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DYNAMIC RESPONSE OF DAM-LAYER SYSTEM TO EARTHQUAKE EXCJTATIONS 

Sarada K. Sarma 
Civil & Environmental Eng. Dept. 
Imperial College 
LONDON SW7 2BU 

George Cossenas 
Civil & Environmental Eng. Dept. 
Imperial College 
LONDON SW7 2BU 

ABSTRACT 

An extensive database of ‘free-field’ strong motion records, from rock sites all over the world, of significant strong motion (peak 

ground acceleration 2 O.lg) has been utilised to identify the dynamic characteristics of a typical dam-layer system. Linear elastic 
analysis is used to calculate the response of the dam and spectra of average seismic coefficients are presented. Attenuation 
relationships for the response accelerations along the height of the dam are also presented and the two methods are compared. A rigid- 
block model is used to calculate the earthquake-induced displacements on the body of the dam, to be used as a check on safety of earth 
dams under seismic loading. 

INTRODUCTlON 

The present study investigates the seismic response of a dam- 
soil layer system and updates the results of Ambraseys & 
Sarma (1967). The response of the dam is presented in terms 
of seismic coefficient spectra for different levels along the 
height of the dam. The attenuation of strong motions along the 
dam height is also examined and the two methods are 
compared. Finally the earthquake displacements on the dam 
are calculated and the results are compared with previous 
studies. 

SEISMIC RESPONSE ANALYSIS 

Method 

The seismic response of the dam-layer system has been 
calculated using the method developed by Ambraseys (1960), 
Sarma (1979), Sarma (1981). A typical cross-section of the 
dam-layer system is shown in Fig. I. Assuming that the length 
of the dam is great compared to its height the problem reduces 
to a I-D response. The dam section is of symmetrical 
triangular cross-section in the transverse direction and the 

materials of the dam and the underlying layer are taken as 

homogeneous and perfectly elastic. Only distortion due to 

shear is considered; distortion due to bending is small for flat 
slopes and is consequently ignored. The dam is rigidly 
connected to the base and the time dependent arbitrary 

disturbance ii(t)acts along the base in the horizontal 

direction. Using the above assumptions and the initial 

--- 
3 

ROCK u(t) 

Fig, I: Typical cross-section of the dam-layer system. 

conditions of starting at rest, the absolute horizontal 
acceleration at a level (y) below the crest is given by : 

4YA = CPn (YP,, where A(y) is a function of the 
n 

geometry of the dam, S, is a function of the elastic properties 
of the material, the amount of damping and the time history of 
the ground accelerations and n is the number of modes 
contributing to the response. The seismic coefficient, k, is 
defined as k=a(y,t)/a,,, where amux is the maximum ground 
acceleration. Since for any two given levels of the dam the 
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accelerations obtained are neither simultaneous nor do they act 
in the same direction, using a(y),OX for the calculation of the 
inertia forces within a sliding wedge extending along a large 
portion of the dam would be too conservative. An alternative 
way of calculating the seismic coefficient is as follows: the 
(predetined) sliding surface is divided into n horizontal strips, 
each having a mass m, and an average seismic acceleration kg. 
Then, for each time instant, the total horizontal force, F(t), 
acting on the sliding surface would be F(f) = xM,k,g and 

n 
the average seismic coefficient given by k(t)=F(t)/m g , where 
m is the total mass of the sliding surface and g is the 
acceleration due to gravity. If the above process is repeated at 
each time step of the strong motion history, the maximum 
value of k can be calculated; this is the value of seismic 
coefftcient to be used in the design. The shape of the sliding 
wedge is defined in a parametric form. For failure surfaces 
within the body of the dam, Ambraseys & Sarma (I 967) have 
shown that sliding wedges passing through the apex of the 
dam and having a horizontal base are completely defined by 
parameter a (Fig. 2). Failure surfaces extending below the 

base of the dam are defined from 4 parameters, a, v, 0, 6. (Fig. 
2). In the present study we consider the l-parameter wedge 
case only. 

plotted as points in Fig. 3. Where a value for dr is not 
available, the epicentral distance has been used; these cases 
are plotted as crosses in Fig. 3. All the strong motion records 
are from shallow crustal earthquakes, with the deepest 
earthquake having a focal depth of 17 km. 
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Fig. 2: Geometry of pre-definedfailure surfaces. 

