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(\ Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 

~ March 11-15, 1991, St. Louis, Missouri, Paper No. 1.33 

lnsitu Measurement of Damping of Soils 
W.P. Stewart and R.G. Campanella 
Graduate Student and Professor, Department of Civil 
Engineering, University of British Columbia, Vancouver, B.C., 
Canada 

SYNOPSIS: The Seismic Cone Penetration Test (SCPT) has been shown to give reasonable results for 
insitu measurements of shear wave velocity, and this paper extends this work to include 
measurements of damping. The relevant equations of motion are described, factors affecting 
amplitude decay are discussed, and the nature of damping is summarized. Consideration is given to 
some of the practical aspects of pre-processing of signals. Three methods of damping calculation 
are presented. The first two, attenuation coefficient and modified SHAKE methods, require the 
application of amplitude corrections, which is not straight-forward, give variable results, and 
indicate negative damping in a clayey silt layer. The third, the spectral slope method eliminates 
the need for amplitude corrections and gives less variable and more acceptable results. The 
spectral slope method gave dampin2 measur~ments of about 2% to 3% for sand and 0.3% to 0.5% for 
silt, at low strain levels of 10- to 10- %. 

INTRODUCTION 

Ground response analysis requires a mathematical 
model of sub-surface soils at a site. Numerous 
models have been developed but all basically 
require some variation of the values of the 
shear modulus and damping (attenuation) of the 
soil. Traditionally damping has been measured in 
the laboratory. However it is difficult to 
ensure that the tests are representative of 
field conditions. As Mok et al. (1988) stated: 
"These can be highly questionable assumptions." 
Therefore it is desirable to develop insitu 
methods that can provide more direct 
measurements of damping to complement the 
results of laboratory tests. 

seismic cone penetration testing (SCPT) 
techniques have been under development at UBC 
since 1980 (Campanella and Robertson, 1984). 
Typically shear waves are generated by striking 
a weighted beam horizontally, and recording the 
resultant signals at depth increments of 1m. 
The initial emphasis was on low-strain shear 
wave velocity measurements, which allow the 
calculation of the maximum shear modulus based 
on elastic wave theory. This paper extends the 
technique to damping measurements. A number of 
authors have presented papers on insitu damping 
measurements including: Woods(1978), Shannon and 
Wilson(1980), Tonouchi et al. (1983), Hoar and 
Stokoe (1984), Redpath and Lee(1986), and Mok et 
al.(1988). These tests took place in pre­
bored,lined holes using crosshole or downhole 
methods. 

A brief review of body waves is first presented 
here, followed by a discussion of damping. 
Three methods of damping calculation are then 
presented. Downhole seismic cone test results 
and analyses are presented and compared. 
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DOWNHOLE SHEAR TESTS 

A portion of a typical suite of processed 
records is shown in Fig.1. A repeatable shear 
beam source was used to generate signals, which 
were recorded on a moveable accelerometer 
mounted in a cone. Fig.1 shows the first cycle 
of the shear wave recorded at seven different 
depths. At this site the upper portion (to 
about 15m depth) is primarily sand, and the 
lower portion (below about 17m) is primarily 
clayey silt. The signal peaks show a rapid 
attenuation in the shallow sands, and less rapid 
attenuation in the deeper silts. 
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Fig.1. Portion (7 depths) of suite of 
processed accelerometer records. 



The peak strain levels, sp, caused by the shear 
waves can be calculated from the peak particle 
velocity, Vm, (calculated by integrating the 
accelerometer record) and the measured shear 
wave velocities, Vs, using the equation given by 
White(l965): 

(1) 

The relatively low strain levels decrease wiih 
depth, from about 1.4xl0-3% at Sm to l.OxlO- % 
at 25m. 

BODY WAVES 

This section will introduce the equations 
describing body waves and discuss factors 
affecting the amplitudes of such waves. First 
consider a simple sine wave with no damping 
travelling along a string with wavelength L and 
velocity v, then: 

A = A0 sin (x-vt) ; Pi=3.14159 •.• 
L 

It is convenient to introduce the following 
terms: 

wave number,k and angular frequency, 
L 

w 
T 

(2) 

where T is the period; and, to allow for phase 
shifts: 

phase, e = initial value of phase angle. 

