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Gersevanov Research Institute of Foundations and Underground Structures, 
Moscow, Russia 
 
 
 
ABSTRACT 
 
Soil nailing technology can be successfully applied to strengthen natural soil massifs in seismic regions, provided adequate analysis is 
available. Conventionally, the design of soil nailing is performed iteratively: firstly parameters of nailing and their distribution are 
assigned, the safety factor of the nailed massif is calculated, if its value is less than 1 then nailing parameters are reassigned, etc. Such 
“trial and error” approach is laborious and especially so, because different types of ULSs shall be analyzed. The method, discussed in 
the paper, is based on assumption that the effect of nailing in soil with internal cohesion c=c(x,y) could be simulated by equivalent 
internal cohesion Δc=Δc(x,y) (deficit) of unreinforced massif. Formulae for calculating nailing parameters are determined on the basis 
of deficit distribution. A MathCad code has been developed, examples are given. The method can be easily applied to assess seismic 
stability of nailed soil massifs. 
 
 
 
SOIL MASSIF STRENGTH DEFICIT CONCEPT 
 
There is essential difference between stability analysis of an 
existing soil massif (e.g., a slope) and that of a virtual paper-
bound slope yet to be cut and reinforced by nails. Instability of 
an existing slope can be proved by existence of just one 
potential critical slip line (one ULS), while stability of a 
virtual nailed slope can only be proved by multiple checks, 
showing that none of different slip-line families contains a 
critical slip-line i.e., different ULS’s shall be analyzed. 
 
The nails are usually applied to compensate for the global 
slope strength deficit. Stability of a nailed slope is checked by 
comparing the sum of retaining resistances R (including nail 
resistances) and the sum of shearing forces S along all 
potential slip-lines to find K=min(R/S). If K>1 then the slope 
is stable. Another approach: moments of R and S, rotating the 
sliding block around a certain point can be compared in the 
same manner, as is done for circular slip-lines. 
 
This approach, however, is not always adequate, because 
global stability evaluation misses the fact that nails do not 
have residual resistance in tension, shear or bending. If one 
nail is broken its resistance drops down to zero. It is not so for 

soil, which always has some residual resistance in shear. But if 
one nail breaks then its resistance will be distributed among 
other nails, whose strength could be insufficient to bear, and 
they would fail, then other nails … and so on and so forth, 
until the slope collapses because of progressive failure of 
nails. 
 
Beside virtual stable slopes there exist real potentially unstable 
ones that could become unstable later, e.g. due seismic or any 
other accidental action. A currently stable but seismically 
unstable slope can be reinforced by nails to make up for its 
strength deficit. 
 
The easiest and most explicit way to express the strength 
deficit of a soil massif  is to consider it as the deficit of soil 
cohesion Δc. Having found Δc distribution in a virtually 
unstable slope (soil massif) it is possible to determine the 
parameters of nailing (or other types of reinforcement) 
equivalent to Δc. 
 
In order to design a nailing system for a potentially unstable 
slope, it is necessary to find all slip-lines, characterized by 
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stability factor K<1. If there are no such slip-lines found then 
the slope is stable. Otherwise, there is a family (or families) of 
unstable slip-lines, each of which features a certain 
distribution of Δc=Δc(x,y)>0 along it. 
 
According to Sawitcky (2000) soil and discrete reinforcement 
(nails incl.) can be homogenized i.e., reinforced soil can be 
represented as a homogeneous composite material, in which a 
nailing system compensates for deficit Δc=Δc(x,y). But, 
typically, nails, crossing the slope, have equal strength along 
their lengths, therefore, there is a conservative option: they all 
could be designed as adequate to compensate for max(Δc), 
located at a point on the worst slip-line, whose stability factor 
Kw is equal to absolute minimum of all K’s i.e., Kw=min (K). 
Less conservative solutions require multiple types of nails or 
different spacing between them. The level of conservatism 
could be reduced if nails had non-uniform strength parameters 
distribution along their lengths. This design solution, however, 
is not technically feasible. 
 
