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ABSTRACT 

The problem of sandy soils as to how they behave when they contain air or gas has been recently addressed in relation to evaluation of 
cyclic resistance during earthquakes. In order to shed some light on this issue, some laboratory tests were conducted on sand samples 
prepared in the triaxial test apparatus. The outcome of the tests disclosed that the degree of imperfect saturation can be quantified by 
way of the propagation velocity Vp of compressional wave or P-wave and that the cyclic resistance exhibits significant increase if the 
velocity Vp drops below 700 m/sec, a value smaller than the propagation velocity through water. 

INTRODUCTION 

It has been known in the laboratory tests that resistance of sand 
to onset of liquefaction tends to increase with reduction in 
saturation ratio of samples which is expressed in terms of the 
B-value. When the B-value drops to a level of 0.1, the 
resistance to liquefaction has been shown to increase roughly 
two times as much as that of fully saturated samples having a 
B-value greater than 0.95 (Chaney, 1978 and Yoshimi et al. 
1989). As the B-value is defined as the ratio of induced pore 
water pressure to the applied confining stress, this value is easy 
to be measured in the laboratory samples. Thus, it has been 
widely used in the laboratory soil testing, for evaluating the 
degree of saturation of test specimens. However, a crucial 
disadvantage of using either B-value or saturation ratio is that it 
is practically impossible to monitor these quantities in soil 
deposits in the field. Then, even if its importance is recognized, 
there has been no way to monitor the B-value or saturation 
ratio in any method of field investigations and to duly consider 
its effects in their in-situ conditions in evaluating liquefaction 
resistance of sand deposits. 
On the other hand, measurements of propagation velocities of 
S-wave, Vs , and P-wave, Vp , in the field have been carried 
out at a number of sites by means of the cross-hole and 
down-hole techniques which are now in use commonly in 
routine investigation. With respect to the velocity of the 
P-wave, field measurements have shown that it often yields 
values which are approximately equal to or somewhat smaller 
than the P-wavc velocity through water for the case of 
saturated loose soil deposits existing at depths below the 

ground water table. One of such examples of velocity profile 
obtained by way of the down-hole method is shown in Fig. 1. 
This is the soil profile at a site near the mouth of the Shinano 
River in the city of Niigata, Japan. It is may be seen that the 
velocity of longitudinal velocity takes values of, Vp =1200 - 
1300 d s e c  down to a depth of 7 m. It is recognized that it is 
quite common to observe similar velocity profile in many 
other cases. This tendency has also been unearthed by 
Kokusho (2000) in relation to the amplification characteristics 
of longitudinal motions during earthquakes. This fact suggests 
that the soil deposit several meters below the ground water 
table is not fully saturated and in a state of near-saturation. 
Thus, in view of the laboratory-confirmed increased 
liquefaction resistance of partially but nearly saturated sand as 
mentioned above, it is highly likely that the in-situ deposits of 
sands several meters below the ground water table would 
mobilize resistance to liquefaction which is substantially 
greater than the value that has been known and used in the 
design practice assuming the soils to be fully saturated. 
Efforts to measure the P-wave velocity in the laboratory 
samples have not been made extensively thus far because of 
lack of its recognized importance in engineering application. 
However, the techniques to monitor it in the laboratory test 
may be explored without much difficulty. Some efforts have 
been done in this context recently by Nakagawa et al. (1996, 
1997), and by Fioravante (2000) using a set of the bender 
elements attached to triaxial test specimens. Thus, the use of 
the P-wave velocity will have a potential as a means to 
identify the degree of saturation of sails in the field deposits as 
well as in the laboratory. 
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The advantage of using the P-wave velocity as a liaison 
parameter for identifying the saturation ratio and hence the 
liquefaction resistance may be summarized as follows. 

( I )  P-wave velocity can be measured both in the field 
deposits and in  the laboratory samples while other index 
properties such as B-value and saturation ratio caniiot be 
monitored by any means in the field. Therefore, the 
P-wave velocity may be used as a parameter to identify 
conditions of laboratory specimen and that in-situ soil 
deposits in relation to the degree of saturation. 

(2) P-wave velocity measured in-situ is considered to possess 
an equal level. of credibility to that monitored in the 
laboratory, and therefore it could be used to identify the 
in-situ B-value as it is used for the laboratory sample. 