Then the above equation becomes: 

A = A0 sin(kx-wt-e) 

or, in terms of the complex exponential: 

A= A0 exp[i(kx-wt)] 

TRANSMISSION 

DIVERGENCE 

(REFLECTION) 

v 
\ -.: 

p,V, 

v, ,-------v; 

~ig.2. Causes of amplitude changes at 
1nterfaces between soil layers. 

(3) 

(4) 
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This equation is for one-dimensional motion, in 
direction x only, such as along a string. Waves 
in soil can be plane waves, for example 
generated by an earthquake movement of flat­
lying bedrock, or spherical waves, for example 
generated by a point source explosive device, or 
in general, a mix of these two wave types. For 
spherical waves in a homogeneous medium, 
neglecting near-field terms, White(l965) showed 
that the amplitude decayed inversely with 
distance,R i.e. 

A= A0 1/R exp[i(kx-wt)] (5) 

However, soil is rarely homogeneous and commonly 
layered. At the interface between two layers, 
the amplitude of spherical body waves can be 
affected in at least two ways: transmission/ 
reflection and divergence. As shown in Fig.2 
the amplitude of the transmitted wave is reduced 
because (1) part of the wave energy is reflected 
(for both plane and spherical waves), and (2) 
the wave front of spherical waves is refracted, 
decreasing the amplitude for increasing 
velocities. 

The attenuation correction for transmission is a 
function of the change in acoustical impedance 
across an interface. The acoustical impedance 
of a layer is the product of the density,p and 
velocity,V. The reflection coefficient, r, of 
the boundary between layers 1 and 2, is given 
by: 

rl2 = (p2V2-p1Vl) /(p2V2+p1Vl) (6) 

and since the variation in density is often 
smaller than the variation in velocity, the 
reflection coefficient is often given as 
approximately (V2-Vl)/(V2+Vl). The transmission 
coefficient, t, is given by t12 = 1- Abs(r12), 
and t12 is the attenuation correction. 

The attenuation correction for divergence is 
somewhat more complex, and has been discussed by 
Mack(l966). Although it is not stated, the 
development is based on the principle of 
refraction as given by Snell's Law; 

sin(al) Vl 

sin(a2) V2 
where a = angle of 

incidence ( 7) 

The energy density ratio,e, will be given by the 
ratio of the areas with and without refraction. 
Since the energy is proportional to the square 
of the wave amplitude, the amplitude correction 
will be equal to the square root of e. If the 
region of interest consists of N horizontal 
layers of constant velocity Vn, over the depth 
from Zl to Z2, then the attenuation correction 
at a depth of Z2 is given by the reciprocal of: 

1 

(Z2-Zl)Vl 

N 
Sum (VnZn) 
n=l 

For his problem, Mack found the divergence 
factor to be 1/1.15, compared with 1/1.21 for 
the effects of reflection. 

Although the SCPT provides a detailed soil 
profile (Robertson et al., 1986), it is not 
practical to assign numerical values of both 
density and shear wave velocity to the numerous 
thin layers outlined in a typical profile. For 



purposes of the calculations outlined below, it 
was decided to assume that the soil density 
could be considered constant, and that the 
effective soil layering could be based on the 
velocities measured at each metre of depth. On 
this basis it is straight forward to calculate 
the reflection, divergence, and spherical 
spreading corrections with depth. A typical 
example of a velocity profile (at the site of 
the records given in Fig.l) is shown on Fig.3. 
The corresponding amplitude reduction factors 
due to transmission, divergence and the combined 
effects are shown in Fig.4. The combined effect 
is used for further calculations. This approach 
assumes spherical wave-fronts. Although this is 
not strictly true, especially near the surface, 
the approximation becomes better with depth. It 
should be noted that the points for the combined 
effect, in the upper portion, can be 
approximated by a power law varying with depth 
as Rl.65. 

