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Offshore Caissons on Porous Saturated Soil 
George Gazetas 

Assistant Professor, Case Western Reserve University, Cleveland, Ohio 

Emmanuel Petrakis 
Undergraduate Student, Case Western Reserve University, Cleveland, Ohio 

SYNOPSIS While currently available methods of dynamic soil-foundation interaction idealize the soil as a continuum, 
this paper presents a general theory to obtain the dynamic response of offshore caissons resting on a saturated or 
nearly saturated poroelastic medium. The model, based on Biot's theory, considers the compressibility of both solid and 
fluid phase and assumes that the fluid flow is governed by Darcy's Law for an isotropic medium. Results are presented 
as plots of normalized amplitudes of displacement load or rotation-moment ratios for a rigid strip founded on a dense 
coarse sand. The results demonstrate that fluid compressibility, which is primarily a function of the dearee of satur­
ation, has an important effect on rocking motions. Soil premeability appears to have a rather minor effect on the re­
sponse. 

INTRODUCTION 

It has long been recognized that shearing deformations in 
saturated sands occur with virtually no interference of 
the pore water and, thus, the shear wave velocity depends 
only on the stiffness of the soil skeleton, except for 
the minor influence of the added mass of water. Volumetric 
strains, on the other hand, caused primarily by the re­
arrangement of grains, have to overcome the elastic resis­
tance of the pore water. Consequently, there exists a 
strong structural coupling between the solid skeleton and 
the water filling the pore space, as a result of which di­
latational wave velocity depends strongly on the relative 
compresibilities of the (porous) solid and fluid constit­
uents of the soil. 

To mathematically describe the structural coupling of the 
two soil phases, Biot (1941) pro~sed that soil be model­
ed as a po~oeiaA~~ medium rather than as a (one phase) 
continuum. Biot's poroelastic "soil" consists of two 
distinct and interacting phases: a continuous elastic 
(or viscoelastic) porous solid and a continuous elastic 
fluid, representing the soil skeleton and the pore water, 
respectively. The basic deviation of such a model from 
reality lies in the assumption of continuity of the solid 
phase which contrasts with the particulate nature of soil& 
Thus, for instance, no coupling between volumetric and 
shear strains ('dilatancy') can be reproduced with the 
model, unless the solid phase exhibits inelastic defor­
mational characteristics, as was proposed by Ba1ant & 
Krizek (1975) and Prevost (1979). Nevertheless, the 
model has led to the development of a theory (Biot, 1955, 
1956; Deresiewicz, 1960; Paria, 1958; DeJosselin deJong, 
1963; etc.) which can successfully account for pore-water 
flow, volume changes and deformations that take place 
simultaneously in real soils. 

Despite these capabilities of the poroelastic theory few 
attempts habe been made to use it in dynamic problems of 
interest to geotechnical and earthquake engineers, as 
for example in problems of dynamic soil-foundation inter­
action caused by machine, sea-wave and earthquake loading. 
Two are believed to be the reasons: (1) The mathematical 
difficulties arising from the adoption of the poroelastic 
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model for soil. (2) The lack of a clear understanding of 
the soil parameters that the model introduces and the 
absence of well-established experimental methods to 
evaluate their magnitude. In his original formulations 
Biot only qualitatively described the material constant 
of his model, while later Biot & Willis (1975) presented 
expressions in terms of the so-called 'unjacketed' com­
pres,sibili ties of the two phases due to a pressure applied 
to the pore water; these parameters, however, are not 
particularly useful for practical applications. Currently, 
because of the work of Ishihara (1967, 1970) and Ba1ant & 
Krizek (1975), the poroelastic constants can be evaluated 
in terms of parameters readily obtainable in the labora­
tory, as is shown in this paper. 