Strong motions used in the analysis 

In total 128 strong motion histories (two horizontal 
components of 64 strong motion recordings) from earthquakes 
all over the world have been used as the input in the dam 
response analyses. The records have been selected according 
to the following criteria: (a) the instrument has been sheltered 
in a ‘free-field’ station, (b) the station’s geology is classified 
as ‘rock’, (c) the peak ground acceleration (PGA) of at least 
one of the two horizontal components is greater than O.lg as 

records with smaller values of PGA are not of engineering 
significance. Figure 3, shows the distribution of the dataset in 
terms of surface wave magnitude, Ms, and source distance. 
The source distance is defined as the closest distance, df, from 
the surface projection of the causative fault; these cases are 

Fig. 3. Distribution of earthquake dataset used in the analysis 
in terms of surface magnitude, A& and ‘source 
distance ‘, d. For de$nition of d, see text. 

The response analysis has been performed for a number of 
different dam-layer configurations and damping values, h., 
with the dam having a slope angle of H:V=3:1. For this 
purpose two new parameters, m and R, are introduced: m is the 

ratio of dam-layer stifnesses given by m=Sl,p,JSLpL where S 
and p denote shear wave velocity and density and R is given 

by R=DP,~/H~!~ with D and H denoting the layer thickness 
and dam height. If it is assumed that dam and layer have the 
same density, then m and R become ratios of shear wave 
velocities and height between dam and layer. The followin,g 
parameters values have been used : m=O (Rigid Base), 0.2, 
0.5, I; R = 0.1, 0.25, 0.5, I; ,X=5%, 10%. 20% of critica. 

damping. For each set of values of m, R and h, values, 
seismic coefficients for l-parameter failure wedges extending 
to depths ofy/H=0.2, 0.4, 0.6, 0.8, 1, have been calculated for 
dam periods ranging from 0.1 to 2 sec. The results are 
presented in the form of seismic coefficient spectra. Figure 4 
shows the spectrum for the rigid base case (m=O) and a 

damping value of 10%. Figure (4a) plots the average value, 1’~ 
of the seismic coefficient k from all 128 strong motion 
histories (plotted as crosses); Fig. (4b) plots the variation of 

these values in terms of their standard deviation,o, and 
Fig.(4c) plots a ‘standard error’ term, e, defined as 

e=++crJ/p; this is to be used for the direct comparison of 
this method with the attenuation relations derived, as 
explained later. 
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MAGNIFICATION SPECTRUM FOR 10% DAMPING (m=0, R=O) 

0 I I I I I I , I I 

0 0.2 04 06 0.8 1 12 1.4 1 .6 18 
1 

2 
1 I I I I I I I I I I 

-0 02 0.4 0.6 0.8 1 1 .2 1.4 16 1 .8 2 

0 0.2 0.4 0.6 0.8 1 1 .2 1.4 1 .6 1 .8 2 
Period of Ihe Dam (set) 

Fig 4 : Seismic coefficient spectra and statistics for rigid base (Damping = 10%). 
(a):Average Seismic Coefficient, (b):Standard Deviation, (c):Standard error 

The results of the seismic response analysis for the range of 
values of m and R considered were compared with the rigid 
base case and the following have been observed: 

a. The flexible layer influences the response of the system 
only when its depth is comparable to the height of the 
dam. For values of R less than 0.1 the response is 
invariable to the value of m. Figure 5 plots the seismic 
coefficient spectra for a sliding wedge of depth 0.2 y/H, 
for R-0. I, damping of 5% and a range of m values. 

