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f\. Proceedings: Third International Conference on Recant Advances in Geotechnical Earthquake Engineering and Soil Dynamics, w..l April2-7, 1995, Volume I, St. Louis, Missouri 

Consistent Infinitesimal Finite-Element Cell Method: In-Plane Motion 
Paper No. 5.49 

John P. Wolf and Chong min Song 
Institute of Hydraulics and Energy, Department of Civil Engineering, Swiss Federal Institute of Technology Lausanne, CH-1 015 
Lausanne, Switzerland 

SYNOPSIS To calculate the unit-impulse response matrix of an unbounded medium for use in a time-domain 
analysis of medium-structure interaction, the consistent infinitesimal finite-element cell method is developed. Its 
derivation is based on the finite-element formulation and on similarity. The limit of the cell width is performed 
analytically yielding a rigorous representation in the radial direction. The discretization is only performed on the 
structure-medium interface. Explicit expressions of the coefficient matrices for the in-plane motion of anisotropic 
material are specified. In contrast to the boundary-element formulation, no fundamental solution is necessary and 
equilibrium and compatibility on the layer interfaces extending from the structure-medium interface to infinity1 if 
present, are incorporated automatically. Excellent accuracy is achieved for an inhomogeneous semi-infinite wedge 
and a rectangular foundation embedded in an inhomogeneous half-plane. 

INTRODUCTION 
To analyze dynamic unbounded medium-structure in­
teraction by the substructure method in the time do­
main, the unit-impulse response matrix of the unbounded 
medium on the structure-medium interface has to be 
determined before a transient can be processed. As an 
alternative to the boundary-element method, which ap­
plies an analytical solution incorporating the radiation 
condition at infinity, the infinitesimal finite-element cell 
method based solely on the finite-element formulation 
has been developed in Wolf and Song {1994b, 1994c), 
which is summarized in the next paragraph. 
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Fig. 1. Fundamental Concept of Infinitesimal Finite-
Element Cell Method 

The fundamental idea of the infinitesimal finite-element 
cell method is illustrated in Fig. 1 for the unbounded 
(semi-infinite) medium taking the irregular structure­
medium interface into account. Adding the bounded 
cell of finite elements to the unbounded medi\lm with 
the characteristic length re (exterior boundary) results 
in a similar unbounded medium with length r; (inte­
rior boundary). This concept can be applied to their 
dynamic-stiffness matrices in the frequency domain (Das­
gupta {1982)). Assembling the known static-stiffness 
and mass matrices of the cell and the unknown dynamic­
stiffness matrix of the unbounded medium character­
ized by the length r e results in the unknown dynamic­
stiffness matrix of the unbounded medium with length 
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r;. As a relationship for the dynamic-stiffness matri­
ces of similar unbounded media characterized by differ­
ent lengths exists, the infinitesimal finite-element cell 
method leads to an expression for the dynamic-stiffness 
matrix of the unbounded medium as a function of the 
dynamic-stiffness matrix of the cell. Analogously, this 
applies also to the unit-impulse responsE'! matrix after 
performing the inverse Fourier transformation. This 
method is a stand-alone finite-element formulation ca­
pable of capturing the radiation condition at infinity with­
out using analytical solutions. For problems with a 
boundary extending from the structure-medium inter­
face to infinity such as a half-space with a free sur­
face, this novel method automatically incorporates this 
boundary condition in contrast to the boundary-element 
method. Material inhomogeneities which satisfy simi­
larity can be processed without any additional effort. 
The infinitesimal finite-element cell method can also 
calculate problems for which the fundamental solution 
(which is necessary for the boundary-element method) 
does not exist in closed form. This is, for example, the 
case for certain anisotropic materials. Only the conven­
tional static-stiffness and mass matrices of the bounded 
finite-element cell need to be calculated, which are then 
used in standard matrix orerations to obtain the unit­
impulse response matrix o the unbounded medium. 

In the infinitesimal finite-element cell method in Wolf 
and Song (1994b, 1994c) the non-dimensionalized cell 
width measured in the radial direction is selected as a 
very small number for which the computer will provide 
reliable results. It is the goal of this paper to perform 
the ~imit of the cell width analytically for the m-plane 
motwn. The formulation of this consistent infinitesi­
mal finite-element cell method will then depend only on 
the geometry of the structure-medium interface and on 
the material properties of the unbounded medium. The 
resulting formulation is rigorous in the radial direction 
and converges to the exact solution in the finite-element 
sense in the circumferential direction. 