This paper demonstrates that it is possible to rigorously 
formulate and solve the problem of obtaining the dynamic 
response of long caisson-type structures founded on para­
elastic soil and excited by sea-wave or earthquake load­
ing. Preliminary results, presented in the form of 
normalized amplitudes of displacement-load or rotation­
movement ratios as functions of frequency, reveal that 
fluid compressibility, which depends primarily on the 
degree of saturation of the porous soil, is the most 
important parameter that may influence the amplitude of 
rocking oscillations of a caisson. For the range of 
frequencies of interest (i.e., 0.1 Hz< f < 5Hz), soil 
permeability has some effect only if it is-very large (of 
the order of a few centimeters/second) and the frequency 
of vibration very low (less than 0.5 Hz). Finally, the 
porosity of the soil exerts its main influence through 
the shear modulus of the solid skeleton and the bulk 
density of the porous medium. 

To give the reader some background information, before 
proceeding to our analysis, several published studies 
related in one way or another to the present problemsare 
next briefly reviewed. 
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Sl.tf'o1ARY OF PREVIOUS 1\QRK 
Biot (1956) considered the three dimensional waye propa­
gation of shear and dilatational waves in a poroelastic 
medium and showed the existence of two types of dilatat­
ional waves and of one rotational wave. The first dila­
tational wave ('fast' or Pf- wave) is transmitted through 
the fluid and solid phase and is controlled by the bulk 
compressibility of the medium; the second ('slow' or Ps­
wave) involves large volumetric changes of porous solid 
phase and at low frequencies of vibration loses the nature 
of a wave reducing to a diffusion-type (consolidation) 
process. The practical implicntions of Riot's findings 
were evaluated by Ishihara (1967, 1970) who related the 
poroelastic parameters to the porosity, n, and the com­
pressibilities of the soil skeleton, Cp, the solid part­
icles, Cs, and the fluid, Cw. Using realistic ranges of 
these parameters, he found that in the frerruency range 
of interest to engineers, the Pf - wave travels without 
drainage of the pore-water, even if soil permeability is 
large (: 0.10 em/sec), and, consequently, suggested that 
a continuum undrained soil model (having the same shear 
modulus, G, and a Pnisson•s ratio v:::o.s fl - G:-lCH]) can 
replace with very good accuracy the two-phase poroelastic 
medium. To explain the absence of relative motion be­
tween water and solid he observed that at low frequencies 
the wave-lengths are large and thus the pore-waterpres­
suregradients (e.q., 3pw/3x) are small to cause any 
noticeable water flow, despite the large time intervals 
involved. On the other han0., he also noticerl the strong 
dependence of Ps-wave velocity on frequency and showed 
that at very low frequencies the deformation can progress 
only as a consolidation process. 
Deresiewicz (1960) and Deresiewicz & Rice (1962) were 
the first to present solutions to simple boundary value 
problems involving wave progagation through poroelastic 
layers. General two-dimensional solutions of the govern­
ing field equations were obtained through a Helmholtz 
resolution of the displacement vectors of the two phases 
and, then, some phenomena occuring during reflection and 
refraction of body waves in poroelastic media were 
studied. This work has served as the starting point for 
our formulation that is presented in this paper. Recently, 
Halpern & Christiano (1979) implemented Deresiewicz's 
solution to obtain dynamic impedance functions for a 
poroelastic halfspace due to a vertical oscillatory 
normal point force at the surface (i.e., Lamb's problem 
for a poroelastic medium). Results, however, were 
presented only for a case of one-dimensional wave pro­
pagation. 

Allen, Richart & Woods (1980) reported an experimental 
investigation of compressional wave propagation in 
saturated and nearly saturated sands. They found Pf-wave 
velocity to depend very strongly on the degree of 
saturation, S: a decrease inS from 100% to 99.7% re­
duces the velocity by a factor of two, while in a com­
pletely saturated medium void ratio is the most influen­
tial parameter. Ishihara's equation predicted with good 
accuracy the observed variation of Pf-wave velocity with 
changing soil parameters. 