b. For values of R less than 0.5 extreme m value cases 
(m=O.l, m=I) will give similar results, particularly for 
high dam periods (T 2 I set) and compare with the rigid 
base solution. For the m=O.l case it is obvious why this 
happens. For the m=l case this can be explained if one 
thinks of the dam-layer system as a rigid base case with 
modified geometry. The highest ‘magnification’ of the 
seismic coefficient spectral ordinates, compared with the 

rigid base solution, will, occur for intermediate values of 
m. Fig. 6 plots the seismic coefficient spectra for a sliding 
wedge of depth 0.2 y/H, for R=0.25, damping of 5% and a 
range of m values. Note in Fig. 6 the similar spectra for 
the m=O, m=O.l, m=0,2, and m=l cases and th’z 
differentiation of the intermediate m=O.5 case. For 
comparison, Fig. 7,8 plot seismic coefficient spectra for 
R=0.5 and R=l . 

c. The increase in the spectral ordinates of the seismic 
coefficient is complemented with a shift of maximum 
spectral ordinates towards higher periods. This is more 
evident in Fig. 7 & 8. 

It is noted that the above points and similarities are all 
expressed in terms of m and R for similar dam periods. It 
should not be forgotten that for a given dam-layer 
configuration the period of the dam will change with changing 
values of m and R. 
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Seismic Coefficient Spectra for Fk0.1 

0.5 1 1.5 2 
Period of the Dam (set) 

Fig, 5 : Seismic coefficient spectra for sliding wedge at depth 
y/h = 0.2, for R=5%. Solid Iine = Rigid base case 
(m=O), (+): m=O.I, (*): m=O.2, (0): m=O.5, (x) : 
m=I. 

Seismic Coeffklent Spectra for FM.25 
4.5 ,- _*‘-_ \ I \ 

Seismic Coefficient Spectra for Fk0.5 

5.5;” 

0.5 1 1.5 2 
Period of the Dam (set) 

Fig. 7: Seismic coefjcient spectra for sliding wedge at depth 
y/h = 0.2, for R=S%. Solid line = Rigid base case 
(m=O), (+): m=O. I, Dotted line : m=0.2, Dashed line 
m=0.5, (x) : m=l. 

Seismic Coefficient Spectra for Fkl 

1 
6- ,’ 

0.5 1 1.5 
Period of the Dam (set) 

Fig. 6 : Seismic coeffjcient spectra for sliding wedge at depth 
y/h = 0.2, for A=S%. Solid line : Rigid base (m=O), 
(0): m=O.I. (*): m=0.2, Dashed line : m=O.S, (+) 
m=l 

Fig, 8 : Seismic coefficient spectra for sliding wedge at depth 
y/H = 0.2, for /2=5%. Solid line : Rigid base cas’? 
(m=O), (--o--J: m=O. I, Dotted line : m=O.2, Dashed 
line : m=O.5, I-+-) : m=I. 
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Table I: Regression coef$cients al to a6 of equation (I) for selected cases of A, M, R. 