STATIC-STIFFNESS AND MASS MATRICES OF IN­
FINITESIMAL FINITE-ELEMENT CELL 
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Fig. 2. Quadrilateral Finite Element of Cell with Simi-
larity and Parent Element 

For simplicity it is assumed that the cell consists of 
quadrilateral finite elements. One such element (Fig. 2) 
is addressed. Due to similarity, the coordinates of the 
nodes 3 and 4 on the exterior boundary can be expressed 
by those of the nodes 1 and 2 on the interior boundary 
as 

xa = (1 + w)x1; 

X4 = (1 + w)x2; 

Ya=(1+w)yl 
Y4=(1+w)y2 

(1) 

with the dimensionless cell width w. The following ab­
breviations are introduced. 

.6-y = Y2- Y1 
_ Yl + Y2 
y= 

2 

[ 'fJ 0 l [C2] = o_ -_x 
-X y 

(2) 

(3) 

(4) 

(5) 

Using standard finite-element procedures, the subma­
trices of the in-plane static-stiffness matrix [I<] can be 
formulated as 

where 

(j, k = 1, ... '4) 
(6) 

[I<o];k = ~i~k ( 1 + ~T7iT7k) [Qo] (7) 

[K1];k = [I<o];k-~ (~; + ~k) T7iT7k[Qo]+~kT7i[Qd+~;T7k[Ql]T 
(8) 

[K2]Jk = ( 1 + ~(;(k) T7iT7k ( 1
1
2 [Qo] + [Q2]) (9) 

with 

[Qo] = 4 ~al [CI]T[D][C1]; [Q1] = ~~~ [C2]T[D][CI) 

[Q2j = 4 ~al [C2f[D][C2] 
(10) 

where [D] is the stress-strain relationship of the, in gen­
eral, anisotropic material. 

The submatrices of the mass matrix are formulated as 

[M]jk ~ w[Mo];k (j,k=1, ... ,4) (11) 
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where (unit matrix [/],mass density p) 

(12) 

In the consistent infinitesimal finite-element cell method 
it is only necessary to calculate the following coefficient 
matrices: 

[ ] [ .. 1 2 [ 2[Qo] [Qo] ] 
F = B.o ;; = 3 [Qo] 2[Qo] (13) 

[B1] = [J<I);e + [Kl]ee 

= ~ [ [b~11 ~~~] ] + 2 [ [b~11 [b~1 1 ] 
(14) 

[J<2]sum = [K2]ii + [J<2]ie + [K2]ei + [K2]ee 

= ~ [ ~~~] [b~]] ] + 4 [ ~~~] [~]] ] 
(15) 

pial [ 2[/] [/] ] 
[B4] = [Mo];;+[Mo]ie+[Mo]ei+[Mo]ee = 6 [I] 2[1] 

(16) 
In the above derivation, the matrix [D] is in its most 
general form, which allows a fully anisotropic material 
to be analyzed. 

As for the static-stiffness and mass matrices, the co­
efficient matrices of the cell can be determined by as­
sembling those of the finite elements. To simplify the 
nomenclature, the same symbols are used for the assem­
bled coefficient matrices in the following. 

CONSISTENT INFINITESIMAL FINITE-ELEMENT 
CELL EQUATION 

Proceeding as described in Section 2.3 of Wolf and Song 
(1994c) and after taking the limit with respect to the 
cell width results in the consistent infinitesimal finite­
element cell equation 

where the coefficient matrices are equal to 

[b1] = [F]-1[BI]; [b2] = [FJ-1[BI]T- (s + 1)[/] 
(ba] = -[F]-1[BI][F]-1[BI]T + [FJ-1[K2]sum 

(b4] = [FJ-1[B4] 
(18) 

with the spatial dimension s=2 or 3. This equation cor­
responds to Eq. (37) of Wolf and Song (1994c), where 
the time discretization is also addressed. For each time 
step a system of linear equations is solved. After deter-
mining lm00(t)] from (17), the acceleration unit-impulse 
response matrix follows as 

[M00(t)] = [F](m00(t)] (19) 



EXAMPLES 
The same geometry as for the examples taking the nu­
merical limit in Wolf and Song (1994c) are used in the 
following demonstration where the analytical limit of 
the cell width is performed. Only isotropic examples 
with inhomogeneity are addressed. 