In recent years the search for oil and gas in deep water 
has stimulated a significant research effort aimed at 
predicting the behavior of marine soils during ocean 
wave storms as well as earthquakes. Several studies 
have appeared on the generation and dissipation of pore 
water pressures and the related phenomenon of liquefac­
tion of sand deposits (Lee et., al, 1975; Moshagen et al, 
1975; Prevost et al, 1975; Rahman et al, 1977; Madesen, 
1978; Wijesinghe et al, 1980; Yamamoto et al, 1978; 
Martinet al, 1980; Nataraja et al, 1980). In all of 
these studies only ocean wave loading was investigated 
and only Rahman et al, (1977) studied the effect of 
of soil-tank interaction on the development pore 
pressures . The work of Madsen (1978) and Yamamoto et 

al, (1978) is of greatest interest in connection with our 
analysis, since they employed Boit's poroelastic model to 
determine the effect of (sinusoidal) water waves propagat­
lng over a porous deep sand layer. In contrast with the 
formulation of Boit (1956) and Deresiewicz et al (1962), 
however, these authors ignored the inertia effects in the 
soil and treated the loading as a quasi-static one, pre­
s~ably because the large periods of oscillation associated 
Wlth strong ocean wave storms make the dynamic effects 
secondary. The main conclusions of these studies can be 
summarized as follows: (l) for fully saturated soils con­
sisting of silt or finer material permeability has no effect 
on soil response and no phase lag occurs between applied 
a~d ~enerated pore pressures; permeability is, however, 
Slgnlficant in medium and coarse sands. (2) The behavior 
of partially saturated sands depends primarily on the 
rel~tlve compressibility of the soil skeleton and the pore 
fluld. These results are in qualitative agreement with 
those of Ishihara (1970). 

One of the objectives of the research whose first results 
are ~eported herein is to bridge the gap between the quasi­
statlc methods employed in the studies of ocean-wave in­
duced pore pressures and effective stresses and the dynamic 
formulations of Biot, Deresiewicz and Ishihara. The analysis 
that is presented here is general in that the response can 
be obtained not only due to progressive sea waves, but also 
to any prescribed harmonically varying with time surface 
excitation. 

STATEMENT OF THE PROBLEM 

Fig. la shows in cross-section a long gravity caisson dur­
ing a wave storm. The caisson rests on the surface of the 
soil and has its axis perpendicular to the line of the wave 
profile. Being an obstruction in the free wave field, the 
caisson is subjected to wave forces (diffraction) thereby, 
undergoing swaying and rocking oscillations. Moreover, the 
soll surface (sea floor) is also subjected to wave induced 
pore pressures which are in-phase with the oscillations 
of the sea surface and have an amplitude 

l 
P 0 = 2 pwgH/cosh(2nd/L) (l) 

As a result, fluid flow and deformations occur in the 
porous medium and cause additional vibrations of the 
caisson. Thus, the whole problem can be reduced in the 
two 'key' subproblems illustrated schematically in Figs. 
lb and lc. The paper presents a rigorous formulation and 
solution to these two plane-strain problems, namely, the 
determinitation of displacement and stress fields in a 
poroelastic medium subjected to harmonic surface pressures, 
Pa exp(iwt), or carrying a rigid strip (massless) plate 
that undergoes rocking and swaying vibrations due to ex­
ternal harmonic forces, e.g., F

0 
exp (iwt). The formula­

tion can be readily extended to treat soil profiles con­
sisting of any number of horizontal layers, using the 
technique described by Gazetas & Roesset (1976) and 
Gazetas (1980). However, only the case of a very deep 
soil deposit (halfspace) is studied herein. 

POROELASTIC SOIL PARAMETERS 

The following soil parameters are needed to describe the 
behavior of a poroelastic medium: 

(l) The porosity n = Vu/V, where vu = the pore 
volume and V is the total (bulk) volume of 
the soil. 

(2) The shear modulus G which is independent of 
the presence of the fluid and characterizes 
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(A) (C) 

FIG. 1. (A) Offshore caisson during ocean wave storm; (B) and (C) The two key sub-problems. 

the stiffness of the porous solid structure; 
G is chiefly a function of porosity, effec­
tive confining pressure and amplitude of 
shear strain. 