k(%) m R Y/h a1 a2 a3 84 a5 a6 

IO 0 0 0.2 20.786 -69.728 71.234 -2.402 I .090 -0.196 

10 0 0 0.4 18.649 -69.875 72.992 -2.394 I .480 -0.359 

IO 0 0 0.6 15.465 -65.174 72.93 1 -1.967 1.341 -0.350 

IO 0 0 0.8 1 I .228 -5 I .408 60.093 -1.591 1.108 -0.29 1 

IO 0 0 1 6.979 -35.710 43.768 -1.213 0.849 -0.223 

IO 0.2 0.5 0.2 2 1.470 -67.260 67.470 -1.755 0.223 0.084 

IO 0.2 0.5 0.4 19.312 -69.679 71.141 -2.297 I .336 -0.320 

IO 0.2 0.5 0.6 16.221 -66.796 73.854 -1.899 1.260 -0.332 

IO 0.2 0.5 0.8 11.920 -53.133 61.194 -1.496 0.998 -0.262 

IO 0.2 0.5 1 7.627 -37.412 45.07 I -1.143 0.748 -0.194 

10 0.5 0.5 0.2 24.019 -71.483 68.871 -2.8 13 1.043 -0.135 

10 0.5 0.5 0.4 21.396 -7 1.066 69.323 -2.972 1.740 -0.406 

10 0.5 0.5 0.6 18.446 -70.48 I 74.308 -2.407 1.578 -0.403 

IO 0.5 0.5 0.8 14.912 -63.546 71.908 -1.879 1.242 -0.316 

IO 0.5 0.5 1 10.825 -49.384 57.93 1 -1.577 1.076 -0.279 

A dichotomous third order regression equation of the form 

k=I +a,T+a2p+a,p 
for T I T, 

(la) 
and 

k=l +a,T,~+a2TC2+a,T,~+a,(T-TC)+a5(T-TC)2+a6(T-TCj3 (1 b) 
for T2Tc 

has been fitted to the seismic coefficient spectra. T is the 
fundamental period of the dam and T,- is a ‘critical period’ 
chosen so as to minimize the residual of the regression. For 
almost all cases T, = 0.4 gives the optimum solution and this 
value is therefore adopted. In Fig. (4a) regression equation (1) 
is plotted as solid lines. Table 1 shows values of regression 
coefficients al to % for selected cases of m, R values, for a 
damping coefficient of 10% of critical; space limitations do 
not allow presentation of the whole set of data. It can be seen 
from Fig. (4a) that the dichotomous regression model fits the 
data exceptionally well. 

ATTENUATION OF DAM ACCELERATIONS 

The seismic coef’t?cient method can be used to calculate the 
earthquake induced accelerations in the dam provided that the 
design peak ground acceleration at the site is known. An 

alternative method would be to derive a predictive attenuation 
relationship of peak accelerations along the height of the dam 
in terms of earthquake magnitude, source distance, and focal 
depth. Predictive attenuation relationships are of the form 

log(X) = a + bA4 + c log(r) + dr + aP (2) 

where X is the dependent parameter, M is the magnitude, r is a 

distance term given by r = 7 d + h , d is the source term, 

h is a ‘depth’ term to be evaluated from the analysis, cr is th’c 
‘standard error’ of the parameter X given from the attenuation 
equation and P is a constant that depends on the value of 
percentiles being considered in equation (2). Attenuation 

coefftcients have been calculated for each set of m, R, ,I, T and 
y/H values. Details of the variation of the coefficients with 
different parameters will not be given here. The two methods 
can be compared in terms of their scatter. Figure 8 shows a 
histogram of the ‘standard error’ of the derived attenuation 
relations for all cases. It can be seen that more than 80% or the 
attenuation relationships have a scatter of more than 1.8. For 
comparison the standard error of the seismic coefficients 
shown in Fig. (4~) hardly exceeds 1.8 for the whole range of 
periods and this only on the high period range. Furthermore, 
for the critical wedge extending to a deptb of 0.2 y/H, the 
standard error never exceeds 1.8 even for the high periods 
(this is the bottom curve of Fig. 4~). It is therefore argued that 
due to the smaller scatter, the magnification curves of seismic 
coefficients are preferred over the attenuation relationships. 
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1.7 1 .a 1.9 2 2.1 
‘Standard Error’ of Attenuation Relationship 

9: Variation of scatter of attenuation relationships. 

PERMANENT GROUND DISPLACEMENTS 

The earthquake-induced displacements, for all values of m, R, 

y/H and X have been calculated for a sliding wedge of depth 
0.2 y/H from the top of the dam. The input motion is the 
response time history of the wedge and a modified Newmark 
type rigid-block sliding model (Sarma, 1975) has been used 
for the analysis. The two main factors affecting the size of the 
calculated displacements are the period of the dam, T and the 
‘critical acceleration ratio’, kc/k, where kc is the ‘critical’ 
seismic coefficient which would bring the dam slope to a state 
of limiting equilibrium and k, is the maximum seismic 
coefficient defined as k, = a,,,,,lg where %a is the maximum 
acceleration of the response time history. The effect of the 
other parameters is inherit in the response time history. 

