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Response of Earth Dams Subjected to Obliquely Incident P and SV Waves 
Paper No. 6.17 

Hassan M. Abouseeda and Panos Dakoulas 
Department of Civil Engineering, Rice University, Houston, Texas 

SYNOPSIS A study of the effects of dam-foundation interaction on the response of earth dams to obliquely incident P and SV 
waves is presented. The numerical formulation combines the Finite Element Method and the Boundary Equation Method in a 
powerful hybrid technique. The FEM has been proven very efficient for finite size elastodynamics problems, but several 
previously suggested modifications for handling infinite domain dynamic problems seem to be either computationally expensive or 
have serious limitations on the geometry and excitation. The BEMis employed to solve the halfspace problem using exact Green's 
functions to compute the halfspace stiffness, which is then incorporated in the FEM solution. This technique proved to be 
exceptionally powerful as it leads to accurate and very efficient solutions. A preliminary study is undertaken to investigate the 
response of dams subjected to obliquely incident P and SV waves, propagating across the dam width. The results of the present 
rigorous study extend the conclusions from earlier studies on the effects of the dam-foundation interaction and the special 
variability of the ground motion. Moreover, the proposed model provides an efficient tool for dynamic analysis of earth dams and 
is part of a broader study of 2D and 3D dams using the hybrid formulation in both the frequency and time domains, with final 
objective the incorporation, in the latter case, of soil nonlinearity. 

INTRODUCTION 

The seismic response of earth and rockfill dams has been 
the subject of considerable research in the last twenty years 
with primary focus on the effects of such factors as: the dam 
and canyon geometries; the inhomogeneity of the dam 
material; the nonlinear and inelastic behavior of the material; 
the relative flexibility of the dam and the canyon or foundation 
materials; and, to only a limited extent, the spatial variability 
of the excitation. Detailed accounts of past contributions are 
available in the state-of-the-art reports by Gazetas (1987) and 
Gazetas and Dakoulas (1992). 

Earlier numerical and theoretical studies of the spatial 
variability of the ground motion were limited by certain 
restricting simplifying assumptions. Thus, early finite element 
studies of plane strain dams subjected to waves traveling 
across the dam width did not consider the dam canyon 
interaction. Also, a series of theoretical studies using shear 
beam type models considered the dam-canyon interaction, but 
focused only on obliquely incident SH waves propagating 
along the longitudinal direction of the dam (Dakoulas et 
al.1992,1994; Dakoulas 1993). These models helped clarify 
the effects of various parameters, including the canyon 
geometry and the canyon flexibility. However, the study of 
waves traveling across the width of the dam could not be 
realized with the shear beam. To study the response of a "2-D" 
or "3-D" dam due to travelling waves along any direction, a 
rigorous formulation consisting of a coupling of the finite 
element method (FEM) and the boundary element method 
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(BEM) is presented for general soil-structure interaction 
problems. 

Among the various numerical methods employed by many 
researchers for investigating the problems of soil-structure 
interaction and wave propagation, are the FEM, combined 
with a variety of transmitting boundaries, and the BEM. The 
FEM is capable of handling all geometry configurations, non­
homogeneity and non-linearity of structures and the near field 
soil, but lacks the ability to simulate by itself the infinitely 
extended far field. For that reason, an artificial boundary has to 
be introduced, requiring special treatment for preventing 
fictitious wave reflections. On the other hand, the BEM seems 
to be an ideal approach for treating infinite domains, as it has 
the inherent advantage of being able to simulate the radiation 
conditions at the far field. However, it is not convenient for 
treating complex geometries, non-homogeneous and non­
linear problems. 

In order to benefit from the advantages of each of the two 
methods while avoiding their disadvantages, it is expedient to 
combine both methods in a hybrid procedure. Zienkiewicz et 
al. ( 1977) are among the first authors to propose such coupling 
(Brebbia et al. 1984, Beskos 1987). 