(3) The Poisson's ratio vd, measured under con­
ditions of complete drainage. 

(4) The fluid compressibility Cw obtained from the 
change in fluid volume due to an increase in 
fluid pressure: 

c 
w 

(2) 

in which r ~ dr.,/rw is the fluid volumetric strain 
Pw the mass density of the fluid and Pw thepore 
fluid pressure. Cw depends solely (for a given 
temperature and pressure) on the amount of air 
contained in the fluid. This amount is measured 
with the degree of saturation S of the porous _

7 
medium. For water with S ~ 100%, Cw ~ 4.9 x 10 
1/kPa, while for S>98% 

C (S) ~ C (100) + lOO - S 
w w Pw 

(3) 

(5) The soil permeability k (m/sec) relating the 
velocity of fluid flow to the existing gradi­
ent of fluid pressure. 

(6) The mass densities Ps and Pw of the solid 
and fluid phases. The bulk mass density is 
given by 

(4) 

DEFINITION OF KINEMATIC AND STRESS VARIABLES 

The kinematic variables needed to describe the behavior 
of a poroelastic medium are the macroscopic (statistical 
average) displacements of the solid, ui, and fluid, Ui, 
where the subscript i(i = 1,2) refers to the Xi axis 

(Fig.l). The volumetric strains of the solid and fluid 
phases are, respectively: 

E ~ E .. 
aui 

~~ a xi 

aui 
(i 1 '2) (5) 

£ E •. a xi ~~ 

where a repeated index denotes a summation with respect to 
that index over its range. 

The stress variables used in the subsequent theory are not 
the conventional effective stress, 'ij, and pore fluid 
pressures, p , but the macroscopic components introduced 
by Biot (194l, 1956). Considering a perfectly planar 
unit cross-section passing through the grains of theporous 
medium (Fig. 2), the total transmitted force can be re­
solved into a force component acting on the solid phase 
and one acting on the fluid phase. Denoting by oij and 
s the average values of the corresponding stresses (force/ 
unit cross-sectional area), one can write for the total 
stress: 

a . . t ~ o .. + s 6 .. 
lJ l] ~J 

(6) 

in which oij is the Kronecker delta (6ii ~ 1, 6ij ~ 0 if 
i ~ j) and possitive are the tensile stresses. The pore 
fluid pressure Pw is related to s through the porosity, 
n: 

p ~ - s/n 
w 

(7) 

with the minus sign indicating that Pw is positive if 
compressive. Recalling that 

at ~ a' + (-p ) 6 .. 
ij ij w ~J 

(8) 

leads to the following relation between effective stresses 
and the macroscopic stresses of Biot's poroelastic theory: 

a~ . 
~J 

1-n 
0,. - -- s 
~J n 

(9) 
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CROSS-SECTION A-A 

resultant resultant s 

FIG. 2. Illustration of macroscopic stress components. 

GOVERNING FIELD EQUATIONS 

The constitutive relations between kinematic and stress 
variables of a poroelastic medium are (Biot, 1941, 1956; 
Ishihara, 1967, 1970; Richart et al., 1970): 

3u, 3u 
a .. = (D £ + Q £)8 .. + G("'" + ::..::.2) (lOa) 
lJ lJ oXz dl<1 

s = Q £ + R c (lOb) 

in which the moduli D, Q and R are obtained from the 
previously introduced basic soil parameters as follows: 

D 
2vd 

G + ~ 
1 - 2vd R 

(lla) 

1 - n 
Q -

Cw 
(llb) 

R ~ 
n 

Cw 
(llc) 

in which the approximation refers to neglecting the com­
pressibility of the solid grains Cs. (Typic.;ally Cs~Cw/20) 
Eqs. 10 should be complemented with the equations of 
dynamic equilibrium. Assuming that the fluid flow through 
the solid structure obeys Darcy's Law: 

u. - c. 
l l 

(12) 

where Yw Pwg and the dot denotes derivative with respect 
to time, the dynamic equilibrium of the solid and fluid 
parts can be written: 

rll ui 

- 11 12 iii 

b(u. - D. l 
l l 

(13a) 