The displacement data has been binned in terms of T and 
kc/k,. Figures IO and I1 plot the mean value and ‘standard 

error’ term, defined as @+a)/~ for each set of data. As 
expected, for a given value of kc/k,, displacements increase 
with increasing values of T. 

2 

Fig. IO. Mean value of earthquake induced displacements 

A number of researchers have studied the problem of 
earthquake-induced displacements in the past and have 
produced expressions for average and upper bound values. 
Most of these studies have used ground strong motions as the 
input motion in the analysis. Ambraseys (1972) produced an 
upper bound solution given by: 

log(u)=2.3 - 3.3 kc/k,,, (3) 

where u is the displacement. When the original strong motion 
records are used as the input motion in the displacements 
analysis, equations (3) tits the data well. However when the 
dam response strong motions are used as the input motion, the 
upper bound displacement values can be more than an order cf 
magnitude higher due to the higher accelerations 
(magnification effect) and the higher periods of the response 
records (Fig. 12) 

Fig. I I. Scatter of earthquake induced drsplacements. 

lOA j 

I: : : I ; : : : 
10-4- 

0 0.2 0.4 0.6 0.8 1 
k Ik c m 

Fig. 12 : Permanent earthquake induced displacements from 
dam response analysis. Straight line given from 
equation (3). 

Sarma (1975) reduced the inherent scatter in the data b,y 
plotting the dimensionless quantity [4x, / k,gT,‘], where x, is 
the displacement and Tp is the predominant period from the 
acceleration spectrum of the record. An upper bound of this 
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form is given by Sarma (198 1) as : 

1 4x 
log -A [ 1 c kngTP2 

= 1.07 -3.83$ 
m 

(4) 

where x, is the displacement, T is the predominant period of 
the acceleration record, c is a function of the slope angle, the 
angle of shear resistance of the material and the direction of 
application of the inertia force. In the present study a similar 
plot is produced, with TP the predominant period of the dam. 
If the response of the dam was wholly dominated by the 
fundamental mode, then the scatter would reduce. However it 
is seen that this is not the case and the use of T does not 
improve the scatter, which implies a significant contribution 
from the other modes in the response. 

I 

10-l 
0.1 0.2 0.3 04 0.5 0.6 0.7 08 

v&l 

Fig. 13: Plot of 4u/k,,,g~ with k, /k,,, for all data. 

-I 
0.9 

Extreme values distribution 

It is usually the case that the practising engineer is interested 
in the maximum values of permanent displacements that can 
be attained for specific values of parameters such as T or 
k&,,,. An extreme value probability distribution of the 
calculated displacements is therefore a useful tool that can be 

used to assess the magnitude of the permanent displacements 
within acceptable ‘confidence’ limits. A Weibull distribution 
with a lower limit equal to zero fits the data quite well. The 
probability density function, f(x), of the Weibull distribution is 
given by : 

f(x) = ubxb-‘eVax (5) 

with a and b both positive. The permanent displacements were 
classified into 180 sets for all combinations of T and kc/k, and 
for each set of data, the parameters a and b of the fitted 
Weibull distribution were calculated and are shown in Table 2. 
Having calculated parameters a and b one can use the inverse 
Weibull distribution, 

Ilb 

(6) 

to calculate extreme values of displacement, u, for a 
probability of non-exceedence p. Table 2 shows permanent 
displacement values for probabilities of exceedence of, 20% 
and 5%. 