On the basis of the conception as above, multiple series of 
laboratory tests were conducted on reconstituted samples of 
sand with varying saturation ratio. The outcome of these tests 
is described in the following pages of this paper. 
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TEST SAMPLES AND TEST PERFORMANCE 

The excavation had been underway as part of the construction 
project to provide access roads to the tunnel going across the 
Shinano River, Niigata, Japan. The soil deposits consist 
predominately of clean sands as indicated i n  a soil profile i n  
the vicinity of the sampling site (Fig. I ) .  The specimens of the 
sand used in the present study were secured in blocks from the 
bottom of the excavation at a depth of about loin from the 
ground surface. Blocks of soils were secured by cubes 7.5 cm 
i n  diameter and 15 cni in height at the exposed surface of intact 
sand deposits. The grain size distribution curve of the sand is 
shown in Fig. 2. 
The triaxial test apparatus used in the present study is shown in 
Fig. 3. Two pairs of accelerometers were equipped at the top 
cap and also at the pedestal of the triaxial apparatus. Vertical 
and horizontal impact imparted at the top was picked at the 
bottom of the test specimen as illustrated in  Fig. 3. 
Specimens of lOcm long and 5cm in diameter were put in place 
in the triaxial chamber and consolidated to a confining stress of 
do = 1 18kPa . After circulating the de-aired water or tap water, 
it was possible to put the specimen at a desired B-value or 
saturation ratio by regulating the back pressure. The tests 
consisted of two parts. First, a shear wave (S-wave) was 
generated in the torsional mode by hitting the horizontal arm at 
the top and by detecting its arrival at the bottom of the 
specimen. Similarly, compressional wave (P-wave) was 
generated by applying a vertical impact at the top and by 
detecting its arrival at the bottom of the specimen. After 
finishing the first phase of the tests as above, the cyclic axial 
stress was applied to the specimens until it reached a state of 
liquefaction with the development of a double-amplitude axial 
strain of 5 YO. Thus, for the same specimen with a known 
B-value, the velocities of P-wave and S-wave propagation were 
measured along with the cyclic strength. 
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RELATION BETWEEN P-WAVE VELOCITY AND 
B-VALUE 

The velocity of P-wave propagation is correlated with the 
B-value through the definition of Poisson's ratio used in the 

linear theory of elasticity (Ishihara 1996, page 120). Poisson's 
ratio v is expressed i n  terms of the shear modulus Go and 
the volumetric modulus K as 

1 3 K - 2 G o  v = - .  
2 3 K + G 0  

Let a compressional stress CY be applied to an element of a 
saturated soil. This stress, is divided into two parts: one 
component, d, transmitted to soil skeleton and the other, 1 1 ,  

carried by water in  the pores as schematically illustrated in  Fig. 
4. Thus, one obtains 

Let it be assumed first that the soil skeleton and the bubble 
structure of pore fluid are deforming independently without 
mutual interaction. If the volume of the skeleton V is 
compressed by an amount AV due to the effective stress (J', 
the following relations is obtained: - 

(3) 

where Cb is the compressibility of the soil skeleton. By 
denoting the porosity by n, the volume of water contained in 
the bubble structure is given by nV . Then, if the pore water is 
compressed by an amount AV, due to the pore pressure u, 
one obtains: 

. .. (4) 

where Cc is the compressibility of water itself. The drainage 
condition is now imposed in terms of relative magnitude of 

4 AVw to AV. If the amount AV, is grater than AV, water 
is to be taken into the pores, and conversely if AV,v < AV, 
water must come out of the pores. Note that both situations 
imply drained conditions. Thus it is apparent that the undrained 
condition is imposed by 

AV = AV, (5) 

This is regarded as a kind of compatibility condition required 
for independently deforming two-phase medium, that is, the 
soil skeleton and the bubble structure, to develop a mutual 
interaction between them. 
Introducing Eqs. (3) and (4) into the undrained condition of Eq. 
(5) ,  and using the relation of Eq. (2), one obtains 

AV nC, cT -=-. 
nC V 1 ++ 

If the soil skeleton is viewed as an elastically deforming 
medium, then the volumetric modulus is derived from Eq. (6) 
as 

3 
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(7) 

S-wave velocity 

v ,A', * =I 

I I I I 

It  is well known that the pore pressure coefficient B by 
Skempton (1954) is given as the ratio of u/o ,  therefore, the 
following relation is obtained. 

Introducing this expression into Eq. (7) and fitrther into Eq. (1) 
one obtains an expression of Poisson's ratio for saturated soils 
as 

1 3-2G0nC,!B 
2 3+G,nC,B 

v=- .  (9) 

On the other hand, the relations between the Poisson's ratio, 
velocities of shear wave propagation V, and compressional 
wave propagation Vp are derived as follows from the elastic 
theory of wave propagation. 

Introducing the relation of Eq. (8) into Eq. (9), one obtains, 

For each test specimen in the triaxial cell, the value of porosity 
n is known and compressibility of water Ce is assumed to 
take a constant value. Then, if the value of shear modulus Go 
is known for the specimen tested from measurement of the 
velocity of shear wave propagation V, , Eq. (1 0) is regarded as 
a theoretical relation between the P-wave propagation velocity, 
Vp , and B-value. 

