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by 

CHASE KINSEY 

(Under the Direction of Lance McBrayer) 

 

ABSTRACT 

Morphology, locomotion, and behavior are co-adapted to optimize performance and ultimately 

fitness. Successfully navigating a complex environment is dictated by an animal’s locomotor behavior, 

and for some behaviors, its locomotor performance. The locomotor performance of an organism is 

directly related to the form and function of the structures involved in locomotion such that movement is 

efficient – that is, minimal loss of energy. The first chapter of this thesis focuses on the effects of obstacle 

placement and forelimb position on facultative bipedalism. Placing an obstacle beyond a lizard’s 

acceleration threshold did not affect the frequency of bipedal posture. Furthermore, the forelimb position 

of streamlined species is stereotyped during bipedal running, whereas the forelimb positions are varied in 

short stocky species. The second chapter investigates shape variation in the scapula among 

Phrynosomatid lizards across a gradient of species that vary in the use of horizontal to vertical locomotor 

planes. I determined that while global scapula shape is relatively conserved among lizards, localized 

changes occur at the muscle attachment sites used in vertical vs. horizontal locomotion. Furthermore, 

scapular shape in relation to habitat use is phylogenetically conserved with the exception of some 

Sceloporus species which diverged independently towards terrestrial locomotion.  

INDEX WORDS: Bipedal, Obstacle, Forelimb, Scrub lizard, Sceloporus woodi, Racerunner, Aspidoscelis 

sexlineata, Scapula, Morphology, Habitat, Phylogeny 
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CHAPTER 1 

FACULTATIVE BIPEDAL LOCOMOTION IN LIZARDS: THE ROLE OF OBSTACLE 

PLACEMENT AND THE FORELIMB 

 

ABSTRACT 

  Many lizards are capable of bipedal locomotion via high acceleration and/or posterior shift in 

body center of mass (BCoM). Recent work indicates that bipedal posture is advantageous during obstacle 

negotiation (Parker and McBrayer, 2016). However, little is known about how bipedalism occurs beyond 

a lizard’s acceleratory threshold. Furthermore, no study to date has examined the effects of forelimb 

position on the BCoM in the context of bipedal locomotion. This study quantified the frequency of 

bipedalism when sprinting with vs. without an obstacle at 0.8 meters from initiating a sprint. Forelimb 

positions were also quantified during bipedal running at the start of a sprint and when crossing an 

obstacle. Two species with contrasting body forms (and thus different BCoM) were studied (Sceloporus 

woodi, Aspidoscelis sexlineata) to assess potential variation due to body plan and obstacle crossing 

behavior. Lizards were coerced to sprint down a 1.4-meter track and filmed with high speed video. A 

subset of individuals were euthanized to quantify BCoM due to change in forelimb position. No 

significant difference in frequency of bipedalism was observed in S. woodi with or without an obstacle. 

However, A. sexlineata primarily used a bipedal posture when sprinting. Four commonly used forelimb 

positions were noted during bipedal locomotion: cranial extension, caudal extension, gait cycle, and 

cranial flexion and adduction. When using bipedal posture at an obstacle, S. woodi primarily used cranial 

flexion and adduction. Caudal extension of the forelimbs was used by A. sexlineata when using a bipedal 

posture. The BCoM of Aspidoscelis sexlineata is located more posterior (9.13mm ±0.78) than that of S. 

woodi (12.87mm ± 0.55). Caudal extension of the forelimbs shifted the BCoM posteriorly (8.47mm 

±2.50). Caudal extension helped maintain a bipedal posture by shifting the BCoM, and these patterns 

appear to be stereotyped in A. sexlineata, but not S. woodi. This is the first study to show how lizards 
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respond to obstacles placed beyond their acceleration threshold, and the role of the forelimbs during 

bipedal locomotion.  
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INTRODUCTION 

A terrestrial animal’s ability to capture prey, avoid predation, and find mates is contingent on 

successfully navigating uneven terrain (Vanhooydonck et al., 2007). Physical substrates such as loose 

rock, thick vegetation, and woody debris provide challenges to terrestrial vertebrates (Pounds, 1988). 

Variation in substrate characteristics directly affects locomotor performance and behavior of terrestrial 

vertebrates during flight from predators (Collins et al., 2003; Cooper, 1999; Losos 1990). Bipedalism – 

which is displayed in some insects, mammals, and reptiles - is one mode of locomotion terrestrial 

vertebrates use to overcome obstacles (Tucker, 2012; Alexander, 2004). During predation events or social 

interaction, a terrestrial vertebrate’s behavior, speed, and stability traversing obstacles may impinge upon 

their survivorship and/or fitness (Arnold, 1983; but see Garland and Losos, 1994).  

Some terrestrial lizards alter their gait and/or posture while sprinting (Schuett et al., 2009). 

Stereotyped limb movement in quadrupedal locomotion is called a gait, and has predictable footfalls 

across various speeds (Snyder, 1952; Snyder, 1954; Snyder, 1962; Irschick and Jane 1999; Farley and 

Christine, 1997). Bipedalism occurs when only the hind limbs contact the ground, due to a posterior shift 

in the body center of mass (BCoM) (Snyder, 1954). The posterior shift in BCoM occurs in large part due 

to the production of high accelerative forces by the hindlimbs that would otherwise keep the forelimbs in 

contact with the ground (Aerts et al., 2003). Bipedalism is thought to have evolved independently in 

numerous lizard clades as a consequence of acceleration and changes in body center of mass (BCoM) 

(Aerts et al., 2003; Clemente, 2014). The placement of the BCoM varies depending on the length of a 

lizard’s tail and trunk relative to the hip (Van Wassenbergh and Aerts, 2013). Lizards with an anteriorly 

placed BCoM are less likely to exhibit bipedalism compared to lizards with a posteriorly shift BCoM 

(Clemente, 2014). Thus, body shape is a key determinant in facultative bipedalism. Bipedal lizards can 

make small changes to their trunk and tail angle such that the BCoM is shifted over the hip (Van 

Wassenbergh and Aerts, 2013; Irschick and Jayne, 1999). 
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Kinematic data on the role of the hindlimb in bipedal locomotion suggest the hindlimb generates 

significant power, thereby effecting acceleration and maximal velocity (Wassenbergh and Aerts, 2013; 

Olberding et al., 2012; Snyder, 1954; Snyder 1962). Little attention has focused on the role of the 

forelimb during bipedal locomotion. Forelimb position may aid in obstacle navigation by shifting the 

BCoM posteriorly (Legrenuer et al., 2012). Snyder (1952) suggested there is no difference in limb 

movement between quadrupedal and bipedal locomotion. Yet, several species of lizards use varying 

forelimb positions while moving bipedally (Irschick and Jane 1999). Varying forelimb positions may be 

necessary for maintaining balance, touching or pushing off an obstacle, or elevating the center of mass for 

obstacle clearance (Kohlsdorf and Biewener, 2006). Certain forelimb positions during bipedal locomotion 

could shift the BCoM posteriorly to aid in the pitching motion caused by high starting accelerations 

(Aerts et al., 2003; McElroy and McBrayer, 2010). For example, caudal extension during obstacle 

navigation may 1) decrease contact with an obstacle by raising the distance of the limbs away from the 

obstacle (Self, 2012) and 2) shift the BCoM posteriorly to raise the hip height so that a lizard might clear 

an obstacle without losing forward speed (Olberding et al, 2012, Irschick and Jayne, 1999).  

