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SIMPLIFIED METHODS FOR THE DYNAMIC 
ANALYSIS OF SINGLE PILE IN LAYERED SOILS 

Roberto Cairo 
University of Calabria 
Cosenza, ITALY 

Enrico Conte 
University of Calabria 
Cosenza, ITALY 

Giovanni Dente 
University of Calabria 
Cosenza, ITALY 

ABSTRACT 

In this paper, two simplified methods are used to calculate the impedance function of an axially loaded pile embedded in layered 
soils. The methods are: a semi-analytical procedure which uses the discrete layer stiffness matrices derived by Kausel and Roesset 
(1981), and the cone model which was developed bv Wolf et al. (1992). A number of comparisons with more rigorous solutions 
are shown in order to assess the accuracy of the methods used. 

INTRODUCTION 

The response of piles to dynamic excitation has been the 
subject of many researches over the past decades, and a 
variety of methods has been developed to solve this 
complicated problem. Novak (199 1) presented an extensive 
critical review of the more widely accepted procedures of 
analysis. 

In the simplest method, soil-pile system is represented as a 
Winkler foundation with springs and dashpots that are 
distributed along depth or concentrated at a finite number of 
nodes (Penzien, 1970; Novak, 1974; Matlock and Foo, 
1979; Dobry et al., 1982; Gazetas and Dobry, 1984; Conte 
and Dente, 1988). The stiffness of the springs and the 
damping of the dashpots are generally assumed to be 
constant or frequency dependent; they are derived from 
theoretical studies or from experimental data. The major 
advantage of the method is that nonlinearity, inhomogeneity 
and hysteretic behaviour of soil can be simulated without 
requiring considerable computational efforts, but by simply 
changing the spring and dashpot parameters. However, this 
approach is not conceptually suitable to describe the 
behaviour of pile groups, as Winkler’s model ignores 
continuity between piles through the surrounding soil. 
Gazetas and Makris (1991) presented an analytical 
approximate procedure based on dynamic Winkler 
foundation model and a symplified wave propagation 
analysis to account for pile-soil-pile interaction. 

modelling. In practice, however, the solution usually 
requires high numerical costs, a large amount of data 
preparation and accurate measurements of the material 
properties. Finite element analyses of piles and pile groups 
under dynamic loading conditions have been carried out by 
many authors (Blaney et al., 1976; Wolfand Von Arx, 1978; 
Kuhlemeyer, 1979; Krishnan et al., 1983; Roesset, 1984). 

More recently, the boundary element method has also 
been employed to deal with the piles subjected to dynamic 
loading. As known, the method is very suitable to analyse 
dynamic problems involving infinite domain because the 
radiation condition at the far field is directly accounted for. 
Furthermore, this method partly reduces the computational 
costs in comparison with the finite element method. 
Boundary element formulations of the dynamic problem of 
piles embedded in homogeneous soils as well as 
inhomogeneous soils were developed by Kaynia and Kausel 
(1982) Davies et al. (1985) Banerjee and Sen (1987) and 
El-Marsafawi et al. (1992). 

On the other hand, few studies have been conducted on 
the dynamic response of piles in multi-layer soil profiles. 
This problem was dealt with by Kaynia and Kausel (1991) 
that developed a general formulation, in which Green’s 
functions for layered media along with analytical solutions 
for the dynamic response of piles were used. In this 
procedure, Green’s functions are evaluated numerically by 
the application of integral transform techniques. 

The finite element method is certainly the most 
comprehensive approach to analyse the dynamic response of 
piles and pile groups. This is because the method is in 
principle completely general with respect to the geometry of 
the problem, boundary conditions, variations in material 
properties, stress-strain relationships and pile-soil interface 

In many circumstances it is desirable to have a method 
available that allows the dynamic behaviour of piles in 
layered soils to be readily analysed. Recently, Mylonakis 
and Gazetas (1998) have presented an attractive procedure 
which is based on the repeated use of a closed-form 
expression derived by the same authors to calculate the 
dynamic impedance of pile embedded in a homogeneous 

Paper No. 6.2 1 1 



layer resting on a deformable base. 
In this paper, two simplified methods are used to 

determine the steady-state dynamic response of axially 
loaded piles embedded in a layered soil deposit. The 
methods used are: a semi-analytical procedure which uses 
the discrete layer stiffness matrices derived earlier by 
Kausel and Roesset (1981), and the cone model which was 
developed by Wolf et al. (1992). The two methods are 
briefly described and comparisons to more rigorous 
solutions are presented. 