(l3b) 

in which b nyw/k and the corresponding terms apparently 
represent the seepage forces; r 11 = l"ls(l - n) + r 12 , 
P

22 
= npw + P

1 
and p density of an additional apparent 

mass which rela€es to l~e coupling between the fluid and 
the solid structures. By requiring that the strain energy 
in a poroelastic medium be non-negative for any possible 
combination of applied stresses, one arrives at the in­
equality Pf2 < P 11 P22 (Biot, 1956). For the relatively 
small frequencies of ocean wave and earthquake induced 
loading, p 12 ~ 0 *. 

*The reader is cautioned at this point of a sign discrep­
ancy involving the seepage terms of the equilibrium 
equations in Biot(l956) and Deseriewicz & Rice (1962). 

Eqs. 10 and 13 govern the propagation of time varying 
(dynamic) disturbances in a poroelastic medium. 

GENERAL SOLUTION 

Eqs. 10 and 13 can be uncoupled into three wave equations 
in terms of the potential functions ~1(x,z), ~ 2 (x,z) and 
H(x,z) (Deresiewicz & Rice, 1962) related to the solid and 
fluid displacements vectors u(x,z) and U(x,z) by 

u grad(¢ 1 + ¢ 2) + curl H (14a) 

u (14b) 

in which ~l' ~ 2 and~ are given in Appendix. Considering 
propagation of harmonic disturbances, only, the wave equations 
are: 

( v2 + w2;c,) ¢. = 0, 
l l 

i = 1,2 and (V 2 + w2;cflH= 0 

(15) 

in which w = the frequency of oscillation; v2 = the Laplace 
operator; and c 1 , c 2 and c 3 = the wave velocities of the 
two dilatational and the rotational wave, respectively. The 
velocities c 1 and c 2 (of the Pf and Ps waves) are obtained 
from the 'undrained' wave velocity c, i.e. the velocity 
that corresponds to zero fluid flow through the solid struc­
ture, from the relation 

2 c2 
c. = :::.r 

' i = 1,2 (16) 
l qi 

in which 

c2 = Z/p (17) 
p 

where z = p + R + 2Q, p D + 2G, and % are the roots of 
the quadratic equation 

(PR - Q2)q2 - (p R + P P + ibz)q + + ibr = 0 
• 11 22 w p 11 p 22 w ; 

(18) 

The shear wave velocity c 3 is related to the shear wave 
velocity cs of the solid phase: 

in which 

2 
Cs = G/p 11 and 

p 
q = ::..li 

3 p 

P 1 1 p 22 + ib/w 
p - ib/w 

22 

(19) 

(20) 

Calling hj = w/cj the wave-number corresponding to the j-th 
velocity, the general harmonic (plane-strain) solution of 
Eqs. 15 can be cast in the form 

¢
1 

= { A
1 

exp(-ih 1m1x 3) + B1exp(ih 1m1x 3)}· 

exp[i(wt- h 1f 1x 1l] 

¢· 2 {A
2
exp ( -h2m2x 3) + B exp (ih 2m2x 1) } • 

exp[i(wt- h 2f 2x 1lJ 

H {A3exp(-ih
3
m

3
x

3
) + B exp(ih3m3x 3) }• 

exp[i(wt- h 3i 3x 1)] 

(2la) 

(2lb) 

(2lc) 

with mj + l§ = 1 , j 1,2,3, and i 1=1. Using Eqs. 21 
and Eqs. 14 the displacement components of the solid and 
fluid phase can be obtained; the constitutive relations 
(Eqs. 10) then yield the (macroscopic) stresses in the two 
phases. Realizing that there are six unknown constants of 
integration (Aj, Bj, j = 1,2,3), six equations must be de­
rived from the boundary conditions of the problem. 