The objective of this study was to determine the role of obstacle placement and forelimb position 

during facultative bipedal locomotion in lizards.  Two species, Sceloporus woodi and Aspidoscelis 

sexlineata, were selected based on their different body plans (and BCeoM), yet each often exihibits 

bipedal locomotion. Sceloporus woodi run bipedally more frequently when encountering an obstacle 

versus without an obstacle (Parker and McBrayer, 2016). Furthermore, Sceloporus woodi run bipedally 

when an obstacle is within their acceleration threshold (0.4m), but not when multiple obstacles are present 

in succession (Parker and McBrayer, 2016). Aspidoscelis sexlineata, however, employs a bipedal posture 

when crossing obstacles over long distances (Olberding et al., 2012). Although many species of lizards 

have been documented sprinting bipedally, no published studies have examined bipedalism with an 

obstacle placed beyond the initial acceleration threshold, i.e. after the initial two to five steps (0.4 – 0.5 

m) of locomotion (McElroy and McBrayer, 2010). Transitioning to a bipedal posture at an obstacle when 
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a lizard is already at maximal velocity suggests that bipedalism occurs as a behavior to maintain forward 

speed and is not dependent on initial acceleration. I predicted that (i) lizards will run bipedally more with 

an obstacle present than without and (ii) bipedal posture is used more at the obstacle than at the start of 

the trial. Furthermore, I predicted that (iii) caudal placement of the forelimbs shifts the BCoM posterior 

more than other forelimb positions and (iv) that forelimb positions are variable within the acceleration 

threshold but fixed when navigating an obstacle (beyond the acceleration threshold). 

METHODS 

Study Species and Field Site 

The focus of this study was to address the frequency of bipedal posture during obstacle crossing, 

and the position of the forelimb during bipedal locomotion.  Two facultative bipedal species with 

differing body plans were chosen as study species: the Florida Scrub Lizard (Sceloporus woodi) and the 

Racerunner (Aspidoscelis sexlineata). Sceloporus woodi is found in open sandy habitats in peninsular 

Florida (Jackson, 1973). Aspidoscelis sexlineata has an elongated trunk and a forward BCoM compared to 

S. woodi (Clemente, 2014). Aspidoscelis sexlineata are found throughout the southeast and are found in 

sympatry with S. woodi in Ocala National Forest. Aspidoscelis sexlineata very commonly use bipedal 

locomotion which is attributed in part to a posteriorly placed body center of mass when sprinting 

bipedally (Clemente, 2014). The contrasting body plan yet similar mass and habitat use makes each 

species suitable to quantify both forelimb positions during bipedal running, and when traversing obstacles 

outside of their acceleration threshold. 

Field Collections 

Field collection occurred May to August 2016 and 2017.  Eighty-eight adult male S. woodi and 35 

A. sexlineata were noosed using a thin filament tied in a slipknot at the end of a fishing pole. Males were 

retained in cloth bags and transported to the animal facility at Georgia Southern University. Each lizard 

was kept in a separate 10-gallon tank with sandy substrate and a hide and fasted for 24 hours to ensure 
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digestion did not affect locomotor performance. A 12/12-hour light cycle was used with misting every 

morning and crickets every three days. Lizards were released at point of capture. Recaptures on 

subsequent trips were avoided using toe clips and landmarks painted on individuals. Only males greater 

than 42 mm SVL were used in the analyses because females are more likely to be gravid which affect 

locomotor performance (Iraeta et al., 2010). 

Sprint trials 

Seventeen landmarks were placed externally on each lizard using non-toxic white paint 

(Appendix A) for tracking limb and tail movement in the video. A custom-built track was placed 

perpendicularly to two Mega Speed X4© high speed video cameras with RICOH lenses (50mm, F/1.4 

VGA) mounted on tripods recorded sprint trials (300fps; resolution 1080 x 1024). The racetrack substrate 

was lined with cork to avoid slippage. A mirror placed at a 45-degree angle along the racetrack wall 

provided dorsal and lateral views of the lizard (Appendix B). Lizards were subjected to a trial with an 

obstacle at 0.8 meters, and a trial without an obstacle. Trials were assigned at random to each day. 

Obstacles were constructed of wooden blocks which spanned the width of the track to prevent lizards 

from maneuvering around the obstacle. Obstacle height and width was standardized to 35% of hind limb 

length for each lizard (Self, 2012). Broken or regenerated tails were noted and excluded from any 

analysis. Lizards were warmed to field active body temperature (~36oC) in an incubator before each trial. 

Each lizard was held completely still at the start of the track, then released. Taps on the tail were used to 

coerce the individual down the racetrack to a hide. A sprint trial was captured for each lizard in each trial 

type. Only “successful” sprint trials were used for analysis. A successful sprint trial was defined as 

avoidance of side walls, pausing, or reversing direction. Bipedal trials were defined as completion of at 

least one full stride without the forelimbs touching the ground. Bipedalism at the obstacle was defined as 

the use of only the hind limbs for at least one full stride within four strides lengths preceding the obstacle. 

Bipedalism at the start of the trial was defined as using only the hind limbs for at least one full stride 

during the first four strides of a sprint. Whether a forelimb touched an obstacle when crossing was noted 
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for each species. Videos were calibrated using a 30-point calibration cube, as well as a 10-centimeter ruler 

painted on the race track wall (Parker and McBrayer, 2016). Videos were loaded to the computer, spliced 

using Microsoft Movie Maker (compressed .AVI file), and digitized in MATlab using DLTdv5 software 

(Hedrick, 2008). A landmark placed at the junction of the frontal and parietal scale was used to calculate 

sprint velocity (m/sec) from each video.  

Ethogram and BCoM analysis 

To understand forelimb function during bipedalism, an ethogram was constructed by reviewing a 

subset of sprint trials of both S. woodi (Parker and McBrayer, 2016) and A. sexlineata (collected summer, 

2016) (Fig 1). Images from Irschick and Jayne (1999) were also used to determine variation in forelimb 

positions. After sprint trials were completed, 12 A. sexlineata and 20 S. woodi were euthanized with MS-

222 to assess the change in positional BCoM due to forelimb position. Only lizards which ran bipedally in 

sprint trials were euthanized. The BCoM of a subset of euthanized lizards were measured using two scales 

(described in Clemente 2014). Two scales (0.0001g accuracy) were set parallel to each other with a 

wooden beam placed across each scale. The scales were tared to the mass of the beam. Each lizard was 

placed on the beam and BCoM calculated using methods from Clemente (2014). The BCoM was 

calculated later on frozen, then slightly thawed lizards with forelimbs placed in both cranial, caudal, and 

alternating (gait cycle) positions to quantify the effects of the forelimb on BCoM. Cranial and caudal 

positions were averaged together to obtain the flexed/ adducted position. 

Statistical analysis 

One-hundred trials of S. woodi, and thirty-six trials for A. sexlineata were retained for analysis.  

Chi-squared tests were used to test the frequency of bipedal posture in each species with or without an 

obstacle. Sprint trials containing bipedal posture were retained for forelimb positional analysis. Chi-

squared tests were used to test the frequency of forelimb positions at the start of the trial with and without 

and obstacle, and at the obstacle. Body center of mass from the hip was calculated using the methods 
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from Clemente (2014). A one-way ANOVA was used to analyze variation in BCoM between caudal and 

cranial forelimb positions for each species. All analyses were conducted using JMP (v. 12.1.0 SAS 

institute) and figures created in SigmaPlot (v. 12.0 Systat Software). Alpha was set to p < 0.05. 

RESULTS 

Frequency of bipedal posture with and without an obstacle 

 The presence or absence of an obstacle on the frequency of bipedal posture was not different in 

either S. woodi or A. sexlineata (Table 1; Fig 2). Furthermore, whether species ran bipedally more at the 

start of a sprint as opposed to the obstacle was examined. The presence or absence of an obstacle does not 

affect the frequency of bipedal posture in S. woodi (p = 0.64, χ2 = 0.219, df = 1, n = 100). Also, frequency 

of bipedal posture is not different at the start of a trial vs. at the obstacle in S. woodi (p = 0.088, χ2 = 

2.905, df = 1, n = 40). Regardless of obstacle presence, S. woodi primarily ran quadrupedally (Table 1; 

Fig 2). The frequency of bipedal posture in A. sexlineata was not affected by the presence or absence of 

an obstacle (p = 0.95, χ2 = 0.004, df = 1, n = 35). Furthermore, the frequency of bipedal posture is not 

different at the start of a trial vs. at the obstacle for A. sexlineata (p = 0.13, χ2 = 2.288, df = 1, n = 30). 