 
ENVELOPE OF ALL CRITICAL SLIP-LINES  
 
Such envelope is a critical line albeit a boundary of the family 
of slip-lines. Evidently, the nails shall be designed to cross this 
boundary, otherwise, the zone of deficient soil strength would 
not be covered completely. Another requirement to nails: they 
should have adequate pullout strength i.e., they should extend 
beyond the envelope to have adequate fixture length.  
 
 
ΔC IN SIMPLE HOMOGENEOUS SLOPES 
 
Vertical wall with a horizontal bench, on which a uniformly 
distributed load q is applied. Such wall is stable if its height 
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where c, φ and γ are soil parameters. If the height of the wall 
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If a slope face is tilted at angle β (with β>0 for the wall tilting 
away from the soil massif) and the bench is inclined at angle 
α, then active pressure coefficient Ka in equation (2) can be 
calculated with the help of the well-known equation: 
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Infinite slope 

A slope inclined at angle α is stable if φ≥α for any value of c. 
The upper layer slips down if γ·h·cosα·tgφ+c < γ·h·sinα. 
Hence, stability can be ensured if deficit Δc=γ·h·(sinα-
cosα·tgφ)-c is compensated by nailing. 
 
 
LIMIT STATE ANALYSIS OF NAILED SOIL MASSIF 
WITH FORMATION OF SLIP-LINE 
 
If a slip-line R, formed up in a nailed soil massif (NSM), 
crosses a nail then its action on this nail at the intersection 
point is equivalent to combination of tensile force T and shear 
force Q (Fig. 1), applied to the nail. 
 

 
 

Fig.1. Relative location of a nail versus slip-line 
(Note. Compressed nails, i.e. 0<А+B<π/2, are not discussed 

here)  
 
Consider nailed soil as a composite material, as is proposed by 
Andrzey Sawicki (2000). Assign Т=min(TR,TP) and 
Q=min(QQ, QМ) where TR/TP are nail extension/pullout 
strengths, QQ/QМ are shear/bending strengths. Assign b and h 
as nails horizontal and vertical spacings in vertical plane, and 
β=π/2-A-B. Replace point forces Т and Q by equivalent 
distributed loads: 
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                                     (4)       
 
It is assumed that ULS of NSM corresponds to formation of a 
slip-line and failure of all nails. Consider a Cartesian 
coordinate system (ξ, η), in which axis ξ is parallel to nail axis 
i.e., is inclined to horizon at angle В. Coaxial nail resistance 
can be expressed as tensile stress: 
 

t    ,                                    (5) 
 
same as lateral nail resistance can be expressed as shear stress 
 

                                 q                                         (6) 
 
 

nail 

slip-line 



Paper No. 1.54a              3 

In coordinate system (x, y) with axis x, being tangent to slip-
line at the point of intersection with the nail, values of σx и τxy 
can be expressed, as follows: for normal stress σx in Cartesian 
system “normal-tangent” 
 

σ = σx = - t cos2β,     τxy= t sinβ cosβ, 
 
and shear stress τξη: 
 

σ = σx = q sinβ cosβ     τ = τxy = q cos2β 
 
Insert σ and τ in Coulomb law equation 
 

t sinβ cosβ=- t cos2β tgφ+ Δct 
 
and obtain deficit Δct equivalent to required nail 
extension/pullout resistance: 
 

Δct=



cos

)sin(cos t                         (7) 

 
Similarly obtain deficit Δcq equivalent to nail resistance to 
lateral load q from Coulomb law equation: 
 
                            q cos2β= q sinβ cosβ·tgφ+ Δcq,  
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NAIL-SOIL INTERACTION  
 
General case 
 
Consider the problem of elastic bending of a nail in soil, 
whose length is 2L. The solution of this problem boils down to 
solution of ODE (9), which describes lateral deflection 
function s(x) of a nail (elastic bar with bending stiffness EJ) in 
Winkler medium: 
 

EJsIV+Cz·d·s=0,                            (9)     
 
where  x is coaxial with the nail; 
            z is mean nail depth from the surface; 
           d is nail diameter; 
           Cz =K0 z is Winkler ratio along the nail at depth z; 
           K0 is stiffness factor, depending on soil stiffness around 
the nail. K0 values are borrowed from Russian Construction 
Code 50-102-2003 for laterally loaded piles as is shown in the 
following table. 
 