BOUNDARY VALUE PROBLEMS: HALF SPACE 

In a poroelastic halfspace (idealizing a very deep soil 
deposit) stresses and displacements must vanish as z + 00 • 

Thus Bj = 0, j = 1,2,3, and the expressions for stresses 
and displacements reduce to: 

a~ 3 (xl' x 3 ) = -{h~ [D + Q + (R + Q) 11 1 + 2G m~J 
exp(-ih

1
m

1
x

3
) A

1 
2 

+h 2 [D + Q + (R + Q)\1 2 + 2G m~] exp(-ih 2m2x 3lA2 

+2h~ m
3 

£
3 

exp(-ih
3
m

3
x

3
)A

3
}· exp[-i(wt- htx 1 )] 

o
13

Cx
1

, x
3

) =- {2Ghfm/
1 

exp(-ih
1
m

1
x

3
) ~ 

+2Gh 2
2
m

2
f exp (-ih m x

3
) A 

2 2 2 2 

(22a) 

-Gh~(m~ - f~) exp(-ih
3
m

3
x

3
)A

3
}· exp[-i(wt- htx

1
) ] (22b) 

pw(x
1

, x
3

) {hy(Q + R11
1

l exp(-ih
1
m

1
x

3
) ~ 

+h~(Q + R11 2 l exp(-ih
2
m

2
x

3
)A

2
}• exp[-i(wt- htx

1
l] (22c) 

u
3

(x
1

, x
3

) =- i{h
1
m

1 
exp(-h

1
m

1
x

3
) A

1 
+ n

2
m

2
exp(-ih

2
m

2
xlA

2 
+ h

3
f

3 
exp(-ih

3
m

3
x

3
) A

3
}· exp[-i(<ut- hfx

1
)] (22e) 
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in which, since the boundary is horizontal (i.e. parallel 
to x

1
), all variables depend on x

1 
and tin the formgiven 

by tne function exp [ i (hfx 1 - wt) ] where hL hjfj, J = 1, 2, 3. 
The boundary conditions needed to evaluate A1 , A2 and A3 
depend on the nature of the excitation 

(a) OCEAN WAVE LOADING (FIG. lb) 

At the surface of the porous soil, x 3 = 0, the sea wave 
motion imposes that the fluid pore pressure, Pw· be equal 
to 

2TI 
k =­

L 
(23) 

where the amplitude p
0 

is given by Eq. 1 and the ocean 
wave length L is shown in Fig. 1. In addition the ver­
tical effective normal stress must vanish o3

3 
= 0. In 

relatively shallow waters (i.e. with d small), shear 
stresses are imposed from the oscillating sea water on 
the soil. Since they are usually small and decrease fast 
as d increases, they can safely be neglected (Madsen, 
1978; Yamamoto et al, 1978). Thus, besides Eq. 23, the 
following two boundary conditions apply: 

0 ; at x
3 

= 0 (24) 

Introducing Eqs. 22a, 22b and 22c in Eqs. 23, 24 leads 
to a system of three linear albegraic equations from 
which A1 , A2 and A3 are readily evaluated. 

(b) RIGID STRIP LOADING (FIG, lc) 

The boundary conditions in this case are of a mixed nature, 
i.e., while zero normal and shear stresses are sustained 
at all points beyond the loading area, rigid body hori­
zontal and rotational displacements are imposed on the 
soil-strip interface. To overcome this difficulty, a 
formulation in terms of Green's function for the half­
space is used. Note that a similar approach was followed 
for a circular rigid disk on poroelastic halfspace by 
Halpern & Christiano, 1979, who performed a numerical 

evaluation of the resulting zero-to-infinity type integrals. 
Herein a numerical technique has been used, similar to 
the one described by Gazetas & Roesset (1976) and Gazetas 
(1980) for a homogeneous and a linearly heterogeneous 
elastic semi-infinite continuum, respectively. Only a 
bare outline of the method is offered here. 