Aspidoscelis sexlineata primarily used a bipedal posture regardless of obstacle presence (Table 1; Fig 2). 

Effects of Forelimb Position on BCoM 

Four forelimb positions were common during bipedal locomotion: limbs adducted and extended 

posteriorly (caudal extension), limbs abducted and extended anteriorly (cranial extension), limbs adducted 

and flexed proximally (cranial flexion and adduction), and a gait cycle where limbs rotate around the 

shoulder axis (Fig 1). In A. sexlineata, cranial extension placed the BCoM anteriorly at 9.8 (± 2.25) mm 

from the hip while caudal extension moved the BCoM posteriorly to 8.47 (± 2.50) mm from the hip (Fig 

4) (p = 0.006, t = 2.03, n = 36). In S. woodi cranial extension shifted the BCoM anteriorly to 13.506 

(±0.56) mm from the hip while caudal extension moved the BCoM posterior 12.25 (± 0.56) mm from the 

hip (Fig 4) (p = 0.04, t = 2.02, n = 46).  
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Forelimb positions for S. woodi 

 The frequency of the four forelimb positions used during bipedal posture at the start of a trial and 

0.8 meters from the start without an obstacle was quantified for S. woodi. (Figs 3A, 3B). The frequency of 

forelimb position is not different at the start of a trial and at 0.8 meters without an obstacle (p = 0.4513, χ2 

= 1.591, df = 1, n = 23). When running bipedally at the start of a sprint trial, S. woodi kept its forelimbs in 

a gait cycle motion in 47.1% of the trials, while flexion and adduction was observed in 41.2%, and cranial 

extension was observed in 11.7% of trials (p = 0.0028, df = 3, n = 17). During bipedal locomotion at 0.8 

meters from the start of the trial, 66.7% of forelimb positions were a gait cycle motion and 33.3% were 

observed as flexion and adduction (p = 0.03, df = 3, n = 6).  

With an obstacle present, the frequency of forelimb position is variable at the start of a trial and at 

0.8 meters (p = 0.0074, χ2 = 9.811, df = 1, n = 28). When using a bipedal posture at the start of the trial, A. 

sexlineata kept its forelimbs in a gait cycle motion in 56.2% of the trials and flexion and adduction was 

observed in 43.8% of the trials (p < 0.0001, df = 3, n = 16). When running bipedally at 0.8 meters over 

the obstacle, flexion and adduction was used in75% of the trials, cranial extension was used in 16.7% of 

the trials, and a gait cycle motion was used in 8.3% of the trials (p = 0.001, df = 3, n = 12). Sceloporus 

woodi touched the obstacle with their forelimbs 19 out of 51 trials, and all instances were with a 

quadrupedal posture (Table 1; Fig 5) (p = 0.07, χ 2 = 3.35, df = 1, n = 51). 

Forelimb positions for A. sexlineata 

 The frequency of forelimb position during bipedal locomotion at the start of a trial and at 0.8 

meters without an obstacle was quantified for A. sexlineata (Figs 3C, 3D). The frequency of forelimb 

position is similar at the start of a trial and at 0.8 meters for A. sexlineata (p = 0.2450, χ2 = 1.352, df = 1, n 

= 29). During bipedal locomotion at the start of the trial, caudal extension was used in 93.3% of the trials 

while gait cycle was used in 6.7% of the trials (p < 0.0001, df = 3, n = 15). While running bipedally at 0.8 

meters, caudal extension was used 100% of the time (p < 0.0001, df = 3, n = 12).  
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 The frequency of forelimb position is similar at the start of a trial and at the obstacle for A. 

sexlineata (p = 0.2721, χ2 = 12.206, df = 1, n = 27). When running bipedally at the start of a sprint trial, 

caudal extension 100% of the time (p <0.0001, df = 3, n = 14). Only 1 out of 17 A. sexlineata touched the 

obstacle while sprinting bipedally, and this individual immediately transitioned to a quadrupedal posture 

after contact.  

DISCUSSION 

The goal of this study was to understand the mechanisms and tradeoffs associated with facultative 

bipedal locomotion. It is clearly established that bipedalism involves a shift in the BCoM (Van 

Wassenbergh and Aerts, 2013; Aerts et al., 2003; Clemente, 2014), and that the presence of an obstacle 

often elicits the facultative use of the posture in lizards (Parker and McBrayer, 2016; Tucker and 

McBrayer, 2012). Here the obstacle’s placement beyond a lizard’s acceleration threshold was quantified, 

but had little effect of the frequency of bipedal posture. Furthermore, the forelimbs had predictable 

patterns of use that should aid the posterior movement of the BCoM. Sceloporus woodi rarely maintains a 

bipedal posture during a sprint (Parker and McBrayer, 2016). Regardless of obstacle presence, S. woodi 

infrequently used bipedal posture in comparison to A. sexlineata. When running bipedally, the forelimbs 

of S. woodi were generally flexed and adducted. This position does not significantly shift the BCoM 

posterior.  Thus, using flexion and adduction provides clearance over an obstacle but does not aid in 

maintaining a bipedal posture. Aspidoscelis sexlineata, which ran bipedally in 88% of all trials, primarily 

used caudal extension both when crossing the obstacle and at the start of a trial. The posterior shift in 

BCoM from caudal extension and a long tail relative to the trunk is likely beneficial as A. sexlineata 

frequently maintains a bipedal posture over long distances (Olberding, 2015). Given that the degree of 

facultative bipedalism is highly variable among taxa (cite), the choice of species’ with highly contrasting 

body forms enable the establishment of the range of strategies, and uses, of this posture. Here, I show the 

frequency of bipedalism differs regardless of obstacle presence. Furthermore, forelimb position during 
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bipedal locomotion is variable in S. woodi and stereotyped in A. sexlineata, suggesting that forelimb 

position plays a role in shifting the BCoM posterior during bipedal locomotion.  

Locomotor frequency with and without an obstacle 

Sceloporus woodi exhibits facultative bipedalism (Tucker et al., 2012). The use of a bipedal 

posture increases when an obstacle is placed within the acceleration threshold of 0.4 - 0.5 m (Parker and 

McBrayer, 2016). However, an obstacle placed beyond this (0.8 meters) from the start of a sprint had 

little effect on the frequency of bipedal posture (Fig 2). Sceloporus woodi has a short tail relative to their 

trunk which makes sustained bipedalism over long distances difficult. Furthermore, the lack of bipedalism 

in S. woodi during the strides crossing an obstacle suggests that bipedalism is primarily an effect of initial 

acceleration (Wassenbergh and Aerts, 2013).  

In contrast, Aspidoscelis sexlineata has a longer tail relative to the trunk and can maintain a 

bipedal posture over long distances (Olberding, 2015). Regardless of obstacle placement, A. sexlineata 

primarily ran bipedally (Fig 2). Continual bipedal locomotion with and without an obstacle suggests that 

that bipedalism is a common form of locomotion in this species. Thus, the streamlined body plan of A. 

sexlineata seems well suited for bipedalism (Clemente, 2014, Aerts et al., 2003). 