Semi-Infinite Wedge 

v ro v 
7f u{9) 7f O"e=tre=O 

':.r~::~~' .... G., 

........ G. ---"" ~ 

.....:.. 
Fig. 3. Inhomogeneous Semi-Infinite Wedge with Pre­

scribed Linear Displacement 
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4. Nondimensionalized Acceleration Unit-Im_pulse 
Response Coefficient of Inhomogeneous Semi­
Infinite Wedge 

The in-plane motion of a wedge with an opening angle 
a = 30° and Poisson's ratio v = 0.25 and with a free 
and a fixed boundary extending in the radial direction 
to infinity is addressed (Fig. 3). Three regions of dif­
ferent shear moduli with a soft inner part compatible 
with similarity is examined (Gt/G2 = G3/G2 = 10). 
On the structure-medium interface 9 elements of equal 
length are chosen. The unit-impulse response matrix 
[M00(t)] with respect to the 9 nodes is calculated. To 
ease the comparison, a linear function of the horizontal 
displacement in the circumferential direction 0 on the 
arc and zero vertical displacement are prescribed, and 
the corresponding equivalent unit-impulse response co­
efficient M 00(t) is determined by integrating the nodal 
forces of the finite elements with the displacement as a 
weighting function over the structure-medium interface. 
The time step is selected as 6-t = O.Olro/c8 • M 00(t) cal­
culated with the consistent infinitesimal finite-element 
cell method agrees well with the result determined with 
an extended mesh of finite elements with the element 
length in the radial direction =0.025ro and the same 
time step At (Fig. 4 where K is the static-stiffness co­
efficient, and t = tcs2/ro is the dimensionless time with 
c82 = .jG2/ p). 230 rows of finite elements are necessary 
for t up to 2. The dynamic-stiffness coefficient S 00(a0 ) 

is also calculated from M 00 ( t) by applying the Fourier 
transformation as described in Wolf and Song (1994c) 
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for comparison. The non-dimensional spring and damp­
ing coefficients k(a0 ) and c(a0) shown in Fig. 5 compare 
very well with the accurate values using the so-called dy­
namic condensation method (Wolf and Song (1994a)). 
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Fig. 5. Dynamic-Stiffness Coefficient in Frequency Do­
main of Inhomogeneous Semi-Infinite Wedge 

Rectangular Foundation Embedded in Half-Plane 

Fig. 6. Rectangular Foundation Embedded in Inhomo-
geneous Half-Plane 

A rectangular foundation embedded in an inhomoge­
neous half-plane with G2/G1 = G2/G3 = 4 and Pois­
son's ratio v = 0.25 and with a ratio of the embedded 
depth to the half-width efb = 1 is evaluated (Fig. 6). On 
the structure-medium interface 24 elements are present. 
The time step is selected as At = 0.03bfcsl (csl = 
.jGt/ p). After determining the unit-impulse response 
matrix [M00(t)] of order 50 x 50, the rigid-body con­
straint is introduced to calculate the equivalent coef­
ficients corresponding to the horizontal, vertical and 
rocking motions. As for the wedge, the equivalent unit­
impulse response coefficients are transformed into the 
frequency domain. The resulting dynamic-stiffness co­
efficients in the frequency domain non-dimensionalized 
for the translational motions with G and for the rocking 
motion with Gb2 agree well, as shown in Fig. 7, with the 
results of dynamic condensation. 



CONCLUSIONS 
Performing the limit of the cell width analytically yields 
the consistent infinitesimal finite-element cell method 
which is rigorous in the radial direction. The discretiza­
tion is performed only to the structure-medium inter­
face, resulting in a reduction of the spatial dimension 
by 1. The coefficient matrices depend on the geometry 
of the structure-medium interface and on the material 
properties of the unbounded medium. Excellent accu­
racy results even for the inhomogeneous case compatible 
with similarity, whereby equilibrium and compatibility 
on the layer interfaces extending from the structure­
medium interface to infinity are incorporated automat­
ically. 
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Fig. 7. Dynamic-Stiffness Coefficient in Frequency Do­
main of Rigid Rectangular Foundation Embed­
ded in Inhomogeneous Half-Plane 
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