 

Table 1. 
 

Soils K0  kN/m4 

 
Driven 
nails  

Injected 
nails 

Very soft clays and clay 
loams (0.75<IL<1) 

650-
2500 

500-
2000 

Soft clays and clay loams 
(0.5<IL< 0.75) 

2500-
5000 

2000-
4000 

Clays and clay loams 
(0<IL<0.5), sand loams (IL<0), 
fine sands (0.6<e<0.75), 
medium sands (0.55<e<0.7) 

5000-
8000 

4000-
6000 

Clay and clay loams (IL<0), 
gravely sands (0.55<e<0.7) 

8000-
13000 

6000-
10000 

Gravely sands (0.55<e<0.7), 
gravel and pebbles and 
pebbles with sand fill 

- 
10000-
20000 

 
 
Equation (10) with boundary conditions s(±L)=±S, 
sII(±L)=sIII(±L)=0 can be solved with the help of well-known 
ODE solution technique. 
 
Numeric simulation of this solution yielded two facts: 
a) large scatter of tabulated values of K0 results in minor 
scatter of the solutions of equation (9), because they depend 

on α= 4

EJ

K
, where EJ is nail bending stiffness; 

b) for real nails their length can be assumed to be infinite. 
 
The last assumption made it possible to present the above 
solutions in the following form: 
 
 s(x)=S0e

-αx cos(αx); 
 δ(x)=s/(x)=S0 α e-αx [cos(αx)+sin(αx)];                 (10) 
 M(x)= 2EJs//(x)=2 EJ S0 α

2 e-αx sin(αx); 
 Q(x)= EJs///(x)=S0 EJ α3 e-αx [sin(αx)-cos(αx)]; 
 
where  s(x) is (see above); δ(x) is angle of tangent to s(x); M(x) 
and Q(x) are bending moment and shear force at point x 
respectively. From (10) follows that 
 

         max Q(x)=Q(0), Mmax= M(


4

)= 


2)0(Q   ,        (11) 

 
Below an example of solutions (10) in graphical form is given. 
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Fig. 2. Graphs of bending moments M(x), shear forces Q(x), 
displacements s(x) and tangent tilts δ(x) for a nail, having 
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diameter d=0.08 m, made of ferroconcrete, having elasticity 
modulus E=20000 MPa, in soil with K0=2 МРа/m2). 

 
 
Numeric simulation showed that at limit state nail inclinations 
can not exceed 0.05 prior to failure i.e., geometric non-
linearity of nail deformations is negligible. Another 
conclusion is that nails can be broken by tension and shear. 
Bending moment failure is only possible for nails in very soft 
soils, but soft soil massifs shall only be reinforced by anchored 
retaining structures rather than by nails. 
 
 
SPECIFIC PROPERTIES, SEISMIC STRENGTH AND 
PROGRESSIVE FAILURE OF NAILING SYSTEM   
 
As is mentioned above, nails have no residual strength in 
tension, shear or bending. Nails only have residual pullout 
strength. This circumstance can be used to design relatively 
stable nailed soil massifs, which do not collapse under 
unpredicted short duration actions, like seisms. Such NSM 
may change their geometry without collapsing and, therefore, 
may comply with the SLS requirements, without violating 
ULS requirements. In such case geometry changes may be 
repairable, and the NSM remains functional.  In order to 
achieve it a nailing system shall be moderately overdesigned 
with respect to tensile rupture, shear and bending, while their 
pullout strength be adequate i.e., their fixture in soil outside 
the critical slip-line should be slightly shorter than that within 
the sliding block. 
 