Contingency of Forelimb Position based on Body Plan 

Aspidoscelis sexlineata have a long trunk and can reach maximum forward speed around 4 m/s 

when navigating obstacles (Olberding et al., 2012). The BCoM of A. sexlineata is shifted posteriorly by 

their long tail and vertically elevated trunk during bipedalism (Aerts et al, 2003; Clemente, 2014). In 

conjunction with tail and trunk elevation A. sexlineata uses caudal extension during bipedal locomotion 

(Figs 3C, 3D).  This position aids in posteriorly shifting the body center of mass (BCoM) when 

maintaining a bipedal posture over long distances. Aspidoscelis sexlineata do not modify their hindlimb 

kinematics when approaching an obstacle but instead adjust the elevation of the hindlimb during obstacle 

negotiation (Olberding et al, 2012). Likewise, caudal extension was used both at the start of the trial and 
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when crossing an obstacle (Figs 3C, 3D). This suggests that forelimb position may not only be a 

behavioral adjustment for navigating obstacles, but also a mechanism to adjust BCoM. Shifting the 

BCoM posteriorly aids in maintaining bipedal postures over long distances (Aerts et al, 2003). The 

forelimbs act as support in lizards during quadrupedal locomotion (Snyder, 1952).  However, A. 

sexlineata touched the obstacle with their forelimbs only three out of 18 trials when sprinting bipedally 

and immediately reverted to a quadrupedal posture when they did (Fig 5). Extending the forelimb toward 

the obstacle leads to a forward shift in the BCoM, potentially leading to quadrupedal locomotion. 

Maintaining a bipedal posture helps the lizards navigate obstacles while maintaining forward velocity 

(Self, 2012; Olberding et al., 2012). 

When sprinting bipedally at the start of a trial, S. woodi showed behavioral adjustments in the 

forelimbs from a quadrupedal posture which does not posteriorly shift the BCoM (Figs 3A, 3D). The 

continuing gait cycle in the forelimbs at the start of a trial and lack of sustained bipedalism suggests that 

bipedalism is a result of high acceleration (Van Wassenbergh and Aerts, 2013), and that motor control of 

the forelimbs is likely the same as during quadrupedal locomotion. Yet, the forelimbs are primarily flexed 

and adducted when bipedally crossing an obstacle (Figs 3A, 3D). To avoid collision with an obstacle, 

lizards must raise both hip height and forelimbs to avoid touching the obstacle (Irschick and Jayne, 1991). 

The hips and forelimbs are raised as a product of bipedalism, which enhances obstacle avoidance (Van 

Wassenbergh and Aerts, 2013). As bipedalism is less frequent, keeping the forelimbs flexed and adducted 

allows obstacle clearance without shifting the BCoM. Sceloporus woodi have a short tail relative to their 

trunk and reach velocities around 2.4 m/s when crossing an obstacle (Parker and McBrayer, 2016).  

Sceloporus woodi did not touch the obstacle with their forelimbs in 100% of the bipedal trials (Fig 5). As 

bipedalism is not a posture for sustained locomotion, S. woodi need only hold the forelimbs up against the 

trunk to avoid contacting the obstacle which could disrupt forward speed (Self, 2012; Kohlsdorf and 

Biewener, 2006). 

Conclusion 
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Aspidoscelis sexlineata, which has a long tail relative to the trunk, and S. woodi, which has a 

short tail relative to the trunk, were used to understand how bipedal posture and forelimb position varies 

when faced with a distantly placed obstacle. An obstacle placed beyond their acceleration threshold had 

no significant effect on the frequency of locomotion. Furthermore, forelimb position was stereotyped in 

A. sexlineata, which primarily uses a bipedal posture, and variable in S. woodi, which primarily uses a 

quadrupedal posture. While bipedalism aids in obstacle negotiation, its occurrence is primarily an effect 

of a high starting acceleration. However, lizards which primarily use a bipedal posture adjust their 

forelimbs such that the BCoM is shifted posterior. Thus, lizards with body plans better suited for bipedal 

locomotion are likely to employ behavioral adjustments to aid in maintaining a bipedal posture, regardless 

of obstacle presence. Future studies on this topic should quantify the shift of BCoM in videos from the 

forelimbs, and the variable frequency of bipedalism when navigating obstacles. Furthermore, future work 

should expand to other bipedal species so that phylogenetic inferences can be made. 
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TABLES AND FIGURES 

Table 1.1. Summary statistics of locomotor behavior in sprint trials with and without an obstacle. 

Numbers are the frequency of occurrence for each behavior among species and trials. Bipedalism at the 

start of a trial was quantified within the first four strides of a sprint. Bipedalism at 0.8 meters was 

quantified as four strides preceding 0.8 meters. Pauses before and after an obstacle were quantified in the 

four preceding strides of the obstacle. (n = number observed). 

Frequency of locomotor behaviors in Sceloporus woodi and Aspidoscelis sexlineata 

                   S. woodi 

          Obstacle Presence 

            A. sexlineata 

        Obstacle Presence 

Variable 

(Sample Size) 

Obstacle 

(n = 51) 

No Obstacle 

(n = 49) 

Obstacle 

(n = 18) 

No Obstacle 

(n = 17) 

Number of bipedal runs 20  17 16 15 

Number of quadrupedal runs 31 32 2 2 

Bipedal at start of trial 16  17 12 15 

Bipedal at 0.8 meters 11  6 14 14 

Forelimbs touch obstacle 19 --- 3 --- 

Pause on obstacle 6 --- 1 --- 

Pause before obstacle 10 --- 0 --- 

Pause after obstacle 26 --- 2 --- 
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Figure 1.1. Ethogram of common forelimb positions observed during bipedalism in lizards. Lateral and 

dorsal views are shown.  
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Figure 1.2. Frequency of bipedal posture with vs. without an obstacle. A) Bipedal posture was used 

significantly more than quadrupedal posture with and without an obstacle for A. sexlineata.  B) 

Quadrupedal posture was used significantly more than bipedal posture without an obstacle for S. woodi. 

Differing letters indicate p-values are ≤ 0.05 from X2 analysis. 
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Figure 1.3. The frequency of forelimb positions during bipedal locomotion at the start of a sprint trial and 

at 0.8 meters with and without an obstacle for S. woodi and A. sexlineata. (A) Without an obstacle, S. 

woodi used flexion adduction and gait cycle significantly more than other forelimb positions at both the 

start of the sprint and 0.8 meters. (B) In trials with an obstacle S. woodi used both flexion adduction and 

gait cycle at the start of the sprint trial, but used flexion addduction when crossing an obstacle. In trials 

without an obstacle (C) and trials with an obstacle (D) A. sexlineata used caudal extension when running 

bipedally. Comparisons are made across trials with an without obstacles , not across species.  
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Figure 1.4. The BCoM with forelimbs in caudal extension (8.47 ± 2.50mm) was significantly different 

from cranial extension (9.8 ± 2.25mm), but not gait cycle in A. sexlineata.  In S. woodi cranial extension 

shifted the BCoM anteriorly (13.506 ± 0.56mm) while caudal extension moved the BCoM posterior 

(12.25 ± 0.56mm). Standard error is represented by bars. Differing letters indicate p-values are ≤ 0.05. 
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Figure 1.5. Sprint trials for each species where forelimbs touch the obstacle. When crossing an obstacle, 

S. woodi touched the obstacle in 37% of the trials, regardless of locomotor posture. When crossing an 

obstacle, A. sexlineata touched the obstacle in 18% of the trials, regardless of locomotor posture. Overall, 

S. woodi are more likely to touch the obstacle than A. sexlineata. Differing letters indicate p-values were 

≤ 0.05 via X2 analysis. 
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CHAPTER 2 

THE MORPHOLOGICAL VARIATION OF THE SHOULDER GIRDLE IN LIZARDS WITH 

REGARDS TO HABITAT PREFRENCE 

 

