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SEISMIC BEHAVIOR OF BATTER PILE FOUNDATION:  
KINEMATIC RESPONSE 

 
Takashi Tazoh   Masayoshi Sato   Jiho Jang & Yoichi Taji  George Gazetas 
Institute of Technology,  National Res. Ins. for Earth  Institute of Technology,  National Tech.  
Shimizu Corp.   Science & Disaster Prevention Shimizu Corp.          Univ. of Athens 
Tokyo, Japan       Tsukuba, Japan   Tokyo, Japan   Athens, Greece 
 
 
 
ABSTRACT 
 
We carried out centrifuge tests to clarify the seismic behavior of batter-pile foundations. A vertical-pile foundation and a batter-pile 
foundation without the presence of a superstructure were installed parallel to each other in a soil container filled with dry sand, and 
were excited simultaneously. Through a comparison of the acceleration and displacement response of the footing, as well as the axial 
and bending strain of the piles for the two pile foundations, the kinematic response of the seismic behavior of the batter-pile 
foundation was experimentally investigated. 
 
 
 
INTRODUCTION 
 
The lateral stiffness of a pile foundation can be increased by 
adopting batter piles, which is why they are commonly used in 
landing piers that are subject to large lateral forces. However, 
batter piles are seldom used for buildings or civil engineering 
structures even in the case of large lateral forces. The reasons 
are as follows: 
 

1) When soil settlement occurs, not only the safety of the 
pile foundation but also that of the structure as a whole 
system may be threatened by settlement-induced vertical 
loads acting on the batter piles. 

2) During an earthquake, the piles in a batter-pile 
foundation may be subject to excessive axial 
compression and pullout forces, which are not generated 
in a vertical-pile foundation. 

3) The strength of concrete piles is reduced by decreasing 
the compressive force acting on the piles due to rocking 
motions induced by the adopted batter piles. 

4) Since infinite lateral ground planes cannot be assumed 
for batter piles, they cannot be expected to have the same 
horizontal subgrade reaction as that of vertical piles. 

5) In urban areas, the use of batter piles is constrained by 
the boundary lines of adjacent land. 

 
The 1995 Great Hanshin Earthquake in Japan has increased 
the demand for pile foundations with high seismic 

performance, as well as lower cost and easier construction. 
Batter piles can be used with little additional expense, no 
special design, and hardly any difficulty in construction. 
Therefore, the seismic behavior of batter piles has recently 
attracted much research interest, as has research and 
development related to easy and accurate methods of installing 
batter piles (Gerolymos, N., et. al., 2008, Giannakou, A., et. al., 
2007, Poulos., N., 2006). 
 
In this study, we carried out centrifuge shaking table tests to 
clarify the seismic behavior of batter-pile foundations. A 
vertical-pile foundation and a batter-pile foundation were 
installed parallel to each other in a soil container filled with 
dry sand, and were excited simultaneously (Tazoh, T., et. al., 
2005, Tazoh, T., et. al., 2007). As our objective was to 
investigate the fundamental characteristics of the seismic 
behavior of batter piles, none of the pile-foundation models 
had a superstructure. This study focused on the kinematic 
interaction of batter piles (Fan, K., et. al., 1991, Mylonakis, G., 
et. al., 1997, Mylonakis, G., 2001, Nikolaou, S., et. al., 2001, 
Sica, S., et., al., 2007, Tazoh, T., et. al., 1987). Through a 
comparison of the acceleration and displacement response of 
the footing, as well as the axial and bending strain of the piles 
for the two pile foundations, the kinematic nature of the 
seismic behavior of the batter-pile foundation was 
experimentally studied. 
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Figure 1 Longitudinal sections and plan of the 1/30-scale centrifuge model 

(Scale unit: mm, for the prototype dimensions: multiply by 30. A vertical-pile foundation and a batter-pile foundation  
without the presence of a superstructure were set parallel to each other in a soil container which was filled with dry sand,  

and were excited simultaneously.) 

CENTRIFUGE TESTS 
 
The most direct and effective way to quantitatively and 
qualitatively investigate the seismic behavior of batter piles is 
to compare the seismic behavior between a vertical-pile 
foundation and a batter-pile foundation under the same input 
motions. Each test for each model must be carried out under 
nearly identical conditions with respect to input motions, soil 
conditions, and soil behavior. Note, however, that it is 
impossible to achieve complete similarity between shaking 

table tests due to the difficulty of reproducing the input motion 
and nonlinear behavior of the soil. 
 
