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LARGE MOTION ASSESSMENT IN SOILS 
UNDER DYNAMIC LOADING 

E. Foerster H. Modaressi 
BRGM- Land Use Planning and Natural Risks BRGM- Land Use Planning and Natural Risks 
Orleans, FRANCE-45060 Orleans, FRANCE-45060 

ABSTRACT 

This paper presents the mathematical formulation of the nonlinear multiphase dynamic model meant for porous media, obtained by 
applying the finite transformation assumption. This assumption is appropriate when large motions take place either during mass 
wasting processes, such as large slumps and earthflows, or during earthquake events when site liquefaction occurs and results for 
instance in large irrecoverable settlements or lateral spreads. The weak formulation and numerical implementation of the dynamic 
model uses the mesh-free h-p clouds method, which is based on the more general Partition of Unity Method. The mesh-free numerical 
methods seem indeed to be more appropriate for large transformation problems, where geometry may change in an important manner 
during simulation, as usual mesh constraints no longer exist. The numerical simulations of observed liquefaction-induced lateral 
spreads, performed with the proposed model are not presented in this paper. 

INTRODUCTION 

The analysis of large or finite transformations has become a 
major field of investigation in Continuum Mechanics and in 
many Engineering fields. Nonetheless, the small perturbation 
assumption still prevails in Geomechanics and especially in 
the slope stability or anti-seismic design analyses. This 
hypothesis is suitable as long as the soil under any loading 
condition remains always close to its original configuration. 
However, it is no longer appropriate when large motions take 
place either during mass wasting processes, such as large 
slumps and earthflows, or during earthquake events when 
large irrecoverable displacements occur resulting from site 
liquefaction. During past earthquakes, widespread ground 
areas, as large as a few square kilometers were observed to 
shift laterally and permanently due to soil liquefaction, either 
during or after earthquake shaking. The amplitudes of these 
induced-lateral displacements could range from a few 
centimeters to tens of meters. Liquefaction-induced permanent 
deformations usually take place within the upper 20 meters of 
soil deposits, in gently sloping conditions (0.1% to 6%) and 
along river dikes, quaywalls or embankments. As they are 
generally very destructive, these large motions represent a 
major concern for the engineering practice, which should be 
able to assess the extent of these large-scale lateral 
deformations when designing new specific constructions or 
analyzing existing ones. 
In the past decade, the physical mechanisms of liquefaction- 
induced lateral spreads have been investigated by means of 
various experimental tests (laboratory, shaking table, 
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centrifuge). Several empirical (Bartlett and Youd 1992) or 
simple analytical models (Towata et al. 1997) have been 
proposed as well for modeling liquefaction-induced ground 
deformations. There exist also some other models (Aubry et 
al. 1982) based on effective stress constitutive modeling using 
the finite difference or finite element methods, but they 
generally lack to describe post-liquefaction behavior. 
Either dealing with theory or with numerical modelling, large 
transformations in soils raises problems of strong non- 
linearities at the geometry level, as well as at the soil 
behaviour one. Indeed, little information on constitutive laws 
with finite transformation assumption is available, mainly 
because most of the physical and mechanical laboratory 
characterizations are limited to small strain tests. As geometry 
may change in an important manner during simulation, the use 
of standard numerical methods based on mesh discretization, 
such as the finite element method for instance, means to re- 
mesh the problem many times while computing, so that the 
mesh remains suitable. However, when re-meshing, the 
internal variables have also to be “transported” from the 
original mesh to the new one, which is a time-consuming 
process. On the contrary, the mesh-free numerical methods 
seem to be more appropriate for large transformation 
problems, as the partial differential equations are discretized 
using a set of unconnected points or nodes, so that mesh 
constraints no longer exist. When needed, re-meshing 
becomes just a matter of increasing the number or rearranging 
nodes. 
The purpose of this paper is first to present the mathematical 
model for multiphase deformable porous media under 
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dynamic loading, a model using the effective stress concept 
and based on the finite strain formulation in an Updated 
Lagrangian (UL) frame. Then, the weak formulation of the 
problem used to determine the numerical approach, namely 
the mesh-free h-p clouds method (Duarte & Oden 1995, 
Aubert 1997) is also presented. The constitutive model itself 
and the numerical simulations of observed liquefaction- 
induced lateral spreads, performed with the proposed model 
will be presented later in another paper. 