STATEMENT OF PROBLEM 

Figure 1 shows the problem under consideration. A 
vertical pile of diameter d and length L is embedded in a 
layered viscoelastic soil medium resting on a half-space. In 
Fig. 1, v, indicates Poisson’s ratio, ES is Young’s modulus, 
ps is the mass density, and bs is the damping ratio of the 
generic soil layer. 

f 

L 

7 

- - 

1 

2 

Fig. 1. Pile embedded in a layered soil. 

In order to model the effect of internal energy dissipation 
within the soil, complex moduli are introduced. Therefore, 
Young’s modulus of soil is replaced by its complex 
counterpart as 

E: =ES (1+2ib,) (1) 
where i = fi . 

The pile is assumed to be a linear elastic beam with 
Young’s modulus Ep, cross section A,, and mass density pp 
Since the soil-pile system is under steady-state vibrations, 
any time dependent variable is expressed as a complex 
quantity multiplied by the factor eio’, where o is the 
frequency of harmonic excitation. 

DISCRETE STIFFNESS MATRIX METHOD 

The analysis of a pile embedded in layered soils may be 
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carried out considering the pile and the soil as two 
components (Fig. 2). The pile component is discretized by a 
finite number of simple one-dimensional cylindrical 
elements (Fig. 2a), and the soil is represented by a 
viscoelastic layered continuum (Fig. 2b). 