Condition K>1 is not sufficient for stating that the NSM is 
stable, because global stability does not mean that there are no 
overstressed nails, which could fail with their load being 
redistributed to other nails that could fail in turn and so on 
until NSM totally fail. Such progressive failure can be 
prevented if deficit Δс is compensated by nails at any point of 
the slip-line.  
 
 
COMPUTER CODES FOR SOIL NAILING DESIGN 
ANALYSIS  
 
Two MathCad codes were developed for soil nailing design 
analysis: the first one for computing the critical slip-line with 
Δс distribution along it and further nail parameters evaluation, 
corresponding to this distribution. 
 
Another code was developed for checking if a slope with 
assigned nailing system is stable and if there are any nails that 
could fail, because their strength is less than Δс that could 
initiate progressive failure of the whole nailing system. The 
sliding block was considered as the system of vertical slices, 
sitting on slip-line, with no interactions between them, which 
assumption is conservative. 
 
In both codes seismic action is defined as equivalent lateral 
static forces, applied to the gravity center of each slice. 

The slip-line shape was defined as y=Bxb with free parameters 
B and b to be found by minimizing stability factor to achieve 
Kmin. Any other slip-line definitions can also be used. 
 
The analysis is carried out in two stages. At first the set of 
respresentative slip-lines is found, having safety factor 
K=K(B,b) equal to the ratio of the sum of retaining  forces to 
the sum of shear forces along the slip-line. Then absolute 
minimum K=min(K(B,b)) is found in the set. For unstable 
NSM Kabs<1. But beside Kabs other slip-lines in the set can 
have K<1 i.e, can be unstable, which fact is taken into account 
when parameters of the nailing system are assigned, as is 
described above. 
 
The retaining and shear forces were determined with 
conservative assumption that the shear block is a system of 
slices formed up by vertical boundaries with no interaction 
between the slices. Calculated K values are partly given 
below. 
 

KS

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

86.42 98.38 154.2 277.29 539.07 31.1·10 32.33·10 35.08·10 41.13·10 42.54·10

25.16 24.52 31.68 45.53 69.1 108.4 174.04 284.41 471.6 791.72

11.15 9.83 11.44 14.81 20.29 28.79 41.81 61.77 92.43 139.69

6.14 5.05 5.47 6.59 8.4 11.1 15.03 20.7 28.87 40.65

3.85 3.01 3.09 3.52 4.24 5.3 6.78 8.83 11.65 15.52

1.32 1.3 1.42 1.64 1.96 2.4 3 3.79 4.83 6.23

0.86 0.88 0.95 1.08 1.25 1.49 1.8 2.19 2.71 3.37

0.69 0.7 0.75 0.82 0.93 1.07 1.25 1.48 1.76 2.12

0.6 0.61 0.64 0.69 0.77 0.86 0.97 1.11 1.28 1.48

0.56 0.56 0.59 0.62 0.67 0.73 0.81 0.9 1.01 1.13

0.54 0.54 0.56 0.59 0.62 0.67 0.72 0.78 0.85 0.93

0.54 0.53 0.55 0.57 0.6 0.63 0.67 0.71 0.76 0.81

0.54 0.54 0.55 0.56 0.59 0.61 0.64 0.67 0.71 0.74

0.54 0.54 0.55 0.57 0.59 0.61 0.63 0.66 0.68 0.71

0.56 0.56 0.57 0.58 0.6 0.61 0.63 0.65 0.67 0.69

0.57 0.57 0.58 0.59 0.61 0.63 0.64 0.66 0.68 0.69

0.59 0.59 0.6 0.61 0.63 0.64 0.66 0.68 0.69 0.71

0.61 0.61 0.62 0.64 0.65 0.67 0.68 0.7 0.71 0.72

0.62 0.63 0.64 0.66 0.67 0.69 0.71 0.72 0.73 0.75

0.65 0.65 0.67 0.68 0.7 0.72 0.73 0.75 0.76 0.77

0.67 0.68 0.7 0.71 0.73 0.75 0.77 0.79 0.8 0.82

0.69 0.71 0.73 0.75 0.78 0.8 0.83 0.85 0.87 0.89

0.72 0.74 0.77 0.8 0.83 0.86 0.89 0.92 0.96 0.99

0.75 0.77 0.81 0.85 0.88 0.93 0.97 1.01 1.06 ...



