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Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soli Dynamics, 

March 11-15, 1991 St. Louis, Missouri, Panel Discussion 

Soil-Pile Interaction Model for Earthquake Response Analysis of 
Offshore Pile Foundations 

Toyoaki Nogami 
University of California at San Diego, La Jolla, CA 

Soil-pile interaction plays a significant role in the pile 
response to external loads, and is extremely complex when 
nonlinear conditions and dynamic conditions exist 
simultaneously. Furthermore, in the offshore environment, 
fluid motions inside and above the seabed may affect the 
seabed response to pile shaft motion, adding further 
complexity to the soil-pile interaction. Numerical models 
must enable to logically reproduce the complex behavior 
governed by various important factors. In this regard, I 
would like to call your attention to the following three points 
concerning numerical modeling of soil-pile interaction for 
earthquake response analysis of offshore pile foundations. 

(1) Winkler Models for Dynamic Response Analysis of 
Pile Foundations: Various models have been used to take 
into account the soil-pile interaction in the dynamic 
response analysis of pile foundations. Among those, 
Winkler models are the simplest and numerically most 
efficient ones. However, most of those models have been 
developed without a logical base and thus often fail to 
produce the computed results consistent with mother 
nature. The Matlock (or Penzien) model (Matlock et al., 
1978) and Novak model (Novak, 1976) may be classified as 
conventional Winkler models often used in the dynamic 
response analysis of pile foundations, while the Nogami 
model is a Winkler model recently developed for the dynamic 
and nonlinear response analysis (Nogami et al., 1983, 1985, 
1987). Those three Winkler models will be discussed first 
herein. 

Fig. 1 Matlock Model 

The Matlock model is basically viewed as a system of a 
frequency-independent nonlinear spring and linear dashpot 
as shown in Fig. 1. The force-displacement relationship of 
the nonlinear spring is defined by a so-called unit load 
transfer curve and the dashpot is to account for the radiation 
damping. When a steady-state harmonic response is 
assumed, the force-displacement relationship of the model 
can be expressed in terms of a complex curve made of the 
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real and imaginary parts. Such force-displacement 
relationships at two different frequencies are illustrated in 

Fig. 2 for co1 <COz. The nonlinear spring generates both the 
real and imaginary parts of the force independent of 
frequency. The dashpot generates only the imaginary part 
of the force linearly proportional to frequency. The force 
induced in the Matlock model is summation of those spring 
and dashpot forces. The_ real part of the force generated by 

the ~atl~ck model istherefore independent of frequency. 
The 1magmary part of the force in the elastic range results 
entirely from the dashpot force. As displacement level 
increases beyond the elastic range, the imaginary part 
always increases due to generation of hysteresis damping in 
the spring. 
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Fig. 2 Force-Displacement Relationship of Matlock Model 

The Novak model is limited to linear elastic conditions 
and steady-state harmonic motion. The model is made of a 
frequency dependent complex spring (Fig. 3). The stiffness 
of the spring is defined from the analytical formulation 
obtained for the vibration of an infinitely long vertical 
massless rigid cylinder embedded in an infinite elastic 
medium. Those conditions yield plane strain conditions, in 
which medium displacements do not vary along the vertical 
direction and hence body waves generated in the medium 
propagate only in the horizontal direction. The force­
displacement relationships of the Novak model at two 
different frequencies are shown in Fig. 4. The model can not 
produce the nonlinear behavior but can do the dynamic 
behavior rationally for linear elastic conditions. 
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Fig. 3 Novak Model 
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Fig. 4 Force-Displacement Relationship of Novak Model 

The Nogami model is conceptually viewed as a 
combination of the Matlock model and Novak model and is 
capable of properly producing the nonlinear behavior 
coupled with the dynamic behavior. The model consists of 
the near-field element and far-field element as shown in 
Fig. 5. The near-field element made of nonlinear spring and 
mass represents the soil right in the vicinity of the shaft. 
The nonlinear spring is defined by providing a static unit 
load transfer curve such as that used in the Matlock model 
(Nogami et al., 1987, 1991) and the mass is attached to 
produce the dynamic effects in the near-field response. The 
far-field element produces the effects of linear elastic 
behavior of the far-field soil outside the near-field. Since 
nonlinear response to random loading must be analyzed in 
the time-domain, the far-field element is modeled by 
frequency independent springs, dashpots and mass as 
shown in Fig. 5. This far-field model is developed in a 
rational manner from the analytical formulations of the 
Novak model so that it behave closely to the Novak model 
under the steady-state harmonic motion (Nogami et al., 
1986, 1988). 

When the linear elastic region of the provided unit load 
transfer curve is reasonable, the Nogami model behaves 
very closely to the Novak model except at very low 
frequencies as illustrated in Fig. 6a. It is noted however 
that the Novak model is based on plane strain conditions and 
thus does not behave realistically at those very low 
frequencies. Given an identical unit load transfer curve to 
the Nogami and Matlock models, the force-displacement 
relationship of the Nogami model is identical to the Matlock 
model under static conditions. Under dynamic conditions, 
however, those models behave quite differently from each 
other as illustrated in Fig. 6b in which two frequencies, WI 

and W2, correspond to the frequencies indicated in Fig. 6a. 
Dynamic conditions stiffen the spring characteristics of the 
Nogami model in the elastic range as seen in the real part, 
whereas that of the Matlock model is frequency independent. 
Significant difference between the two model behaviors is 
seen in the damping (imaginary part of the curve). As 
stated earlier, the Matlock model increases the damping at 
any frequency as soil nonlinearity develops. Contrary to 
this, the Nogami model increases the damping at low 
frequencies but decreases at high frequencies. The damping 
results from both hysteresis damping due to nonelastic 
behavior and radiation damping. When nonlineari.ty 
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Fig. 5 Nogami Model 

develops in the vicinity of the shaft, the soil generates the 
hysteresis damping but reduces the radiation damping by 
reducing the energy transmitted to the far-field soil. The 
change in the damping due to soil nonlinearity is the net 
effect of those two trends. Similar behavior also are observed 
in the results obtained by the three-dimensional 
approximate nonlinear finite element analysis (Angelides 
and Roesset, 1981). 