NATURE OF DAMPING 

Material damping refers to the energy 
dissipation within a soil mass during dynamic 
(cyclic) loading. Whitman (1970) provided one 
of the earlier summaries of material damping of 
soils (internal damping, intrinsic damping, or 
simply damping). The stress-strain curve during 
unloading is not the same as that during 

loading, giving rise to a closed hysteresis 
loop. The area of the loop is a measure of the 
energy lost during a cycle of unloading/ 
reloading. Whitman expresses the damping 
capacity, dcap as: 

dcap = ratio of energy lost in cycle to 
maximum strain energy introduced in 
cycle 
Aloop/Atri (8) 

where: Aloop = Area of loop of stress-strain 
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Fig.3. Shear wave velocity profile. 
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For purposes of analysis, he related dcap to 
viscous damping parameters (for small damping 
levels): 

logarithmic decrement, dlog - dcap/2 (9) 

loss coefficient (phase lag between force 
and displacement), 

dloss- dcap/(2Pi) (10) 

(in general dcap = 2Pi tan(dlossl 

damping ratio (ratio of actual viscous 
coefficient to critical value), 

D = dcap/(4Pi). (11) 

This last definition is commonly used in 
geotechnical engineering models and is often 
referred to as the percentage of critical 
damping. This definition will be used in this 
paper. 

In the geophysical literature, damping is often 
referred to as the quality factor, Q or as the 
dissipation factor, 1/Q, and Q is defined as the 
ratio of stored energy to dissipated energy. It 
can be shown that critical damping is related to 
Q by: 

D = (1 + (2Q)2]-l/2 I 

or approximately D = l/2Q (12) 

Whitman noted that the most important factors 
affecting damping, at least in sands, are shear 
strain and confining pressure. There was a 
slight increase in damping when water was 
introduced to dry sand, and damping in clay 
appeared to be less than in sand. Typical 
laboratory values of damping at small strains 
are given in Table I. 

Div /Trans/Comb 
20 40 

............... Divergence 

............. Transmissivity 
~ Combined Effect 

Factors(m) 
60 80 

MF90SC5 

Fig.4. Amplitude correction factors based on 
velocity profile. 



TABLE I. Laboratory Measurements of Damping 

Soil Type Strain,% Damping,% Source 

Cohesionless lo-4-lo-3 
Cohesive 10-3 
Sand 10-3 

0.5-2 
3 (1-5) 

1 

Seed et al.,l986 
sun et al.,l988 
Saxena and 

Sand 
Clay 
Sand 

10-3 

10-3 

10-3 

1.5 
1. 5-2 
0.5-1 

Reddy,l989 
Ishihara,l982 
Zavoral,l990 
Zavoral,l990 

In order to do calculations using field 
measurements, it is necessary to consider the 
equation of motion. Johnston and Toksoz(l981) 
show that damping can be introduced into 
equation (1) by making w or k complex, i.e. 

k = kr + i@, where @ = attenuation 
coefficient. (13) 

Then the expression for the real component of 
amplitude becomes: 

A= A0 1/R exp(-@ R) • (14) 

M6k et al.(l988) used this expression, 
considering two signals of amplitude A1,A2 at 
distances of R1,R2 from the source, to yield: 

@ 

D 

ln(A1R1/A2R2)/(R2-R1) or 

ln(A1R1/A2R2 )/(2Pitif) 

where: ti = interval travel time 
f = frequency of wave. 

(15) 

(16) 

Tonuchi et al. (1983) used a downhole method with 
a shallow fixed receiver and moving deeper 
receiver, and computed the attenuation 
coefficient from: 

@ (17) 

FFTs of shallow signals for 
hits 1&2 
FFTs of deeper signals 
Fast Fourier Transform of 
signal 

A similar type of equation is used in the 
computer program SHAKE (Schnabel et al., 1972): 

u = E exp[i(kx + wt)] + F exp[-i(kx- wt)]. 
(18) 

The amplitude coefficients (E,F) are calculated 
u~ing the soil density and complex shear modulus 
G given by: 

G* G(l + 2iD) (original version) (19) 

G* G(l- 2D2 +2iD[l- D2 ] 1/ 2 ) (20) 
(revised version -Udaka and Lysmer, 1973) 

Redpath and his colleagues (1982,1986) used a 
similar approach except that they define the 
attenuation coefficient @ as zf or z = @/f. 
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Therefore equation (14) becomes: 

A = A0 1/R exp(-zfR) ( 21) 

If we consider signals measured at two distances 
from the source, R1 and R2 where R2 is greater 
than R1, then the ratio is: 

Taking natural logarithms of this equation 
gives: 

ln 

(22) 

( 2 3) 

Differentiating these terms with respect to f 
gives: 

(24) 