The variation of the Weibull parameters a and b has been 
investigated through a multiple regression rendered linear 
through an appropriate logarithmic transformation. The 
method is the same as adopted by Ambraseys & Menu (1988) 
although in the present study the period of the dam, T has also 
been included in the regression. 
For the whole set of data the regression analysis gives : 

a = 0.264 (kc /k,,J”.689 (1- kc /km) -‘s-7’ T-o.4o7 (7) 

b = 0.685 (kc /k,,J”.o’7 T -‘.‘M (8) 

A regression analysis of b including the term (I- kclk,) was 
also performed but its inclusion did not improve the tit. 
Equations (7) and (8) have multiple correlation coefficient 
values, R’, of 0.96 and 0.86 respectively. 

Table 2: Average and extreme values of earthquake induced displacements for different values 
of T and k, /k,. Columns 3 and 4 give the average value, ,u of displacement (in cm) 
and the ‘standard error’ term, (p+@j~ Columns 5 to 8 give Weibullparameters a 
and b andpredicted values ofpermanent displacements, in cm, forprobabilities of 
exceedence, p. of 20 and 5 per cent. 

T (s) 

0.1 

kk P (cm) (P+WP a b p=20% p=5% 

0.1 15.353 2.503 0.104 0.858 24.344 50.241 
0.2 5.467 2.198 0.201 0.956 8.788 16.83 
0.3 2.372 2.132 0.41 1.02 3.818 7.02 
0.4 1.085 2.107 0.889 1.066 1.744 3.124 
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0.5 0.498 2.107 2.05 1 1.092 0.80 I 1.414 
0.7 0.086 2.17 12.767 1.047 0.138 0.25 1 
0.9 0.004 2.533 64.925 0.707 0.005 0.013 

0.5 0.1 54.494 2.45 1 0.069 0.71 83.677 200.682 
0.2 24.493 2.499 0.127 0.701 37.362 90.657 
0.3 12.227 2.506 0.204 0.706 18.678 45.02 
0.4 6.236 2.488 0.318 0.718 9.58 22.763 
0.5 3.106 2.462 0.51 I 0.732 4.798 11.216 
0.7 0.632 2.438 1.63 0.757 0.984 2.236 
0.9 0.04 2.64 11.919 0.716 0.061 0.145 

I 0.1 84.52 2.591 0.073 0.64 124.462 328.661 
0.2 36.543 2.569 0.13 0.63 I 53.764 143.943 
0.3 17.415 2.532 0.199 0.642 25.905 68.171 
0.4 8.605 2.489 0.297 0.659 12.965 33.285 
0.5 4.27 2.459 0.453 0.677 6.504 16.288 
0.7 0.911 2.434 1.269 0.701 1.404 3.406 
0.9 0.064 2.491 8.019 0.692 0.098 0.241 

1.5 0.1 85.275 2.633 0.068 0.654 125.6 324.702 
0.2 36.697 2.613 0.127 0.638 53.776 142.387 
0.3 17.997 2.585 0.199 0.638 26.522 70.238 
0.4 9.238 2.566 0.298 0.644 13.722 36.015 
0.5 4.787 2.554 0.447 0.65 1 7.163 18.616 
0.7 1.104 2.567 1.156 0.653 1.661 4.3 
0.9 0.084 2.65 6.062 0.637 0.125 0.33 1 

2 0.1 99.597 2.943 0.07 0.633 140.992 376.044 
0.2 43.494 2.922 0.127 0.617 61.185 167.483 
0.3 2 I.229 2.841 0.196 0.617 30.214 82.669 
0.4 10.952 2.82 0.292 0.62 15.706 42.764 
0.5 5.758 2.83 1 0.436 0.618 8.263 22.569 
0.7 1.363 2.833 1.068 0.611 1.958 5.416 
0.9 0.11 2.922 4.808 0.587 0.155 0.447 

CONCLUSIONS REFERENCES 

The spectra of average seismic coefficients can be easily used 
in the seismic design of earth dams. The scatter in the 
displacement values is significant and depends on the 
variability of the strong motions; an extreme value distribution 
(Weibull) will give expected displacements within 
‘confidence’ limits. The sliding block displacements using the 
response accelerations may be one order of magnitude 
different from that computed using the ground motions. 
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