 

 
Fig. 3. Tabulated field of K values. The absolute minimum 

Kmin=0.54 (b=0, X=11). But there is a whole family of 
unstable slip-lines with  K<1 

 
 
The slip-line with Kmin=0.54 can be used to obtain values of 
nail unit strength parameters t (unit tensile strength), q (unit 
shear strength) with the assumption that this slip-line is the 
worst among others i.e., such values will be sufficient to 
ensure integrity of the nails all over the failure zone. Nail 
strength in tension and shear is calculated with the help of 
equations (4) given above.  Δс, q and t are given on Fig. 4. 
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Fig. 4. Profiles of Δc (lower curve), t (middle curve) and q 

(upper curve). 
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Fig. 5. Slip-line, enveloping the family of potential slip-lines 
with K<1 and nailing system configuration (not all nails are 

shown). 
 
 
The curves in Fig. 4 show that if nails are designed by their 
tensile strength their shear strength is sufficient. 
 
Diameters of nails to withstand tension and shear can be non-
uniform along their lengths. It is shown on Fig. 6. However, it 
is not technically feasible to design a system with different 
nails, therefore, one diameter shall be chosen for all nails, i.e. 
2.9 cm. 

 

dq
T

0 0 1 2.5 2.9 2.9 2.7 2.3 1.5( )

dt
T

0 0 0.9 2.1 2.4 2.5 2.3 2 1.3( )  
 
Fig. 6. Nail diameters (cm) versus height (from  bottom up) for 

shear (dq) and tension (dt). Nail spacing is 1.5 x 1.5 m in 
vertical plane (computer output). 

 
 
Seismic action in the above code is assumed to be a system of 
horizontal forces applied at the centers of gravity of the slices.  
 

Their values, according to Russian construction code, are 0.1; 
0.2 and 0.4 for 7, 8 and 9 magnitudes of the Richter scale.  
 
Below on Fig. 7 two Δс profiles are given for statically stable 
and seismically unstable slopes.  
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A slope with stability factor K=1.17 features local deficit Δс, 
which can initiate progressive failure. 
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x

 

Δс deficit along the whole length of seismically unstable 
critical slip-line with stability factor K=0.594 (Richter 
magnitude 9). 
 
Fig. 7. Deficit Δс in statically stable and seismically unstable 

slopes to be compensated by nails.  
 
 
CONCLUSIONS 
 

1. An approach to evaluate static and dynamic stability 
of nailed soil massifs has been developed on 
assumption that such massifs may be homogenized 
and defined as composites. 

2. Stability of existing and would-be nailed soil massifs 
shall be linked up with local deficit of soil cohesion 
along potential slip-lines. Nails shall be used to 
compensate for such deficit. 

3. Global stability evaluation of nailed soil massifs, 
based on integration of retaining and shear forces 
along potential slip-lines is not sufficient, because 
nails do not have residual resistance to tension, shear 
or bending, and failure of just one nail can initiate 
progressive failure of all other nails one after another. 

4. Nails have residual pullout strength. 
5. Dynamic stability of nailed soil massifs can be 

evaluated on the basis of Russian construction codes 
by applying quasi-static approach. 
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6. In order to ensure dynamic stability of a nailed massif 
the nails shall be overdesigned with respect to their 
tensile, shear and bending strength. Their pullout 
strength shall be less than their tensile strength, 
especially in seismic design. 
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