It ca~ be note~ tha~ ~he term given as 1/R in 
equat1on (21) 1s el1m1nated by differentiating. 
Any geometric term affecting the amplitude that 
do7s.not depen~ on.fre9Uency will be similarly 
el1m1nated. Th1s W111 1nclude the transmission 
and reflection corrections described above if 
the velocities are independent of frequency 
which is the case if the frequency range fo~ the 
analysis is properly selected. If R1 is held 
constant and R2 (or simply R) is varied we can 
differentiate with respect to R, giving; 

d 2 [ln (A2/A1 )] 
-z (25) 

df dR 

Some reported field measurements of damping are 
given in Table II. 

TABLE II. Field Measurements of Damping 

Soil Type 

Sand 
Silt 
Alluvium 

Damping,% Source 

6 Kudo and Shima,l981 
2.5 " 

12(<25m) Redpath et al.,l982 
(Sand & 

Sandy 
Clayey 
Fine sand 
Sandy silt 
Sand 

Clay) 3.5(deeper) (lab.l.5-3.5%) 
5 Tonouchi et al.,l983 

1.7 " 1.7 " 2.5 " 4 Meissner and 
Theilen,l986 

4 Redpath and Lee, 1986 Bay mud 
(lab. 2.5%) 

4-7 Mok et al.,l988 
2-3 " (lab. o. 7%) 

Clay 
Sand (P-wave) 

SIGNAL PROCESSING CONSIDERATIONS 

~ef~re describing the calculation methods used, 
1t 1s necessary to give some consideration to 
ge~eral procedures in handling the data. A 
fa1rly typical signal is shown in Fig.5a. It 
can be seen that, in addition to the main pulse 
there is noise before and after, and that there' 
are additional smaller pulses after the main 
pulse. The nature of the smaller pulses is a 
matter of present research, however it is 
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0.40 

0.40 

apparent that they affect the spectrum (see 
Fig.6) and consideration must be given to these 
effects, by pre-processing of the signals. 

The concept of windowing is of great importance 
in the spectral analysis of signals (Bath, 1974~ 
Oppenheim et al., 1983}. A window signal is 
formed along the same time scale as the original 
signal and a scale factor ranging from 0 to 1 is 
assigned at each time step. Windowing is simply 
the operation of multiplying the original signal 
by the window signal. The simplest window is 
the Uniform window, which has the value 1 at all 
time steps, and has no effect on the signal. A 
wide variety of window types~ Bartlett, Hanning, 
Hamming, Flattop, Exponential, etc. have been 
developed for periodic signals. However these 
window types will distort transient signals, 
such as those measured for this work, and must 
not be applied. It is simply desired to remove 
those parts of the signal that are extraneous to 
the measurement. 

The next simplest window is a step function 
which has a value of 1 up to the end of the main 
pulse and o for the balance of the time period. 
Multiplying the original signal by this step 
window gives the chopped signal in Fig.5b. A 
rectangular window (see Fig.5d) has a value of 1 
for the duration of the main pulse only and o 
before and after. Applying the rectangular 
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window gives the windowed signal in Fig.5c. The 
FFT of a rectangular window contains ripples 
(Gibb's phenomenon}, so tnat a taperea w~naow 
(see Fig.5d} is sometimes used. Mok et 
al.(1988) used an "extended cosine-bell" 
(tapered} window for their geophone records. 
However if the ends of a rectangular window are 
applied at the zero-crossings at each end of the 
main pulse, the ripple effects are essentially 
multiplied by zero, and the effect is 
negligible. For our accelerometer records, a 
simple rectangular window with the ends at the 
zero crossings seemed to provide satisfactory 
results. The frequency domain results (FFTs} of 
such processing are shown in Fig.6. The full 
signal is quite irregular in the range of 
interest (about 40 to 100Hz), whereas the 
chopped and windowed signals are smoother and 
quite close to one another. 