For the pile component, tlte equilibrium equation can be 
expressed in matrix form as 

~~~pl+~zrMpl~~~p~=~~~+~~p~ (2) 
where [K,]=pile stiffness matrix; [M,]=pile mass matrix; 
{P,}=vector containing the pile-soil interaction forces; 
{P}=extemal load vector; {w,}=pile displacements. Forces 
{P,} are applied at the interfaces of the pile elements 
(nodes). These forces are given by ring loads acting on the 
circumferential area of each pile shaft element, and by a 
uniform pressure acting at the pile base. In the case 
considered, vector (P) contains only the axial load applied 
at the pile top. 

(4 

0 I, I 7 

Fig. 2. Analysis of the pile. (a) Forces acting on pile. 
(b) Forces acting on soil adjacent to pile. 

For the soil component, we can write the following 
equation: 

W,W,~={P,I (3) 
where [KJ=soil stiffness matrix; {Ps}=vector containing the 
forces acting on the soil due to the loaded pile; {ws)=soil 
displacement vector. 

Owing to equilibrium, we have 
VP > = -E 1 (4) 

In addition, under the assumption that there is no loss of 
bondage between the pile and the soil, compatibility 
condition requires that 

{w,~=iw,l (3 
Substituting these relationships into Eq. (2) yields 

(W, I + mffp I + K, Imp > = v> (6) 
Solving Eq. (6) the vector of the displacement amplitudes 

for the pile are obtained. The impedance function of the pile 
is given by the inverse of the displacement at the pile top 
when P= 1. 



Matrix [KS] can be determined as the inverse of a 
flexibility matrix, the columns of which consists of the 
nodal displacements due to unit ring loads applied at the 
soil-pile interface elements and a uniform load acting at the 
pile base. 

In order to compute the response of the soil system to 
these loads, the stitfness matrix approach proposed by 
Kausel and Rot%@ ( 198 1) is used. In particular, the discrete 
formulation is adopted due to its simplicity. This technique 
is in principle restricted to layered soils over rigid bedrock. 
However, analysis of soils over elastic half-spaces can be 
accomplished with a hybrid formulation that involves the 
exact solution for the half-space only. Following Kausel and 
Roesset (1981), the layer stiffness matrix [&I can be 
obtained for the discrete case as 

[KL ] = a2[A] + a[B] + [G] - 02[M] (7) 
where cx is the wave number that describes the variation of 
the variables in radial direction; [A], [B], [G] and [M] are 
matrices the terms of which can be found in the paper of 
Kausel and Ro&set (1981). These terms depend on the 
elastic constants and mass density of soil, and the layer 
thickness. The stiffness matrix for the soil deposit can be 
assembled by overlapping the contribution of [&] matrices 
of each layer. 

However, it should be noted that solution is a function of 
the wave number. Therefore, a numerical procedure has to 
be used. Such a procedure requires first that the unit load be 
expanded by a Hankel transform, and then that solution be 
derived for each value of wave number CL, in order to obtain 
the transformed displacements as a discrete function of a. 
Finally, once these quantities are found the actual 
displacements can be calculated by inversion of the Hankel 
transform. In the present paper, this integration has been 
done using a Gaussian quadrature technique. 

CONE MODEL 

Cone model is a simple physical elastic model 
representing the unbounded soil in a dynamic soil-structure 
interaction analysis (Meek and Wolf, 1992). For each degree 
of freedom of the foundation, an equivalent rigid massless 
disk on the surface of a homogeneous half-space is 
considered. The half-space below the disk is modeled as a 
truncated semi-intinite cone with the same material 
properties: mass density ps, Young’s modulus Es, Poisson’s 
ratio vs, and damping ratio bs (Fig. 3). 

A load applied to the disk induces stresses on an area that 
increases with depth. The three-dimensional pattern of body 
and surface wave propagation in the half-space is replaced 
by a one-dimensional wave propagation scheme (Meek and 
Wolf, 1993). As a consequence, the displacements are 
assumed to be constant over the cross section of the cone. 

The cone model has been applied for the analysis of pile 
foundations in a homogeneous half-space by Wolf et al. 
(1992). The cylindrical soil region, which will be occupied 
by the pile, is viewed as a series of rigid disks equally 
spaced with soil between them. Using approximate Green’s 

function (Meek and Wolf, 1994) permits to calculate the 
displacement of a receiver disk caused by a unit harmonic 
force applied to another disk. Recently, cone model has been 
used to determine the dynamic response of piles embedded 
in a soil layer by Cairo et al. (1999). 

I 

i P(0)eimt 

Fig. 3. Cone model. 

In order to analyse a pile embedded in a layered half- 
space, the so-called backbone cone has to be constructed 
(Wolf and Meek, 1994). For each embedded disk, with 
radius r,, the backbone cone determines the radius of the 
disks at all interfaces of soil (Fig. 4). Using these cone 
frustums, i. e. the disks at the upper and lower interfaces of 
each layer, the complex dynamic stiffness matrices of the 
layers are determined. 

Fig. 4. Backbone cone. 

Assembling the stiffness matrices of the layers and the 
stiffness coefficient of the disk on the underlying half-space, 
leads to the dynamic stiffness matrix of the soil deposit [Sj. 
By subdividing the layers accordingly, the displacements 
can be calculated in any point on the axis of the backbone 
cone, i. e. at the location of all embedded disks, by solving 
the dynamic equilibrium equation 

VI @> = tQ> (8) 
where {u} is the displacement vector, and {Q} is the vector 
of the external loads. This latter contains only a single non- 
zero element, that is the load applied to the source disk with 
radius r,. 

This procedure provides the columns of the complex 
dynamic flexibility matrix [G] of the free field, that is 
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discretized by the nodes corresponding to the disks. The 
dynamic stiffness matrix [SJ is determined by inverting [G] . 
Moreover, replacing the cylindrical soil region by the pile 
gives a dynamic stiffness matrix [A&J defined as 

[As] = [AK] - d[AA4] (9) 
where [a and [AA4l are the static stiffness and mass 