The initial formulation and applications of the coupling 
technique were considered in the frequency domain. Some 
representative studies are by Kobayashi and Mori (1986) and 
Wang ( 1992) who employed a combination of the FEM and the 
BEM to solve some generic 3-D soil-structure interaction 
problems; Auersch and Schmid (1990) who solved 2-D soil­
structure interaction problems; Bielak et. al. (1991) who 



applied this technique to the problem of soil amplification in 
inhomogeneous alluvial valleys due to incident SH waves; and 
Mossessian and Dravinski (1987) who investigated wave 
scattering problems by near surface irregularities. 

Transient soil-structure interaction problems were also 
treated using the same coupling technique in the time domain. 
Spyrakos and Beskos (1986) investigated flexible strip 
foundations subjected to external dynamic force as well as 
seismic waves, while Karabalis and Beskos (1985) examined 
3-D flexible foundations in time domain. Von Estorff and 
Kausel (1989) demonstrated the applicability of the coupling 
technique in various soil-structure interaction problems such 
as flexible foundations, open and filled trenches and tunnels. 

In the application of the FE-BE coupling technique to soil­
structure interaction problems, boundary elements are 
typically used to discretize the near/far field interface, while 
the finite elements are used to discretize the whole near field 
domain. 

In this paper, frequency domain formulation is presented 
and applied to study the seismic response of an idealized earth 
dam on elastic halfspace subjected to obliquely incident P and 
SV waves, propagating across the dam width. 

Figure 1 Layout of the idealized dam cross-section. 

FORMULATION 

Finite element analysis 

The FEM is used to discretize the whole domain of the near 
field into a finite number of elements. The displacements 
within each element are approximated using shape functions, 
u (x, t) = N u (t) where N is the shape function vector and 
it. (t) are the nodal displacements. To minimize the error 
resulting from the discretization, the Galerkin weighted 
residual formulation is used, in which the weighting function 
is taken the same as the shape function. This discretization 
scheme renders the following matrix differential equation 

[M] ii + [K] u + f = 0 (1) 

where [M] , [K] are the global mass and stiffness matrices 
and f is the vector of nodal loads. For steady state response, 

( ) iro't 
the nodal displacements can be expressed as u = u x e 
which substituted in (1) leads to 

[A] u = f (2) 

where 

[A] = - ol [M] + ( 1 + 2i(3) [K] (3) 

and (3 is the damping coefficient. 

Boundary element method 
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Making use of the dynamical reciprocity theorem with one 
state being the real state of the problem, and the other being 
the fundamental singular solution pair expressing the 
displacements, G .. , and the forces, F .. , the governing 
equation in frequ~~cy domain can be expfessed in terms of 
boundary integral equations as (Eringen and Suhubi 1975) 

cij uj + J Fij uj dr 
r 

(4) 

where u and t denote displacements and tractions; 
r = r u + r t ' in which r u is the boundary with prescribed 
displacements, r t is the boundary with prescribed tractions; 
and c.. is a constant related to the geometric location and 

lj . 
smootliness of the boundary at the source pomts. The 
fundamental solutions Gij and Fij for 2-D steady state 
elastodynamics have the form (Cruse and Rizzo 1968) 

1 
G .. = --2 [<1>3 .. - '¥r; rJ·] 

IJ 21tpC2 IJ ' 
(5) 

F = - - -- 3 - + r · n· 1 [(d<I> '~')( ar ) 
ij 21t dr r ij an J ,I 

-2'~'(r· n·-2ar r· r·)-2d'¥ar r· r· r ,I J an ,I J dr an ,I J 

+(Cf -2J(dci> _d'¥ _ '~')r· n·] 
2 dr dr r ·1 J c2 

(6) 

where r is the distance between the source and field points, 



K0, K1, K 1 are modified Bessel functions of the second kind, 
c1, c2 are the P and SV complex valued wave velocities in the 
elastic body. By discretizing the boundary of the problem into 
finite number of elements and using the same concept of shape 
functions as in FE to describe the nodal displacements, ( 4) can 
be expressed as a system of linear equations 

[F] u = [G] t (7) 

where [F] is the constant coefficient matrix derived by 
integrating the left hand side of ( 4) and adding c .. ; [ G] is the 
coefficient matrix derived by integrating the rigb{ hand side of 
(4). 