RESULTS OF WAVE VELOCITY MEASUREMENTS 

Results of the velocity measurements and the B-value obtained 
from the tests are shown in Fig. 5 where the measured 
velocities are plotted versus the B-value. It may be seen that 
the velocity of shear wave or S-wave propagation Vs 
remained unchanged irrespective of changes in B-value. 
However, P-wave velocity V, is shown to exhibit an 
appreciable reduction with decreasing B-value from a value of 
V, = 1600 d s e c  to 400 d s e c .  It is apparent that the former 
value corresponds to the wave velocity through water. The 
relation of Eq. (11) derived from the theory is also shown in 
Fig. 5 with a dashed line. It may be seen that the reduction in 
the measured velocity V, is not so acute as that of the theory 

within the B-value range between 0.5 and 1.0. The apparent 
difference in the measured and theoretically estimated values 
cannot be identified at present and i t  is a pending issue yet to 
be clarified. 
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RELATION BETWEEN LIQUEFACTION RESISTANCE 
AND P-WAVE VELOCITY 

The results of the cyclic phase loading tests mentioned above 
are presented in Fig. 6 in terms of the cyclic stress ratio, 
‘sd /(20’, ) , plotted versus the number of cycles required to 
generate the double-amplitude axial strain (D.A.) of 5 % in the 
triaxial specimens. As indicated in the figure, the relative 
density of the undisturbed samples from Niigata site was 
D, = 62 %. The test data indicate that the cyclic strength 
defined above tends to increase with decreasing B-value, and 
hence with decreasing velocity of P-wave propagation through 
the sample. 
The cyclic stress ratio required to induce 5 % D.A. axial strain 
in 20 cycles of uniform load application was read off from the 
curves in Fig. 6 and plotted in Fig. 7 versus the velocity of the 
P-wave propagation. It can be seen that the cyclic stress ratio 
tends to increase significantly when soils become less and less 
saturated as quantitatively represented by the decreasing value 
of P-wave velocity. From the same data file, it is possible to 
establish a relation between the cyclic strength and B-value as 
indicated in Fig. 8 where it may be seen that the value of cyclic 
strength tends to increase significantly when the B-value drops 
to the level of B=0.1. The saturation ratio, S, , measured in the 
test may be used as a parameter to quantify the degree of 
saturation. In this vein, plot was made in Fig. 9 for the cyclic 
strength versus the saturation ratio. It may be seen that at the 
saturation ratio of S, = 90 % corresponding to the B-value of 
0.1, the cyclic strength becomes 1.8 times as much as that in 
the case of S, -100 %. It should be noticed, however, that 
with further decrease in S, below 90 %, the behaviour of 
sand in expected to become closer to that observed in drained 
loading condition and the cyclic strength to become conversely 
smaller particularly when the sand is dense. 
To explore the effect of partial and near saturation more in 
details, the cyclic stress at any P-wave velocity was normalized 
to the cyclic stress ratio for the fully saturated specimen having 
a Vp -value through water. 
The cyclic stress ratio normalized in this way is plotted in Fig. 
10 versus the P-wave velocity Vp . The data obtained 
preciously in similar tests for Toyoura sand and 
gravel-containing Masado sand from Kobe are also presented 
in Fig. 10. It may be seen that all the data lies consistently on 
a unique line indicating clear tend of increasing cyclic 
resistance to liquefaction with decreasing P-wave velocity. It 
is noted that, when the Vp-value is 500 d s e c  which could 
often be the case in field deposits, the cyclic resistance to 
liquefaction is shown to increase by 50 % as compared to that 
of the fully saturated soil with a Vp-value of 1600 m/sec. 
This chart might be utilized to correct the in-situ cyclic 
strength which is estimated based on the field parameters such 
as SPT N-value or qc-value in the cone penetration test. 

CONCLUSIONS 

The P-wave velocity measurements were carried out first on 
the sample with a prescribed B-value and then the cyclic 
loading test was performed on the same sample to determine 
the liquefaction resistance. The results of the laboratory tests 
disclosed that the cyclic strength increases approximately 1.8 
times as the saturation ratio drops from Sr = 100 % down to 
96 % with corresponding reduction in B-value from 0.95 to 0.1. 
The associated reduction of P-wave velocity was shown to be 
from 1600 m/sec to 400 m/sec. Thus, by utilizing the 
correlation as established above, the P-wave velocity measured 
in-situ may be used to correct values of in-situ cyclic strength 
estimated by the conventional means such as SPT and CPT and 
to determine true values of cyclic strength of in-situ soil 
deposits. 
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