FINITE STRAIN FORMULATION FOR MULTIPHASE 
DEFORMABLE POROUS MEDIA 

General Assumptions 

At the macroscopic level, the porous medium is represented as 
the superposition of three continuous media in space and time 
(Coussy 1991), namely one solid phase, one wetting (e.g. 
water) and one non-wetting (e.g. air, oil, etc.) fluid phases. 
Both fluids are free to flow through the medium and are 
assumed to be viscous, Newtonian and immiscible. The solid 
skeleton is assumed to undergo finite strain and is supposed to 
be initially homogeneous, isotropic and incompressible. 
Physico-chemical interactions as well as thermal effects are 
neglected. A Cartesian referential is assumed as well. 
The porous medium initially occupies an open, regular volume 
Q (reference configuration at time t,), bounded by a surface 
p”. Meanwhile, in the current configuration (at time I~+,), the 
medium resides in the volume Q+‘, bounded by T”“. 
The present formulation utilizes a UL approach based on the 
transformation of the skeleton, assuming that at any time, a 
material point of the soil skeleton is constituted 
simultaneously of one solid and two fluid particles. Therefore, 
the current state for the skeleton containing the three 
components is given by the spatial coordinate vector z = A”+’ 
and the reference state, by the coordinate vector X =x”. 
In the following formulation, vectors, second- and fourth- 
order tensors are underlined once, twice and fourth 
respectively. Variables with upper-script or subscript “n” refer 
to quantities expressed in the reference state (at time t,), and 
variables with upper-script or subscript “n+l”, to quantities 
expressed in the current configuration (at time t,+,). 

Kinematics. The mapping between reference and current 
configurations is defined as: 
x=@(X,t) (1) _ -- 

IL+1 The solid material displacement field u,,. and the 

corresponding deformation gradient En+, and Jacobian J”+’ of 
the transformation are expressed at time t = t,,+/ as: 

II+1 u 
-  5 =u,JX”Jn+,)=X--X (2) 

F =n+, =i+GRADu:‘+’ 
(3) 

J ‘+’ = derEn+, 

with 1, the identity tensor and GRAD, the gradient operator 
with respect to reference coordinates z,,. 

Fluid Phases. Assuming the connected porous space to be 
completely filled by fluid components, and denoting by Oz”, 

the volumetric fraction occupied by any phase a and n”+‘, the 
soil porosity at time t,,+l, then the following relationships are 
verified: 
,,;+I =l-n”+’ (4) 
,;+I = n”+l ,;+I 

(5) 

8 n+l = 
nw n”+‘,y;’ &+‘(l-s;+‘) (6) 

with subscripts s, w and nw referring to the solid, wetting and 
non-wetting components respectively, and ,z” representing 
the degree of saturation at time tnn+] for fluid phase a.. 
A generalized Darcy’s law is adopted to describe each fluid 
phase flow through the porous medium and coupling terms 
that may exist due to flowing of both fluids are neglected. 

Therefore, the velocity field at time r”+], xri’, representing 

the velocity of fluid a relative to the solid skeleton is given 
by: 

with grad, the gradient operator with respect to current 
coordinates x,+/, pa, the pore-pressure, pa, the unit mass, k, 
the absolute (isotropic) permeability, ,u, the constant dynamic 
viscosity, &, the absolute acceleration vector and g, the 
gravity acceleration vector. The absolute permeability is 
defined as the product of an intrinsic (or geometric) 
permeability which depends on the geometry of the pores, and 
a relative permeability which is a function of the degree of 
saturation (Aubert 1997). 
As in the simplified formulation of Biot’s macroscopic model 
(Zienkiewicz er al. 1980), the permeability of fluid a is 
assumed to be independent of frequency. Moreover, fluid 
relative accelerations are neglected before the solid one (x): 