It should be noted that a sufficient portion of the half-space 
should be modelled, so that any resulting error from the 
approximation is small enough to be neglected. 

Coupling of finite and boundary elements 

In order to incorporate the wave excitation into the 
formulation of the coupling procedure, the wave field should 
by divided in two components: the free field component 
(superscript f) which is the wave field in an equivalent half­
space having the same material properties, and the scattered 
field component (superscripts) which is the field of scattered 
waves due to the existence of the geometrical as well as 
material irregularities imposed on the half-space. The 
displacements can then be expressed as 

(8) 

The free field component can be calculated analytically at 
all nodes within the near/far field interface depending on the 
type and angle of the incident wave. Equation (7) can be 
rewritten as 

(9) 

where the i, r subscripts indicate the interaction nodes lying on 
the boundary and finite elements interface, and the rest of the 
boundary element nodes, respectively; t~ and ts are stresses 

1 r 
due to the scattered wave field, and ti is the stress at the 
interaction nodes resulting only from the near field region. The 
unknowns in (9) are the displacement components, and the 
stress vector t .. 

I 

By using the structural condensation technique, one can 
eliminate the extra degrees of freedom, keeping only those 
associated with the interaction nodes. Equation (9) can be 
expressed as 

sos 

Fu~=Gt.+C 
I I 

(10) 

where 

To ensure compatibility between the far field discretized as 
boundary elements, and the near field discretized as finite 
element, a transformation from BE tractions to FE nodal forces 
is introduced 

[,. = -Tt. 
I I 

(12) 

where T is a transformation matrix constructed using the FE 
shape functions Nand the BE shape functions L as 

By making use of (12), equation (10) yields 

in which 

A.u~=-f.+B 
I I 

A. = [Jj [o]-1 [~ 
B = [Jj [art [tJ 

(13) 

(14) 

(15) 

The FE system of linear equations in (2) can also be written as 

(16) 

where the subscript i still indicates the interaction on the BE 
and FE interface, and the subscript d indicates the rest of the 
FE nodes in the near field. 

By combining (14) and (16), the complete coupled system 
takes the form 

(17) 



By solving (17), the displacements vector ud in the FE region 
and the scattering wave field uf at the interaction boundary are 
obtained. The interaction tractions t., interaction forces f. and 

l I 

the scattered wave field u: can also be calculated using (9), 
(10) and (12). The total displacement field is given by (8). 

RESPONSE OF EARTH DAM TOP AND SV WAVES 

The general formulation presented above has been 
implemented in a computer program and is used in this paper 
to study the effects of the spatial variability of the ground 
motion on the response of earth dams. The dam is idealized as 
a plane strain linearly-hysteretic elastic body founded on an 
elastic halfspace. The excitation consists of obliquely incident 
P and SV waves travelling across the width of the dam cross­
section. 

The dam has a height of h==lOO m and base width of 
2b=400 m. The dam material has an elastic Young's modulus 
E==8.19 x 108 N/m2, mass density Pd ==1920 kg/m3, Poisson's 
ratio v = 1/3 , and shear wave velocity cd =400 rn/s. The 
damping ratio 13 is 10%. The dam body is discretized using 
plane strain four-node isoparametric elements. 

The material of the half-space has a mass density Pt==2400 
kg/m3, Poisson's ratio v = 1/3 and no material damping. The 
flexibility of the elastic base rock is considered by examining a 
range of impedance ratio values, defined as 

IR (18) 

where c f is the shear wave velocity of the foundation rock. 
The half-space is discretized using two-node boundary 

elements. The discretized length of the surface of the half­
space is taken equal to 10 X b. 

The results of the parametric study are presented in terms 
of amplifications, AF, of the motion with reference to the free 
field surface motion. AF is plotted versus a dimensionless 
frequency a0 = roh/ c d. 