matrices of the pile, respectively, that can be calculated 
using beam theory after subtracting the stiffness and mass of 
the (excavated) soil cylinder. Finally, assembling [SJ and 
[w leads to the complex dynamic stiffness matrix [S,] of 
the soil-pile system. 

For a vertical harmonic load with unit amplitude applied 
at the head of the pile, the vector of the external load is 

(F}=[l,O,O,...O]T (10) 
and the displacement vector follows as 

fv> = VP 1-l m (11) 

well with the results of the other methods. On the contrary, 
differences in excess of about 30% can be observed for the 
imaginary part of the impedance function. This occurs when 
the value of a, is low. 

2.0 1 1 

1.6 i I 

-Kaynia&Kause1(1991) 

0.4 0 DSMM -- 
x cone model 

0.0 / / ’ / / i 

0.0 0.2 0.4 0.6 0.8 1.0 

COMPARISONS 

In this section, the results of some dynamic problems 
involving piles embedded in non-homogeneous soils are 
presented. The purpose is to compare the feasibility and 
accuracy of the simplified procedures described above 
against other more rigorous methods. It should be noted that 
in all the cases examined the soil-pile system has been 
discretized by means of 9 elements only, when the discrete 
stiffness matrix approach is used. 

The results are presented in terms of the dynamic pile 
impedance versus the nondimensional frequency a0 that is 
defined as 

-KayniaLKausel(1991) 

l DSMM 

x cone model 

0.0 I / I / I 

od 
a, =- 

v, 
(12) 

where V, is the shear wave velocity at a prescribed depth. 
Pile impedance is a complex quantity usually defined as 

S = k+ia,c (13) 
where k and c are the dynamic stiffness and damping, 
respectively. 

The first problem concerns a pile embedded in a soil 
deposit whose elastic modulus increases linearly from zero 
at the ground surface to E,=lO?E, at the pile tip, and 
remains constant throughout the underlying half-space. The 
parameters for the soil and pile are: ~70.4, p&,=0.7, 
j&=0.05, and L&20. This problem was examined by 
Kaynia and Kausel(l991) using a general procedure based 
on Green’s functions for layered media along with analytical 
solutions for the dynamic response of pile. The comparisons 
are shown in Fig. 5, where k. indicates the static stiffness of 
the pile. 

As can bc seen, there is a good agreement between the 
results obtained by the discrete stiffness matrix method 
(DSMM) and those presented by Kaynia and Kausel(1991) 
both in terms of the stiffness and damping of the pile. The 
maximum difference is of the order of 10%. Cone model 
generally provides results that are more different. Anyhow, 
the values of pile stiffness predicted by this model compare 

0.0 0.2 0.4 0.6 0.8 .O 

a0 

Fig. 5. Impedance function of a pile in a linear soil projZe. 
(AdaptedjPom Kaynia and Kausel, 1991). 

A second comparative study refers to a pile in soil with 
parabolically increasing Young’s modulus from the ground 
surface to the pile tip. Soil modulus is assumed to be 
constant below the pile base. The parameters selected for 
this case are: EJE3=102, v,=O.4, p&=0.8, bs=0.05, and 
L&20. Figure 6 shows the stiffness and damping of the pile 
obtained by El-Marsafawi et al. (1992) using a three- 
dimensional boundary integral formulation that allows the 
dynamic response of pile groups to be also analysed. 

The results obtained using the cone model and the discrete 
stiffness matrix approach are also shown in Fig. 6. The same 
trend previously found examining the first example may be 
observed in the comparison shown in this figure. 

Another example considered is that of a pile embedded in 
the two-layer soil shown in Fig. 7. 

The solution to this problem has been obtained by 
Mylonakis and Gazetas (1998) using both the rigorous 
formulation of Kaynia (1982) and a closed-form expression 
derived by themselves. The comparison is presented in Fig. 
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8. As can be seen, the values of pile impedance calculated 
using the discrete stiffness matrix method are in close 
agreement with those obtained by Mylonakis and Gazetas 
(1998). Cone model provides again values of the dynamic 
stifFness in good agreement with those obtained using the 
other methods. The differences in terms of damping are of 
the same order of magnitude as that found in the cases 
previously examined. 

,.O- 

0.0 0.2 0.4 

a0 

0.6 0.8 

- El-Marsafati et al. (1992) 

0 DSMM 
x cone model 

/ 

0.4 

a0 

I 

0.6 0.8 

Fig. 6. Impedance function of a pile in a parabolic soil 
profile. (Adaptedporn EI-Marsafai et al., 1992). 

CONCLUDING REMARKS 

The comparisons carried out show that both the discrete 
stiffness matrix method and the cone model are suitable 
alternatives to complicated numerical solutions for 
calculating the harmonic steady-state axial stitfness and 
damping of piles embedded in non-homogeneous or layered 
soils. The results obtained using the discrete stiffness matrix 
method are found to be in good agreement with those 
derived from more rigorous methods. The maximum 
difference among the results is of the order of 10%. From a 
practical point of view, the major drawback of the method is 
that it works in the wave-number domain, and consequently 
a repeated use of Haukel transform is required. 

L=20 

1 P(o)ei” 

H=V,L 

I 
i 0" E, 

Fig. 7. Pile in two-layer soil. 

2.0 
k 

-Kaynia (1982) 
N m m - Mylonakis L Gazetas (1998) 

0.0 

0 DSMM 
m cone model 

I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

1.5 
-Kaynia(1982) 

I  

-  m  m  - Mylonakis L Gazetas (1998) 
0 DSMM 

1.0 x cone model 

0.0 0.2 0.4 0.6 0.8 1.0 
a0 

Fig. 8. Impedance function of a pile in two-layer soil. 
(Adaptedporn Mylonakis and Gazetas, 1998). 

Although the cone model is of more approximate nature, it 
provides values of the pile dynamic stiffness in reasonable 
agreement with more rigorous solutions. On the contrary, 
differences in excess of about 30% have been found for the 
imaginary part of pile impedance, especially when the value 
of nondimensional frequency is low. However, it should be 
noted that application of this method requires that no 
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transformation to the wave-number domain is performed. 
This makes the cone model be very suitable for practical 
applications. 
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