ABSTRACT 

Often, a predictable relationship exists between an organism’s habitat and its locomotor 

biomechanics. Lizards primarily use vertical or horizontal habitats structures (i.e. arboreal or open 

terrestrial habitats) where selection is expected to optimize morphological and functional performance on 

their dominate substrate type. Thus, studying the functional evolution of the appendicular skeleton aids 

our understanding of the degree of coupling between phenotypic variation and various habitats or 

locomotor modes. This study quantified the variation of scapular shape across 26 species of lizard that 

vary across 4 substrate types. A lateral view of the scapula was photographed from skeletal specimens 

from various museums (AMNH, USNM, CMNH, and UTEP). Pictures were digitized and imported into 

MorphoJ along with a pruned phylogeny for analysis. Specimens were sorted along an environmental 

gradient (terrestrial, arboreal, saxicolous, or generalist). A principal component analysis and canonical 

variate analysis were performed on scapular shape.  Then, the resulting scores were mapped to the 

phylogeny. Variation in the width and height of the suprascapular junction and width of the coracoid 

explains most of the variation among scapula shape. The scapula shape of terrestrial lizards is 

significantly distinct. Arboreal and generalist lizards were more similar in scapular shape, with saxicolous 

as intermediate in the morphospace. An ancestral state reconstruction using Brownian motion suggests 

that scapula shape associated with terrestrial lizards is ancestral with the Sceloporus clade shifting 

towards more vertical habitat structures. Yet, some species within Sceloporus have diverged 

independently towards terrestrial locomotion. Thus, the appendicular skeleton is both constrained by 

phylogenetic history, yet molded by selection during lineage diversification along habitat gradients. 
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INTRODUCTION 

Selection optimizes phenotypes for performance such that a predictable relationship exists 

between an organism’s morphology and its habitat (Herrel et al, 2002). Habitat-matrix models suggest 

that habitat specialists are adapted to perform optimally within their specific habitat (Pounds, 1988). 

Changes in locomotor performance and muscular function occur across a variety of taxa which experience 

variable environmental conditions. Muscle activation, and ultimately power generation, increase when 

running on an incline (Beiwener and Gillis, 1999).  Specialized climbers such as geckoes have strong 

retractor muscles and flexion moments at the elbow that aid in movement on vertical perches (Zaaf et al, 

1999). Ducks and eels also experience shifts in muscle activation such that power generation changes 

when transitioning between land and water (Beiwener and Gillis, 1999). Animals utilizing similar habitat 

with similar locomotor styles are expected to experience morphological convergence (Losos, 1990). For 

example, convergence in axial skeletal morphology occurs in small cursorial mammals with specialized 

locomotion (Seckel and Janis, 2008). Also, several clades of lizard have variation in limb morphology and 

muscle mass distribution in relation to habitat preference (Gifford et al., 2008; Herrel et al., 2008; 

Kaliontzopoulou et al, 2010). Thus, morphological variation can significantly affect the function and 

performance of an organism within a particular habitat (Melville and Swain, 2000).  

Habitats are complex and exist along a gradient of multidimensional space (Fig 1). Depending on 

the degree of habitat specialization, unique skeletal specializations might evolve such that the body plan is 

better suited for certain habitats. For instance, unique morphological variation occurs in sticklebacks 

living in either saltmarsh or freshwater environments (Seebacher et al., 2016). Locomotion on land occurs 

along a gradient between horizontal and vertical planes. Habitat specialization along this gradient may 

lead to predictable variation in structures used for locomotion. Morphology of limb elements in 

carnivorans moving through similar habitats converge despite distant evolutionary histories (Samuels et 

al., 2012).  
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Lizards can move along horizontal or vertical planes (i.e. open terrestrial vs arboreal habitats) 

where selection is expected to optimize morphological and functional performance on the dominate 

habitat type (Anzai et al, 2014). Species which primarily move in the horizontal plane are terrestrial while 

species primarily moving in the vertical plane are arboreal (or saxicolous) (Fig 1). Species which live 

primarily on rocks and boulders (saxicolous) and generalists are considered intermediate and move to 

some degree across multiple dimensions of the habitat gradient. Some species are specialized to 

efficiently move in horizontal or vertical planes, or both. For instance, the forelimbs of terrestrial 

Sceloporus lizards are relatively shorter than the hindlimb when compared to saxicolous or arboreal 

species (Herrel, 2002). Enlarged muscle attachment sites are also expected in the scapulacoracoid as it is 

the link between the axial skeleton and the forelimbs interacting with the substrate. An expanded 

suprascapula is noted in an arboreal anole species compared to a trunk-ground species (Herrel et al., 

2008). Dorsal expansion of the suprascapula may be related to the attachment sites of the retractor 

muscles, which aid in vertical climbing (Herrel, 2008). Tree-ground anoles have longer anteroposterior 

scapula than tree-crown anoles suggesting that the longer scapula may aid in terrestrial locomotion 

(Tinius and Russell, 2014).  

The pectoral girdle, consisting of the scapula, clavicle, and connected limb elements is distinct 

and sensitive to selective pressures such as environmental constraint and locomotor convergence (Sears et 

al., 2015). Bony elements connecting the forelimbs to the axial skeleton are collectively called the 

scapulacoracoid. The scapulacoracoid can be divided into four distinct faces (suprascapula, scapula, 

coracoid, and epicoracoid) based on muscle attachment sites (Fig. 2) (Tinius and Russell, 2014). These 

four distinct faces may evolve as a whole structure, or undergo individual shape changes, and are thus 

structurally complex (Sears et al., 2015). Cursorial mammals using similar locomotor gaits share similar 

scapular anatomy primarily along the metacromion process on the scapula (Seckel and Janis, 2008). 

Likewise, the scapula of squirrels evolves as single functional units in some regards but as distinct units 

in others (Swiderski, 1993). Examining shape data for smaller sections of the pectoral girdle, such as the 
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scapulacoracoid, will aid in quantifying local and global shape changes in relation to habitat and 

phylogeny (Sears et al., 2015; Morgan, 2009). 

The scapulacoracoid has been shown to vary with habitat in many terrestrial vertebrates (Tinius 

and Russell, 2014; Herrel et al., 2008; Seckel and Janis, 2008; Swiderski, 1993). Yet, little is known 

about how the scapulacoracoid might vary for taxa in lineages evolving among sand, rock, and forested 

habitats. Phrynosomatid lizards are an excellent study system to address scapular variation as the clade 

consists of related species which are specialists among horizontal or vertical planes, or generalists 

operating across an environmental gradient. Scapulae must allow for free movement of the proximal limb 

element by forming the connection between the muscles of the humerus and the trunk (Eaton Jr., 1944). 

Running vertically on trees versus horizontally on a slippery granular medium like sand utilize muscles 

differently (Herrel et al, 2008; Tinius and Russell, 2014). For example, lizards moving on an incline 

experience greater limb flexion and greater muscle recruitment (Foster and Higham, 2012). As the 

protractors and retractors in the forelimbs originate on the scapula, evolutionary transitions in habitat use 

may lead to scapular shape variation across species. By using geometric morphometrics, small scale 

morphological changes related to muscle function can be quantified. In turn, these data can provide 

insight into how species adapt to novel habitats during lineage diversification. 

The objective of this study is to determine how scapula shape changes across 26 species of 

Phrynosomatid lizards that occupy a gradient of habitat types spanning horizontal to vertical habitats. I 

hypothesize that scapula shape varies across species in differing locomotor planes due to changes in the 

gravitational forces acting on the scapula and it associated musculature. Thus, morphological variation is 

likely an adaptive response to (e.g.) shifting from a predominantly terrestrial habit, to an increasingly 

vertical one. I predict that (i) terrestrial lizards have a narrower and shorter scapulacoracoid as the 

forelimbs produce little force during terrestrial locomotion, thus muscular function is reduced (Snyder, 

1954; Snyder 1962). Furthermore, I predict that (ii) arboreal lizards have wider attachment sites for the 

scapulodeltoideus near the junction of the suprascapula and scapula and that (iii) generalist and saxicolous 
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species using both horizontal and vertical planes have an intermediate shape between arboreal and 

terrestrial lizards. Finally, I predict that (iv) variation in the scapula are correlated with habitat preference, 

but constrained by evolutionary history as lizards invade novel habitat types. 