It is also necessary to determine the bandwidth 
in the frequency domain to be used for further 
calculations. One method of determining a 
suitable band width is to use the coherence 
function. Use of this method requires repeated 
hits at the same depth. Typically four hits at 
each depth have been used.'The coherence 
function is defined as: 

Coh 
* Gyx Gyx 

Gxx Gyy 
( 26) 



where: Gyx ~ Average of Cross-Correlation 
Spectra 

Gyx* = Complex Conjugate of Gyx 
Gxx Average of Autocorrelat1ons of 

Upper Signal 
Gyy Average of Autocorrelations of 

Lower Signal 

Using the averages of several signals, it can be 
shown (Hewlett Packard, 1985) that the coherence 
can be expressed as: 

Coh (27) 
IHI2 Gxx + sn2 

where: IHI = Magnitude of transfer function 
Sn = Average of noise spectra 

Thus the coherence will be high at those 
frequencies where the effect of noise is minor, 
and it will be low where the noise dominates the 
signals. 

Typical plots of the coherence function are 
shown in Fig.7. For the signals at shallow depth 
(5 to 6m), the coherence is very high 
(essentially 1.0) from about 30Hz to 150 Hz. 
For the signals at greatest depth, the coherence 
is reasonably high (0.98 or greater) from about 
40Hz to 105Hz. To allow a consistent approach 
throughout the depth of the profile, a band 
width of 40 to 100 Hz was used for all 
calculations. The choice of an acceptable 
coherence level will depend on the quality of 
the signals recorded. Generally a value of 0.95 
or greater has been achieved over a reasonably 
wide bandwidth. 

DAMPING CALCULATIONS 

Three separate methods of damping calculation 
are presented based on the above concepts. The 
first is the attenuation coefficient method, a 
variation of the approach given by Mok et al. 
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(1988), the second is based on a modified 
version of the SHAKE program, and the third is 
the spectral slope method as used by Redpath and 
colleagues(1982,1986) and others (Kudo and 
Shima,1981, Meissner and Theilen, 1986). 

Attenuation Coefficient Method 

This method makes use of equation (16) which 
Mok et al. (1988) used directly. However, they 
were using a crosshole technique and the 
generated waves were unlikely to encounter 
interfaces between layers of soil (although the 
method would be affected by nearby layers of 
high velocity). In the downhole technique, the 
generated waves can be expected to pass through 
soil layers and the transmission and divergence 
effects described above must be considered. 
However, in order to use all of the available 
data, it is necessary to calculate the damping 
on a metre by metre basis, and the corrections 
can only be calculated on the same basis. It 
will be assumed that only one interface 
(amplitude change) occurs within each interval, 
for one set of calculations, and that no 
interfaces occur (no correction) for a second 
set of calculations. The results of one 
calculation are shown in Fig.8, and show a 
slight decline in damping with frequency (about 
0.01%/Hz) over the selected frequency range of 
40 to 100Hz and a value of 3.4% at the middle of 
this range. Calculations at other depths showed 
that the damping variation with frequency could 
be positive or negative. Results for a series 
of depths are shown in Fig.9, and indicate a 
large scatter (-7.6% to 7.0%), with a mean of 
3.3% in the upper sands and -1.1% in the lower 
silts. The results also suggest a fairly 
constant average value with depth in the upper 
portion and an increase with depth in the lower 
portion. Also shown in Fig.9 is the effect of 
ignoring the transmission/divergence corrections 
which increases the damping by 0.4% to 8.0%, 
averaging about 2.9% in the upper portion and 
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0.8\ in the lower portion. It would appear 
that, to obtain somewhat reasonable results, it 
is necessary to include the transmission; 
divergence corrections in the upper sand, but to 
neglect the corrections in the lower silts. 

The difficulty of applying the interface 
corrections and the wide scatter in the results 
including negative values, makes the ' 
attenuation coefficient method difficult to use. 
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Fig.9. Damping by attenuation coefficient 
method over seismic cone profile. 
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Modified SHAKE Method 

This second method is based on a modified 
version of the SHAKE program. The original 
program was designed primarily to model 
earthquake motions moving upward from bedrock 
(Schnabel et al., 1972). The program does allow 
input of motions at an intermediate level in the 
soil, but the wave then spreads both up and 
down. In order to model the downhole tests, it 
is necessary to force the wave to spread only 
downwards. This can be done by setting the 
coefficient E in equation 4 equal to zero. In 
order to model the spherical wave in a layered 
soil, it is also necessary to make the 
transmission and divergence corrections as in 
the first method. The value of damping is first 
estimated, and the acceleration response from 
the program is compared to the observed 
acceleration record at the greater depth. The 
damping is then adjusted to give a "best-fit" 
between the calculated and observed records. 