(2) Improved Soil-Pile Interaction Model: When the 
Winkler model parameters are defined simply assuming the 
body waves propagating only in the horizontal direction (i.g. 
plane strain conditions for cylindrical waves), the model 
generally fails to produce meaningful results at very low 
frequencies including the static case. This is illustrated in 
Fig. 7. The figure shows variations of the stiffnesses of end­
bearing piles for two different thicknesses of the 
homogeneous soil stratum: the broken and solid Jines show 
respectively the stiffnesses computed by using this Winkler 
soil-pile interaction model and using a more rigorous model 
with a three-dimensional continuous medium 
representation of the soil. Despite errors observed in the 
figure, when earthquake free-field motions do not contain a 
significant energy at frequencies below the fundamental 
frequency, the Winkler model based on horizontally 
propagating body waves may predict the behavior reasonably 
well in general. This is because earthquake motions are 
random motions containing various frequency components 
and the input earthquake inertia force is proportional to 
square of frequency. Significant concentration of the 
seismic energy around the fundamental resonant frequency 
of the stratum may also make the situation favorable for the 
Winkler model based on horizontally propagating body 
waves. However, components of motions at frequencies 
lower than the fundamental resonant frequency of the 
ground may be very important in some cases. This may be 
so when earthquake free-field motions contain a significant 



energy at frequencies below the fundamental resonant 
frequency of the ground and/or when the period of a soil­
structure system is very long. If this is the case, the 
Winkler model with the parameters defined assuming 
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(b) Inelastic Conditions 

Fig. 6 Forc~-Displacement Relationship of Nogami Model 
m Comparison with Other Models 
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Fig. 7 Pile Stiffnesses Computed by Using 
Winkler Model Based on Plane Strain Conditions 

ro 

horizontally propagating body waves may not be suitable for 
the earthquake response analysis. It is therefore desirable 
to have a simple logical soil-pile interaction model which 
can be applicable even for frequencies below the 
fundamental resonant frequency of the ground. 

Figure 8 shows a soil-pile interaction model which 
behaves well at any frequency. The model consists of 
springs and shear elements with mass. The springs are 
coupled through the shear force induced at the shear 
elements . The soil-structure interaction force, p, is then 
described as 

iu .. p = -N- + Ku + Mii 
az2 

where N, M and K =model parameters defining the stiffness 
and mass of the shear element and stiffness of the spring, 
respectively; and u and ti = displacement and acceleration, 
respectively. This is a simplified version of the model 
previously developed by Nogami (1990) and its model 
parameters can be determined through logical 
consideration based on continuum mechanics. With this 

method the values, K-ro2M and N, are computed at various 
frequencies for a harmonic lateral force applied at the pile 
head. The computed results are shown in Fig. 9 together 
with the conventional Winkler model stiffness. A plane 
strain two-dimensional soil-pile system is considered for 
convenience and thus the pile shown in Fig. 9a is infinitely 
long in the direction perpendicular to the cross section view 
shown in the figure. The Winkler model stiffness for this 
problem, k, is expressed as k = iro(A. + 2G)/vp if the 
parameters are defined assuming horizontally propagating 
body waves in a similar manner as those defined in the 

Novak model: in which A. and G =Lame's constants, vp = P­

wave velocity, ro = frequency and i = --J-1. It is noted that 
waves in this case are plane waves instead cylindrical 
waves. As shown in the figure, the model has the static 
stiffness and K-ro2M approaches to the conventional plane 
strain Winkler model stiffness as frequency increases. The 
imaginary part appears at frequencies higher than the 
fundamental resonant frequency of the ground. Those are 
all consistent with mother nature. 
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Fig. 8 Improved Model 
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Fig. 9 Model Parameters of Improved Model Computed for 
Vibration of Massless Pile in Homogeneous Soil 

(3) Effects of Fluid Inside and Above Seabed: The 
offshore environment is characterized by the existence of a 
fluid inside and above the seabed. If this environment 
affects the dynamic soil-pile interaction to a great degree, it 
must be taken into account appropriately in numerical soil­
structure interaction models including soil-pile interaction 
models. In order to examine the effects of such 
environment, the dynamic response of a vertical massless 
pile, subjected to a harmonic lateral force at its head, is 
computed for three cases by using the thin layer element 
method formulated for a fluid-saturated elasto-porous 
medium (Nogami and Kazama, 1992). The seabed profile 
along the depth and three cases considered are shown in 
Fig. 10. The plane strain condition is assumed: i.g. the pile 
is infinitely long in the direction perpendicular to the cross 
view shown in Fig. 10. Figure 11 shows the computed 
amplitude of the lateral displacement of the pile at the head. 
As is seen in the figure, a fluid both inside and above the 
seabed can affect relatively significantly the soil-pile 
interaction and thus the dynamic response of pile 
foundations. Therefore we may have to take into account the 
effects of a fluid both inside and above the seabed in a 
numerical modeling of the soil-pile interaction for the 
dynamic response analysis of offshore pile foundations. 
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Fig. 10 Soil Profile and Three Different Cases Considered 
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