METHODS 

Collection from Museums 

Phrynosomatidae is an excellent study system to address the coupling of morphology and 

phylogeny as the family contains over 136 species in nine genera across a large range throughout North 

America. The genus Sceloporus alone contains over 80 species which utilize various habitats across a 

wide spatial scale (Uetz, 2009; Wiens et al., 2010). Although the geographic range of certain species can 

be large, most species have preferred habitats such as prairies, deserts, or coastal plains forests (Leaché 

and Reeder, 2002). Most members of the family can be categorized as being terrestrial, saxicolous, 

arboreal, or generalist in their habitus (Table 1.) (Herrel et al, 2002). Each of these four classifications 

include locomotion on a horizontal plane (i.e. terrestrial), vertical plane (i.e. arboreal), and the 

intermediate plane (saxicolous and generalist). 

Scapulae of 26 skeletonized lizard species were photographed from the American Museum of 

Natural History (AMNH), the National Museum of Natural History (USNM), the Carnegie Museum of 

Natural History (CM), and the University of Texas at El Paso Biodiversity Collections (UTEP) (Table 1).  

Lateral views of the scapula complex were photographed using a Microsoft 950 camera with ProShot© 

software. The camera was directly above each specimen, with the lens at a 90 degree angle to the 

specimen. Each scapula was placed on a white background with grid lines and a scale bar. Scapulae were 

placed beneath the camera such that morphological structures were in the same orientation for each 

scapula. A .TPS file was created using tpsUtil (version 1.74) and built using .JPG images. The .TPS file 

was loaded into tpsDig2 (version 2.30)(Rohlf, 2010). Thirteen landmarks were digitized on the scapula in 

consecutive order on each image (Fig 2). Skeletal elements with missing landmarks were noted in 
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software. Out-of-focus images and/or bones improperly orientated were discarded from digitization and 

analysis. 

Analysis 

Shape variation from the 13 landmarks was extracted using a Procrustes superimposition and 

were aligned by principal axes using MorphoJ (version 1.06d) (Klingenburg, 2011). Procrustes 

superimposition removes the effect of isometric size, position, and orientation (Bookstein, 1999; Dryden 

and Mardia, 1998). Shape variables were regressed along centroid size and the residuals retained for data 

analysis. Regressing shape along centroid size removes the effect of allometry as a method of size 

correction (Klingenberg, 2016; Klingenberg and Marugán-Lobón, 2013). Cumulative frequency of 

landmark data across specimens was regressed along the squared Procrustes distance and any 

extraordinary deviations in landmark data was removed from the analysis. The covariance matrix was 

calculated directly from the Procrustes coordinates.  

 Principal Component Analysis (PCA) was performed on the covariance matrix to reduce the 

number of major axes to visualize major patterns of shape variation across species. Changes associated 

with PC1 and PC2 were phylogenetically corrected and mapped onto the phylogeny in morphospace. 

Three PC axes were retained for further analysis using the scree plot method as the slope was 

significantly different than the other PC axes (Jackson 1993). PC3 was only included to avoid under 

estimating shape variance and is not included in the morphospace (Jackson, 1993). Canonical Variate 

Analysis (CVA) and Discriminant Function Analysis (DFA) were performed to examine how well species 

could be classified to their preferred habitat. Leave-one-out cross-validation was used to assess how 

reliably the test separated the groups as DFA over-estimates the classification rates with small sample 

sizes (Lachenbruch, 1967). The null hypothesis for the DFA states that groups are similar and thus not 

correctly classified. All analyses were run on phylogenetically informed data. Distinctiveness between the 

groups were visualized by plotting CV1 and CV2 scores. In cases where multiple individuals per species 

were presented, individuals were averaged within a species. Shape variables were mapped onto the 
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pruned phylogeny using squared-change parsimony via the Brownian motion model of evolution 

(Maddison 1991). The phylogeny from Pyron et al (2016) was pruned using Mesquite (ver. 3.4; Maddison 

and Maddison, 2018). Permutation tests (10000) of the independent contrasts measured the strength of the 

phylogenetic signal in the data. Four models of evolution (Brownian Motion (BM), BM with equal 

constraint, BM with diagonal constraint, and Ornstein-Uhlenbock (OU)) were simulated on 1000 trees 

using mvMorph statistical package in R (Clavel et al., 2015). Optimized parameters were simulated under 

BM and compared to BM1 with equal constraint where there is evolutionary covariance, BM2 with 

diagonal constraint where there is no evolutionary covariance, and OU where evolutionary rates are 

pulled towards some optima (Clavel et al., 2015; Revell et al., 2008; Hanson, 1997). Ancestral state 

reconstruction of species’ habitat use was performed using a Brownian Motion model with equal 

constraint, as this model best fit the optimized parameters. 

RESULTS 

Principal Components Analysis 

The first three PC axes account for 59.7% of the total variation in shape. Remaining individual 

PC axes are each less than 8% and are not discussed further. Shape variation along PC1 (28.7% of the 

total variation) reflects a dorsal shift in the suprascapular junction (Landmarks 9 and 10). Furthermore, 

landmarks outlining the scapula and anterior coracoid undergo a mediolateral shift. Principal Component 

2 (18.7% of the total variation) describes a ventral shift of the suprascapular junction (landmark 9 but not 

10), with a posterior shift in the ventral aspect of the coracoid (Landmarks 2 and 3) (Fig 3).  Principal 

component 3 (12.3% of the total variation) shows an anterior shift in the coracoid (Landmark 1) with a 

slight dorsal shift of the suprascapular junction (Landmark 10). There is minimal clustering of closely 

related species in the morphospace, as indicated by a weak phylogenetic signal (p = 0.0506, k = 0.223, λ 

= 0.00006) (Fig 3).  

Canonical Variate Analysis 
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The first two CV axes account for 87.4% of the total variation. Shape variation associated with 

CV1 (55.8% of the total variation) reflects a dorsal shift in the suprascapular junction (Landmarks 9 and 

10) as well as a narrower coracoid (Landmark 1 and 3). Shape variation in CV2 (31.6% of the total 

variation) reflects a ventral shift in the suprascapular junction (Landmarks 9 and 10) as well as a wider 

coracoid (Landmarks 1, 3, and 13). Terrestrial species are significantly different from arboreal (p = 

0.0105), generalist (p = 0.0311) and saxicolous (p = 0.0082) species (Fig 4). Saxicolous species are not 

significantly different from either arboreal (p = 0.3325) nor generalist (p = 0.9262) species. Likewise, 

generalist species are not significantly separated from the arboreal species (p = 0.7467). The canonical 

variate analysis was repeated using phylogenetically corrected data and mapped on to the phylogeny. 

Phylogenetically informed analysis reveals consistent groupings of lizard species by habitat preference, 

yet a strong phylogenetic signal is observed where trait variation occurs within clades (p = 0.0066, k = 

0.428, λ = 0.47) (Fig 4).  

Discriminant Function Analysis 

Discriminant function analysis (DFA) tested how well species were correctly classified (Table 2). 

Terrestrial lizards are correctly separated from arboreal lizards (n = 10,12; p = 0.009). Terrestrial lizards 

are correctly separated from generalist lizards (n = 6,12; p = 0.031). Terrestrial lizards are appropriately 

classified from saxicolous lizards (n = 9,12; p = 0.012). Thus, terrestrial lizards were correctly classified 

as terrestrial and well separated from other habitat groupings. Arboreal, generalist, and saxicolous are all 

misclassified among each other and were poorly separated into their appropriate habitat groupings.  