Y,=~rn+~r=Y (8) -\ 

Then, in the UL description, Eq. (7) becomes ( Va # s ): 
8” dp J”+’ -d; Jn+’ 

a J”+l = DIV(K,[GRADp~+ - J”+‘p:‘(g -$+‘)I) (9) - 

with DIV, the divergence operator with respect to reference 
coordinates x,, dla and d;’ , the material derivatives following 

fluid a and solid phases respectively, and K, = &L. 
P,Z 

Stresses. The concept of effective stress as postulated by 
Terzaghi for saturated soils can be generalized to multiphase 
porous media by partitioning the Cauchy total stress tensor n 
into an effective stress tensor g’and a spherical tensor: 
u = d-61 (10) cc = 
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For some authors (Schreffler et al. 1990), b corresponds to the 
mean fluid pore-pressure: 
i=SwP,+S P nw nw (11) 

In Eq. (lo), replacing the Cauchy total and effective stress 
tensors _nand d by aand g, the corresponding first Piola- 
Kirchoff stress tensors, yields at time tn+/: 

17 =S,+, 
-J”+‘~,;‘j”+’ (12) 

=n+l 

with _E’, the transpose of F’. 

Coupled-field Equations 

Mass Conservation. The mass conservation equation for phase 
a in the UL formulation is simply given by: 
J n+‘Q;+‘py = pp; (13) 

Assuming that all phases are homogenous and applying the 
material derivative dp to Eq. (I 3), yields: 

Va E {s. W, nw}, 
d:J"+' +arp::+l+g = o 

J II+’ 
pi+’ c+’ 

(14) 

with a,, the partial derivative with respect to time. 
Assuming incompressibility of the solid grains, i.e. 

K” = p,: , Eq. (13) gives also: 

6” 
n n+’ =I-+ 

J 

We introduce the (constant) compressibility 
fluid phase aas: 

adC+’ = p;” p,a, pi” 

(15) 

coefficient /la for 

(16) 

The capillary component of the matricial suction, p<, often 
called the capillary pressure, is the pressure discontinuity 
between both fluid phases: 
PC = Pnw - Pw (17) 

A strong dependency between S, and pc exists and some 
explicit empirical relationships are given in literature (Van 
Genuchten 1980). Hence, time derivative of S, can be written 
as: 
a,.$+ =d,,.S;+‘a,p:+’ (18) 

where dpr is the derivative with respect to pc. 

Finally, combining Eq. (9), (13) to (18). we obtain the 
continuity equations for the multiphase porous medium: 

Q~~‘,~,p~+‘+Q~“‘,,~,p;,;’ +S;,+b’~:+’ 

-DIV(K,[J;+‘GRADp;+’ -p :v ci: -r:+’ I)= 0 

Q:;!,a, P;+’ +Q;;!,,&p;;,;’ +(I-S;+‘)DfV~:+’ 
(19) 

-DW(K,,[Jn+‘GRADp”+’ nw - nw -p ,:,~~-r:+~ ,D= o 

with: 

(20) 

Momentum Conservation. In the current configuration, the 
porous medium is subjected to body forces p”+‘&+, (mainly 
gravity) applying to all solid and fluid particles present in the 
volume Q+’ and to surface tractions _T,+, over the boundary 
I-+*: 

I 
pn+‘~n+ldf2n+’ = 

c I 
e; p; gdl2” (21) - 

*“+I cE{.Lw,nw}~n 

I 
En+, dT”+’ = 

I 
En+, &dI-” (22) 

‘-“+I r” 

with 8, the unit normal outward to reference surface p. 
Using Gauss’ theorem, the surface integral in Eq. (22) can be 
replaced by a volume integral over 0”: 

I 
Tn+,drn+ = 

I DW;+, W-2” 
‘4’1 R” 

I 

(23) 
- J”+’ +, .GRAD;“+‘ds2” 