Fig.lO shows the result of a calculation between 
depths of 10 and 11 metres. For this depth a 
damping of 5.5\ was required to match the 
calculated peak to the measured peak. The 
results of a series of calculations for one 
seismic cone profile is shown in Fig.ll. There 
is again a wide scatter in the results 
averaging 4.1% in the upper sands, and

1

-2.8\ in 
the lower silts. The results suggest an 
increase in damping with depth in both the sands 
and silts. Calculations were also made for this 
method ignoring the transmission; divergence 
correcti~ns and these gave changes very similar 
to the f~rst method. Also shown on Fig.ll are 
the results from a series of calculations with 
essentially no filtering of the signal (1000 Hz 
low pass filter). The trend of the results is 
very similar, but the oscillations are reduced. 

This method was found to be very time-consuming, 
compared to the other two methods. The signals 
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Fig.lO. Damping by modified SHAKE method for 
10-llm depth interval. 
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first had to be converted to the format required 
for the SHAKE program, then iteration of the 
damping values was performed. The other two 
methods were written into "macros" with the 
program VU-POINT which can read the signals 
directly as collected. 

As for the first method, the difficulty of 
applying the interface corrections and the wide 
scatter in the results, including negative 
values, makes the modified SHAKE method 
difficult to use. 

Dampin~ (% of Critic a I) 
10 
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20 
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Fig.ll. Damping by modified SHAKE method over 
seismic cone profile. 

Spectral Slope Method 

The third method used was the spectral slope 
method, based on equation (25). The coefficient 
z can be determined by first finding the FFT of 
one signal at a reference depth, then for each 
deeper signal compute the FFT, the ratio of the 
FFTs, and the negative of the natural logarithm 
(ln) of the ratio. After finding the slope of 
ln(ratio) versus frequency plot at each depth 
(see Fig.12), these slopes are plotted versus 
depth (see Fig.13). An indication of the 
variability in application of the method can be 
obtained from the standard deviation of the fit 
to the slopes of the curves. For the -ln(ratio) 
versus frequency plots, the standard deviation 
was typically 4% to 5% of the slope value. For 
the upper sands, the fit of the slope of the 
depth plot had a standard deviation of 7.7%, 
whereas for the lower clayey silts the standard 
deviation was about 35%. Except for this last 
value, the standard deviations are a small 
fraction of the computed values. The large last 
value is likely caused by the small damping in 
the clayey silt. 
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The slope(s) of the depth plots give the 
coefficient z for each layer. The fraction of 
critical damping can be computed as: 

zv 
D (28) 

As shown in Fig.13, the method gives a damping 
value of 2.2% for the upper sands, and 0.5% for 
the lower silts. Another SCP Test in the 
general area gave 3.3% damping for the sands and 
0.3% damping for the silts. 
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The spectral slope method avoids the need for 
interface corrections and gave relatively low 
scatter in the results. The damping values 
reported here are slightly less than other field 
results reported (about 2% to 6% for sand and 
about 2% to 4% for cohesive soils). The damping 
values reported here are higher than laboratory 
results for the sand (0.5% to 2%), but lower 
than those for cohesive soils (1% to 5%). 

SUMMARY 

The equations of motion relevant to damping 
calculations have been described, factors 
affecting amplitude decay were discussed, and 
the nature of damping has been summarized. 
Some practical aspects of pre-processing of 
signals were discussed. Three methods of 
damping calculation were presented. The first 
two, attenuation coefficient and modified SHAKE 
methods, required the application of amplitude 
corrections, which is not straight-forward, gave 
variable results, and indicated negative damping 
in the lower clayey silt layer. The third, the 
spectral slope method eliminated the need for 
amplitude corrections and gave less variable 
results. The method gave damping of about 2% to 
3% for the upper sand layer and 0.3% to 0.5% in 
the silt. 

Based on these results, the spectral slope 
method is the most promising approach to insitu 
measurement of damping. Seismic cone profiles 
in sand, analyzed with this method, gave results 
between those reported for field and laboratory 
tests. Further research is required to 
establish the validity of these measurements. 
Further research is being conducted presently to 
investigate the nature of the secondary pulses 

in the signals, and the effect on damping 
calculations. 
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