Ancestral State Reconstruction 

Four models of evolution were used to examine ancestral state reconstructions (Table 3). The best 

fit model for ancestral state reconstruction is Brownian motion model with equal constraints (AIC = -

78.3). Species which primarily move along a terrestrial or saxicolous substrate represent the ancestral 

character state (Fig 5). A shift towards the vertical plane occurs in the Sceloporus clade. Despite being 
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nested with a general and arboreal clade, Sceloporus woodi reverts to a terrestrial habitat, while the small 

clade consisting of Sceloporus poinsettii, S. mucronatus, and S. jarrovii are saxicolous and thus 

intermediate. 

DISCUSSION 

The goal of this study is to examine scapula shape in Phrynosomatid lizards with regards to their 

habitat preference. Selection often operates to couple form and function in organisms such that 

organismal traits are optimized along habitat gradients (Anzai et al, 2014; Depecker et al., 2006). Inherent 

shape variation occurs between lizard species, yet this variation is enhanced along gradients of dominant 

habitat use. Furthermore, global shape change is relatively conserved compared to local changes in the 

coracoid and suprascapular junction. Local changes in the coracoid and suprascapular junction separate 

the horizontal and vertical planes of locomotion. This study shows that morphological variation in scapula 

shape is related to both habitat preference and phylogeny and is driven by localized morphological 

changes. Thus, locomotor function in a particular habitat type plays a role in the morphological evolution 

of the appendicular skeleton (Arnold 1983; Herrel et al., 2002). 

Muscular function associated with scapular variation 

 Morphological variation is expected to occur in species moving over horizontal or vertical planes 

as differing inclines can affect muscular function (Herrel et al., 2008; Losos, 1990; Collar et al., 2011). 

Most of the variation in scapula shape is explained by CV1 and CV2. The dorsal shift of the scapula 

indicated by CV1 is prevalent in terrestrial species (Fig. 4). Lizard scapular shape undergoes a dorsal and 

lateral expansion along the junction of the scapula and suprascapula and a narrowing of the coracoid. 

Changes occurring in the scapula are primarily localized. The M. scapulodeltoideus anterior and M. 

scapulodeltoideus posterior originate on the suprascapula and are responsible for humeral abduction 

(Herrel et al., 2008). Abduction of the forelimbs lead to a sprawling gait which is characteristic of 

terrestrial species when sprinting. The M. corocahumeralis posterior and anterior originate along the 

ventral surface of the coracoid and aid in humeral adduction and protraction, respectively (Herrel et al., 
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2008). Adduction and protraction primarily aid in vertical locomotion. As such, narrowing of the coracoid 

occurs in the specialized scapulae of terrestrial species where pulling movements aren’t as crucial to 

locomotion. 

Recruitment of muscle fibers in arboreal lizards differs from that of more terrestrial lizards 

(Herrel et al., 2008). Increased muscular strain during vertical locomotion potentially changes the 

morphology of the skeleton (Daley and Biewener, 2003; Herrel et al., 2008). The M. coracohumeralis 

posterior and the M. suprocoracoideus are associated with the coracoid. These two muscles aid in humeral 

adduction and shoulder stabilization respectively (Herrel et al., 2008). The scapulacoracoid undergoes an 

anterior shift in the scapula with both and anterior and dorsal shifts in the position of the coracoid (Fig. 4). 

Enlarged attachment sites associated with the supracoracoideus confers a strong mechanical advantage in 

the adduction and retraction of limbs during climbing (Depecker et al., 2006). Thus, muscular functions 

associated with the coracoid suggest a shape optimized for traversing vertical surfaces, as expected of 

arboreal species.  

Phylogeny versus habitat 

Phylogenetic signal of shape data estimates how closely related species resemble each other 

(Bloomberg and Garland, 2002). Furthermore, phylogeny and ecomorphology are not independent from 

one another (Stayton, 2005; Blomberg et al., 2003). A weak phylogenetic signal in the PCA and strong 

phylogenetic signal in the CVA suggest shape variation is correlated with evolutionary relatedness while 

the degree of separation in terrestrial lizards suggests shape variation is correlated with habitat. Given that 

it is a large and complex structure, the scapula is evolutionarily conserved, yet also experiences subtle, 

localized shape changes in particular regions when species invade novel habitat structures. 

The ancestral state for the species studied was terrestrial, with saxicolous, arboreal, and generalist 

being derived conditions among the Sceloporus species. With the genus Sceloporus, the ancestral state 

was estimated to be arboreal. Clearly, arboreal lizards experience different skeletal stress from 
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gravitational forces which may alter their morphology (Herrel et al., 2002). Thus, the scapula of arboreal 

lizards is derived such that locomotion is efficient in the vertical plane. Despite the shift towards vertical 

habitat structures (i.e. arboreal and generalist) in Sceloporus lizards, S. woodi, S. poinsettii, and S. 

mucronatus diverge independently toward terrestrial habitats (Fig 5). Selective pressures may occur along 

the phylogeny such that evolutionarily conserved skeletal elements undergo morphological changes 

(Openshaw and Keogh, 2014). The invasion of terrestrial habitats within Sceloporus species imposes 

novel selective pressures which lead to novel changes in scapular shape among these closely related 

species (Melville et al., 2006). 

Conclusion 

Both habitat and phylogeny play a role in understanding how phenotypic variation occurs across 

species. Lizards which traverse three dimensional habitats undergo specialized muscular recruitment to 

efficiently move along an environmental gradient (Herrel et al., 2002). Shape changes in the scapula 

should occur such that specialized muscular functions are optimized for an organism’s dominant habitat 

and/or substrate type. In Sceloporus species, these shape changes occur locally at the suprascapular 

junction and the coracoid. However, global scapular shape is phylogenetically conserved. Thus, the 

appendicular skeletal is both constrained by phylogenetic history yet molded by selection during lineage 

diversification along an environmental gradient. Future work should perform in vivo studies in lizards 

across the habitat gradient to compare morphological changes with locomotor performance.  
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Table 2.1. Species included in this study, as well as catalog number, preferred habitat, and the citation 

used to classify dominant habitat type. Thirteen genera are included (Cophosaurus, Gambelia, 

Dipsosaurus, Sauromalus, Callisaurus, Crotaphytus, Holbrookia, Petrosaurus, Phrynosoma, Sceloporus, 

Urosaurus, Aspidoscelis, Tropidurus), as well as seven outgroup taxa (denoted by the (*) asterisks). 

Family Specimen Catalog ID Habitat References 

Crotaphytidae C.  texanus* UTEP290 Saxicoly Degenhardt et al. 1996 

Crotaphytidae G. wislizenii* NMNH220226 Terrestrial Nussbaum et al. 1983 

Iguanidae D. dorsalis* NMNH12266 Terrestrial Grismer 2002; Stebbins 2003 

Iguanidae S. ater* CM53850 Saxicoly Stebbins 2003; Grismer 2002 

Phrynosomatidae C.  draconoides CM37482 Terrestrial Grismer 2002; Stebbins 2003 

Phrynosomatidae C. collaris NMNH217271 Saxicoly Degenhardt et al. 1996; 

McGuire 1996 

Phrynosomatidae H. maculata CM313427 Terrestrial Collins 1993; Hammerson 

1999; Stebbins 2003 

Phrynosomatidae P. mearnsi AMNH154854 Saxicoly Grismer 2002; Stebbins 2003 

Phrynosomatidae P. cornutum UTEP45 

UTEP385 

Terrestrial Degenhardt et al. 1996; 

Bartlett and Bartlett 1999 

Phrynosomatidae S. angustus AMNH154821 Terrestrial Frost 2007 

Phrynosomatidae S. clarkii NMNH525725 Arboreal Degenhardt et al. 1996; 

Stebbins 2003 

Phrynosomatidae S. grammicus AMNH96245 Arboreal Bartlett and Bartlett 1999 

Phrynosomatidae S. jarrovii CM49006 Saxicoly Mendoza-Quijano, 2007 

Phrynosomatidae S. magister CM43007 Arboreal Degenhardt et al. 1996; 