R” 

with i, expressed using expression (11). 
The total linear momentum is expressed as: 

I 
p”+‘y”+‘dQ”+’ = c jk;&;+‘d”” (24) 

*“+I CZ+V,flW)Qn 

The principle of linear momentum conservation for the 
multiphase porous medium in the UL formulation gives: 

P “Y :+’ = DlV~jl+,)-J”+‘~;:‘.GRADji”+’ +p “g (25) - 

If choosing pnw as a main unknown in this formulation, instead 
of pc as often seen in literature, Eq. (25) becomes: 

P “r:” = Dlw;+, ) +p ” g 

‘+I - J”+‘L,;, .[S;+‘cRADp, +(1-S;+‘)GRADp;;‘] 
(26) 

Constitutive Model for Solid Skeleton 

An incremental elastoplastic relationship is assumed between 
effective stresses and strains, using the Jaumann co-rotational 
rate and appropriate strain measures. 
0 
d(u,) = D”’ : i (27) = = = = 
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with $, the second Piola-Kirchoff effective stress tensor, E, 

the Green-Lagrange strain tensor and D”‘, the elastoplastic = = 
stiffness tensor. 

Remark. It should be noted that spurious stress oscillations 
may result from the use of Jaumann rates in conjunction with 
kinematic hardening plasticity models (Lee and Mallett 1983). 

Boundary and Initial Conditions 

Let z=Q~uTand 0 be the unit normal on boundary c with 
particles labeled by 5~5 in the current configuration (time 
t). The problem is to find the unknown fields u,,, pw and pnw at 
any time t in [O,fl, satisfying Eq. (19), (26), (27) and the 
following boundary conditions: 

L~,~Q,‘) =i,,(tl on f, xlO,Tl 
z&f)+ =FJf) on r, x]O,T] 

p,W) = i-i,(f) on rp,. xlO,Tl (28) 

K,a,[~,~.r)-p,(x,r)(g -21~l.x =O,O) on rq,, xhT1 1 - 
TV, r, ,rpn, rp, are parts of the boundary where the 

displacement of the skeleton, the total stress, the pore 
pressures and fluxes of both fluid phases are prescribed. The 
following relations are also verified: 
r=r,Ur, and r, n f, = 0 

VUE {w,a},r=r ,,., urq,, and I- ,,,, nrv,, =0 
(29) 

The solution is sought given the initial conditions, which 
specify velocity, stresses and pore fluid pressures, i.e.: 

V’XEG r=Ol v,,(x7W=v~fx) 

~f-5w=~~x’w=g.o(x) (30) 

pa cxm = p: (4 

Note that in the initial configuration, the Cauchy and first 
Piola-Kirchoff stress tensors are identical. 

WEAK FORMULATION 

The previous equations are discretized in space using the 
mesh-free h-p clouds technique (HPC) for all degrees of 
freedom. To simplify notations, the upper-script “n+l” will be 
dropped for current configuration. The variational (weak) 
formulation is obtained from the principle of virtual work, 
stated on the reference configuration as: 

(31) 

where (.,.)n and <.,.>r are sums over 0 and r of internal 
products of tensors, vectors and scalars. 6~ and qa represent 
respectively any admissible virtual displacement vector and 
pore fluid pressures, and 61, , any virtual admissible Lagrange 

multipliers. Lagrange multipliers & are introduced to impose 
essential boundary conditions in a weak form. They 
correspond to fluxes through these boundaries (Aubert 1997). 
The unknowns of the problem are approximated in the HPC 
method: 

u,(xA = &w!,,,ffl 

(32) 

I stands for a node number and @kD, @Ax), #‘&j designate 
the shape functions for the HPC method associated with 
variables u,,, pa and 2, at node I in the reference 
configuration. 

CONCLUSIONS 

The numerical implementation of the non linear dynamic 
model presented in the previous sections, is still in progress. It 
will be tested on observed liquefaction-induced lateral spreads 
during recent strong motion events, such as the 1995 
Hyogoken-Nambu (Kobe, Japan) earthquake. 
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