Due to the two-dimensional nature of the problem, the 
whole surface is discretized into a number of uniformly 
spaced nodal points. The dynamic displacements ('flexi­
bility influence coefficients') of the nodal points are 
obtained from the solution of two simple boundary value 
problems associated with harmonically time-varying normal 
or shear stress pulses, uniformly distributed around a 
nodal point. Each of these pulses can be expanded in 
Fourier series along the horizontal axis, x 1 , and foreach 
harmonic o(~lexp(i~x 1 l the boundary conditions can be ex­
pressed in terms of stresses only. For example, consider­
ing an imposed normal stress, the boundary conditions are: 

t 
o 33 = o(~) exp(i~x 1 ); (25a) 

(25b) 

provided that the soil-strip inrerface is freely draining. 

Having obtained stresses and displacements for each har­
monic, a discrete inverse Fast Fourier Transform algorithm 
is employed to evaluate horizontal and vertical displace­
ments at each nodal point (dynamic influence coefficients). 
It is then a simple problem to impose the conditions of 
rigid body motion to the nodal points at the soil-caisson 
interface and thus compute the dynamic compliances in 
horizontal and rocking motion. In matrix form 

= ~ [SHH 
G S 

HM 

(26) 

where 6H and ~o are the amplitudes of horizontal displace­
ment and rotation of the rigid strip due to a harmonic 
force and moment of amplitude FH and Mo. Each of the 
normalized compliances is a function of frequency can be 
written in the form: 

S(w) = S' (w) coswt + S"(w) sinmt (27) 

in which S' (w) and S" (w) are the amplitudes of the in-phase 
and 90°-out-of-phase components of motion. 

NUMERICAL RESULTS AND CONCLUSIONS 

Preliminary conclusions are offered here regarding the 
influence of some key soil parameters on the dynamic re­
sponse of a rigid strip resting on a water-saturated and 
a nearly saturated poroelastic halfspace. Fig. 3 portrays 
the in-phase and 90°-out-of phase components of the 
normalized swaying and rocking compliances, Smr and SMM, 
as functions of the dimensionless frequency factor 
a = wBipjG where 2B is the width of the rigid strip and 
p the bulk density of th& porous medium (Eq. 4). The 
following soil parameters, approximate for a dense and 
quite permeable sand, were used as input: 

porosity: n = 0.30 

shear modulus: G lOs kPa 

drained Poisson's ratio: vd 0.25 

coefficient of permeability: k = 1 em/sec 

mass density of solid: Ps = 2700 kg/m3 
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FIG. 3. Effect of fluid compressibility on swaying and rocking compliance functions. 

mass density of fluid: p = 1000 kg/m3 
w 

while the fluid compressibility, Cw, varied from the 
fully saturated value of 4.9 x l0-7m2/kN to 10-3m2/kN 
which corresponds approximately to S~99.8% for waterdepth 
of"' 20 meters. Also plotted in this figure (dotted lines) 
are the curves for an undrained halfspace continum having 
the same G and p with the poroelastic medium andv=0.495. 

The following are evident from the figure: 

(1) the fluid compressibility has a small overall effect 
on swaying oscillations. The effect is noticeable pri­
marily in the relatively low frequency range. The satura­
ted porous medium exhibits horizontal displacements only 
slightly different from those of an undrained continuum, 
presumably because there is very little fluid flow 
through the porous solid. This may appear somewhat sur­
prising, given the high permeability of the medium, at 
least for the very low frequency range. As Ishihara 
noticed, however, the large wave lengths at such fre­
quencies imply that the generated pore-water pressure 
gradients are very small to produce any flow. 

(2) Rocking oscillations are strongly influenced by the 
fluid compressibility, which is understandable in view of 
the mostly dilatational deformations imposed by tLe 
footing. As Cw decreases the medium becomes more com­
pressible and displacements increase. Again, the fully 
saturated medium exhibits a response very similar to the 
one of the undrained continuum, indirectly confirming the 
small fluid flow during the motion. 

Parametric analyses are currently conducted at Case 
Western Reserve University to evaluate the effect of 
the other soil parameters on the response of poroelastic 
media to ocean wave or strip loading, while the formula­
tion is extended to multi-layered soil deposits. 
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g - ieb/pw -qj 

~j h - ieb/pw 
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