:l.t/TJ-> oo). 

Figure 4 shows the predicted response of an elastic, perfectly plastic 
inviscid soil (H' = 0 kPa; fJ = 1) subjected to a strain-controlled 
monotonic undrained triaxial compression. Superimposed in the fig­
ure are the viscoplastic predictions for various values of !:l.tfTJ. Unlike 
the inviscid response, note that the rate-dependent stress-strain re­
sponses exhibit a smooth character even at initial yield. Also, the 
soil strength increases as the viscosity parameter T) increases. If T) is 
viewed as fixed, then the rate-dependent responses suggest that the 
strength increases as the strain rate increases, for then, !:l.t decreases. 
A similar behavior is seen from the soil responses of Fig. 5 where a 
strain-softening inviscid soil behavior was assumed (H1 = -600 kPa; 
fJ = 1 ). Note that the corresponding viscoplastic strength responses 
also diminish as the soil exhibits a strain-softening response for a 
reasonably large value of !:l.t/TJ. 

Fig. 4. Axial stress-axial strain curves for monotonic undrained compres­
sion tests. 
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Fig. 5. Undrained axial stress-axial strain curves for a strain-softening 
soil. 

Figure 6 shows the predicted inviscid and viscous load-unload re­
sponses of an elastic-perfectly plastic soil ( H 1 = 0 kPa; fJ = 1). 
For comparison, Fig. 7 shows the load-unload-reload behavior of a 
soil exhibiting a combined isotropic-kinematic hardening response 
(H' = 800 kPa; fJ = 1/2). Note in both figures the clear depen­
dence of the viscoplastic responses on the frequency of loading (i.e., 
on the ratio !:l.t/TJ), an important soil response feature central to the 
model. As shown in both figures, the inviscid solution is recovered 
when !:l.t/TJ -> oo, while the elastic response is obtained in the limit 
as !:l.t/TJ -> 0. 

CLOSING REMARKS 

We have presented a conceptual framework for capturing the rate­
dependent response of soils based on the simple viscoplastic theory 
of Duvaut and Lions. The formulation allows one to incorporate 
the robustness of many existing rate-independent plasticity models. 
This study is by no means complete, as we have yet to see all of 
the implications of incorporating the sophistication of many in viscid 
elasto-plastic models into the viscoplastic framework, both from the 
practical as well as from the computational standpoint. Results of 
the preliminary studies show promise, however, and the prognosis 
for more interesting and useful results is good. 

tJ. <'>t1TJ~0.01 

0 &ITJ ~ 0.05 

D <'>t1TJ~0.10 

-1.25 0 

- INVISCID 
SOLUTION 

1.25 

AXIAL STRAIN, o/o 

2.5 

Fig. 6. Load-unload curves for elasto-plastic soil showing effect of strain 
rate. 
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Fig. 7. Load-unload-reload curves for elasto-plastic soil with combined 
isotropic and kinematic hardening. 
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