Hammerson 1999; Stebbins 

2003 

Phrynosomatidae S. mucronatus AMNH92271 Saxicoly Canseco-Márquez et al. 2007 

Phrynosomatidae S. olivaceus NMNH220251 

NMNH220252 

NMNH313439 

AMNH92885 

AMNH155061 

AMNH92887 

Arboreal Smith 1946; Kennedy 1973; 

Bartlett and Bartlett 1999 

Phrynosomatidae S. poinsetti CM38707 Saxicoly Degenhardt et al. 1996, 

Stebbins 2003 

Phrynosomatidae S. spinosus NMNH47035 

NMNH220254 

Generalist Hernández-Ibarra et al. 2001; 

Vazquez and Quintero 2007 

Phrynosomatidae S. undulatus NMNH313443 

NMNH220257 

Generalist Hammerson et al. 2007 

Phrynosomatidae S. vandenbugianus AMNH155013 Generalist Hollingsworth et al. 2007 

Phrynosomatidae S. woodi NMNH541640 Terrestrial De Marco 1992 

Phrynosomatidae U. graciosus CM145046 Terrestrial Grismer 2002; Stebbins 2003 

Phrynosomatidae U. ornatus CM53756 Generalist Hammerson 1999 

Teiidae A. tigris* UTEP479 

UTEP604 

Terrestrial Hammerson et al., 2007 

Teiidae A. sexlineata* CM70569 Terrestrial Degenhardt et al. 1996 

Tropiduridae T. itambere* NMNH148772 Saxicoly Frost et al., 2001 
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Table 2.2. The classification matrix returned from the discriminant function analysis, and the number of 

specimens allocated to each cell (numerator) out of the total (demoninator). P-values less than 0.05 state 

the habitat type was correctly classified and well seperated from other habitat types. Terrestrial lizards 

were appropriately classified and well seperated from other habitat types. 

Type Species Classification   

 P-value Arboreal Generalist Saxicolous Terrestrial 

Arboreal--Generalist 0.739     

Arboreal  7/10 3/10 -- -- 

Generalist  3/6 3/6 -- -- 

Arboreal–Saxicolous 0.347     

Arboreal  6/10 -- 4/10 -- 

Saxicolous  6/9 -- 3/9 -- 

Arboreal–Terrestrial 0.009     

Arboreal  6/10 -- -- 4/10 

Terrestrial  4/12 -- -- 8/12 

Generalist–Saxicolous 0.934     

Generalist  -- 1/6 5/6 -- 

Saxicolous  -- 6/9 3/9 -- 

Generalist–Terrestrial 0.031     

Generalist  -- 6/6 0/6 -- 

Terrestrial  -- 6/12 6/12 -- 

Saxicolous–Terrestrial 0.012     

Saxicolous  -- -- 5/9 4/9 

Terrestrial  -- -- 6/12 6/12 
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Table 2.3. Four models of evolution were compared during ancestral state reconstruction on scapula 

shape. Brownian Motion 1 (BM1) represents a simulated Brownian motion model with optimized rates of 

evolution. The model most closely matching BM1 is Brownian Motion 2 (BM2) with equal constraint. 

Thus, BM2 is chosen for the ancestral reconstruction of habitat preference on the phylogeny. Brownian 

Motion 3 (BM3) with diagonal constraint and the Ornstein-Uhlenbeck (OU1) model were significantly 

different from the simulation. 

 BM1 

(Simulation) 

BM2 (Equal 

Constraint) 

BM3 (Diagonal 

Constraint) 

OU1 

Log Likelihood 43.6101 43.1555 34.0353 42.8751 

AIC -77.2203 -78.31104 -60.07063 -65.75033 

Rank 2 1 4 3 
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Figure 2.1 Habitats exists as gradients that span multiple dimensions. Locomotion is generally two 

dimensional yet may occur in multiple planes (i.e. the angle of locomotion may occur in more than one 

plane with respect to gravitational forces). Some species have specialized morphology for efficient 

locomotion in a particular plane (e.g. horizontal), while others may be adept in traversing many planes 

(e.g. saxicolous or generalist species). Such species may spend equal proportions of time traversing all 

planes (e.g. an intermediate species using boulders). While the potential angles of all habitat structures 

associated with locomotion is infinite, yet discrete classifications can be assigned based on the literature 

(terrestrial, saxicolous, arboreal, and generalist) and knowledge of species. 
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Figure 2.2. The outline of the left scapula with 13 landmarks. Each landmark was chosen based on 

homologous features and classified as either type I, type II, or type III. Landmarks 9 and 10 outline the 

suprascapular junction. The ventral aspect of the coracoid is outlined by landmarks one, two, three, and 

13. Landmarks four through eight outline the fenestrae. Landmarks 11 through 13 outline the glenoid 

fossa. Dashed boxes represent the action produced by muscles attached to that area of the scapula. 

  

# Type Description 

1 II Posterior-most extremity of the epicoracoid* 

2 II Medial extremity of the epicoracoid at medial contact with coracosternal groove* 

3 II Anterodorsal extremity of the epicoracoid 

4 III Posterior extremity of the primary coracoid fenestra* 

5 II Anteromedial extremity of the epicoracoid* 

6 I Dorsal anterior extremity of the first coracoid ray at contact with epicoracoid* 

7 II Posterior extremity of the scapulocoracoid fenestra* 

8 II Ventroanterior extremity of the scapular ray at contact with epicoracoid* 

9 II Anterior most extremity of the suprascapula*  

10 II Most posterior extremity of the suprascapula* 

11 II Dorsal extremity of the superior glenoid buttress*  

12 II Anterior extremity of the glenoid fossa at contact between scapula and coracoid* 

13 II Posterior extremity of the coracoid at point of contact with epicoracoid* 

Suprascapular 

junction 

Glenoid 

fossa 

Coracoid 

Fenestra 

Abduction 

Retraction 

Protraction 

Adduction 
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Figure 2.3. Plot of principal component one (PC1) and two (PC2) scores mapped on the phylogeny. Data 

points are color coded by family, with the exception of the genus Sceloporus. There is little separation 

among families as shown by multiple crossing branches in the morphospace.  SSJ = suprascapular 

junction. 
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Figure 2.4. Scatterplot of canonical variate scores among terrestrial, arboreal, generalist, and saxicolous 

lizard species. Canonical variate one (CV1) indicates a dorsal shift in the suprascapular junction (SSJ), 

and narrowed coracoid width. CV2 indicates a ventral shift in the SSJ with a wider coracoid. A) A high 

degree of separation occurs in terrestrial lizards despite the number of crossing branches. Generalists and 

arboreal lizards are clumped. Saxicolous lizards show variation mostly along CV2. B) The terrestrial 

ellipse (C.I. = 95%) is significantly different from the others. Other ellipses are not different from one 

another. Ellipses centroids are marked by a red “X”. 
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Figure 2.5. Character states mapped to the phylogeny of 26 species of Phrynosomatid lizard. The 

Sceloporus clade primarily uses vertical habitats yet shows numerous evolutionary shifts. Colored pie 

charts indicate the likelihood of each habitat type present at that node.
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APPENDICES 

Appendix A: 

Kinematic landmarks placed on lizard. Purple: head landmark on scale posterior to the pineal eye; Black 

and Red: Joint landmarks on forelimb; Green and Blue: joint landmarks on hind limb; Orange: landmark 

at base of the tail.  

 

 

 

 

 

  



52 
 

 

Appendix B: 

Cross section of racetrack setup. Two high speed cameras were set in parallel vertically above the 

racetrack on tripods.  A mirror as set at the most interior wall at 45 degree angle. The base of made of 

cork material to allow an easier grip.  
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