It is of interest to examine first the effect of the flexibility 
of the elastic rock halfspace on the dam response. Fig. 2 plots 
the amplification of the horizontal motion due to vertically 
incident SV waves, evaluated at the crest of the dam (point A) 
and at three midheight points (B, C and D) indicated in Fig. 1. 
The four curves in each of the plots in Fig. 2 correspond to 
impedance ratios IR = 2, 5, 10 and 00 • The results demonstrate 
that the flexibility of the base rock has a substantial effect on 
the dam response near the first resonance in shear. For higher 
frequencies however the response near the crest and within the 
dam body seems to be much lower and the effect of the flexible 
base much smaller, except near the slopes where the second 
resonance seems to be almost as pronounced as the first. 
Similar results are obtained also from the plane strain shear 
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beam on elastic foundation for the first resonance, but for 
higher frequencies the latter predicts higher response. Fig. 3 
presents the amplification of the vertical motion at the same 
points within the dam for the case of vertically incident P 
waves. The conclusions drawn from this figure are quite 
similar to those from the SV waves. 

Fig. 4 plots the amplification of the horizontal motion at 
points A, B, C and D of a dam with impedance ratio IR=5, 
subjected to SV waves incident at angles a = 0°, 15° and 
30°. The results indicate that, even for vertically incident 
waves, there are differences in the response at point B and 
points C and D, associated with reflections on the surface of 
the two slopes. The maximum amplification at the first 
resonance decreases only slightly as the angle of incidence 
increases. At higher frequencies the amplification at the points 
C and D differs due to the presence of antisymmetric 
vibrational modes in the transverse direction, induced by the 
spatially variable base excitation from the SV waves. Fig. 5 
plots the amplification of the vertical motion for the same dam 
subjected to P waves. More significant differences are shown 
between the response at point B and points C and D for 
vertically incident P waves than those in Fig. 4. 

In addition to the steady state harmonic response, it is of 
interest to examine the differences in the response in the time 
domain by using an actual earthquake record. Fig. 6 plots the 
acceleration time history and the Fourier spectra of the El 
Centro earthquake record used here as input excitation. By 
using Fourier analysis, the acceleration histories at the four 
points are computed and plotted in Fig. 7 for SV waves 
incident at an angle a = 30 o to the vertical. The differences 
in the acceleration time histories at points C and D reflect the 
different amplification of the high frequency content of the 
excitation. 

The results from the preliminary and limited study pre­
sented here confirm earlier findings about the significance of 
the flexibility of the foundation rock in reducing the overall 
response of the dam, by accounting in a rigorous way for the 
exact amount of energy radiated back into the halfspace. The 
effects of the spatial variability of the ground motion for P and 
SV waves travelling across the width of the dam, from the lim­
ited results presented here, seem to be important but perhaps 
less dramatic than those reported previously from FE studies 
which ignored the dam-foundation interaction and from shear 
beam studies for SH waves travelling in the longitudinal direc­
tion. These studies concluded that the effect of the spatial vari­
ability of the ground motion may lead to response values that 
are substantially higher than those caused by coherent ground 
motion. A more comprehensive study is in progress using both 
frequency (as in this work) and time domain formulations of 
20 and 30 dams, the conclusions of which will be published 
elsewhere. 
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CONCLUSIONS 

A hybrid numerical formulation has been used, combining 
the Finite Element and the Boundary Equation methods to 
study the effects of dam-foundation interaction on the 
response of earth dams subjected to obliquely incident P and 
SV waves. The hybrid technique proved to be exceptionally 
powerful because the infinite region is treated accurately by 
using the exact Green's functions and the incorporation of the 
FEM and the BEM in a stiffness substructuring scheme 
renders problems that can be solved accurately and efficiently. 
The results showed the significance of the flexibility of the 
foundation rock in reducing the overall response of the dam, 
by accounting rigorously for the energy radiated back into the 
halfspace. From the limited results presented here, the effects 
of the spatial variability of the ground motion for P and SV 
waves travelling across the width of the dam seem to be also 
important, but less dramatic than those reported in previous 
studies, which concluded that such effects may lead to 
response values substantially higher than those caused by 
coherent ground motion. Results from a more comprehensive 
parametric investigation, still in progress, will be published 
elsewhere. 
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