Therefore, a vertical-pile foundation and a batter-pile 
foundation without the presence of a superstructure were 
installed parallel to each other in a soil container, as shown in 
Figure 1, and were excited simultaneously. 
A laminar box was used as the soil container to allow shear 
deformation of the soil deposit as in the free field. Actually, 
installing two models that behave differently in a laminar box 
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Table 1 Scaling ratios of the testing model  

Item Symbol Unit Centrifuge  
model Prototype Scale 

Sand 
stratum 

Depth H m 0.3 9 1/N 
Density ρt KN/m3 15.0 15.0 1 

Structure 
Width W m 0.05 1.5 1/N 
Height H m 0.04 1.2 1/N 
Mass M kg 0.785 21,195 1/N3 

Footing 
Width W m 0.05 1.5 1/N 
Height H m 0.03 0.9 1/N 
Mass M kg 0.58875 15,896 1/N3 

Column 

Width L m 0.006 0.18 1/N 
Width 

(shaking direction) W m 0.004 0.12 1/N 

Moment  
of inertia of area I m4 3.20E-11 2.59E-05 1/N4 

Length L m 0.06 1.8 1/N 

Pile 

Diameter D m 0.01 0.3 1/N 
Thickness t m 0.0002 0.006 1/N 

Young's modulus E MN/m2 2.06E+05 2.06E+05 1 
Area A m2 6.16E-06 5.54E-03 1/N2 

Moment  
of inertia of area I m4 7.40E-11 5.99E-05 1/N4 

Normal stiffness EA MN 1.27E+00 1.14E+03 1/N2 
Bending stiffness EI MN-cm2 1.52E-09 1.23E-03 1/N4 

Acceleration Centrifuge g g 30 1 N 
Earthquake α Gal 6000 200 N 

Other 
parameters 

Displacement δ m 1 30 1/N 
Force F N 1 900 1/N2 
Stress τ kPa 1 1 1 
Strain γ  1x10-6 1x10-6 1 
Time t s 1 30 1/N 

Frequency f Hz 30 1 N 
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Figure 2 Grain size accumulation curve of silica sand No. 7 
(Mean particle diameter D50 = 0.15 mm, Soil density ρs = 2.635 g/cm3,  

Maximum dry density ρmax = 1.539 g/cm3, Minimum dray density ρmin = 1.206 g/cm3) 
 

is not an appropriate testing method because the behavior of 
the models might influence each other. However, considering 
the inconsistency of the input motion and the difficulty of 
reproducing the soil conditions and nonlinearity, we believe 

that this method is more reasonable than individually testing 
the vertical-pile foundation and batter-pile foundation 
separately. 
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Table 2 Materials and dimensions of the test model 

Parts Material & size 
Laminar box 805mm, 475mm, 324mm（Inner size: length, width, depth） 
Soil deposit Dry sand: Silica No.7（Dr ＝ 60％），Thickness: 300 mm 

Vertical pile 

Stainless steel 
No. of piles：4（2×2）, Inclination angle: 0° 

Length: 270 mm，Diameter:10 mm，Thickness: 0.2 mm 

Batter pile 

Stainless steel 
No. of piles：4（2×2）, Inclination angle: 10° 

Length: 274 mm，Diameter: 10 mm，Thickness: 0.2 mm 

Footing 
Steel 

Thickness: 30 mm，Plan size: 50 mm×50 mm 
 

Table 3 Installed sensors 
(62 monitoring channels were installed, with the sensors comprising 17 accelerometers,  

5 non-contact displacement meters, and 40 strain gauges.) 
Transducer Location Direction Number Subtotal Total 

Accelerometer 

Batter pile X 2 

17 

62 

Z 2 

Vertical pile X 2 
Z 2 

Ground X 6 
Base X 1 

Table control X 1 
Centrifugal acc. Z 1 

Non-contact 
displacement 

meter 

Batter pile X 1 

5 
Vertical pile X 1 

Ground X 1 
Z 1 

Base X 1 

Strain gauge 
Batter pile Pile-BA1 10 

40 Pile-BA2 10 

Vertical pile Pile-VA1 10 
Pile-VA2 10 

 
 

The interior of the soil container is 805 mm in length, 474 mm 
in width, and 324 mm in height. All tests were conducted at 
centrifugal acceleration of 30 g on a 1/30-scale model. Table 1 
shows the scaling ratios of the models. 
 
The vertical-pile foundation and the batter-pile foundation 
each have four piles, and the pile heads and pile tips are 
rigidly connected to the footing and the base of the soil 
container, respectively. The batter piles are identically inclined 
at a 10° angle. The soil deposit is a uniform layer consisting of 
dry silica sand No. 7 (Mean particle diameter D50 = 0.15 mm; 
Soil density ρs = 2.635 g/cm3; Maximum dry density ρmax = 
1.539 g/cm3; Minimum dry density ρmin = 1.206 g/cm3). 
Thickness and relative density of the soil deposit is 300 mm 
(prototype: 9 m) and Dr = 60%, respectively. 
 
Figure 2 shows the grain size accumulation curve of silica 

sand No. 7. Table 2 shows the materials and size of the 
experimental model used in the tests and Photograph 1 shows 
the test model. Sixty-two monitoring channels in total were 
installed, with the sensors comprising seventeen 
accelerometers, five non-contact displacement meters, and 
forty strain gauges (Table 3). The test was conducted a total of 
nine times, varying the input motion and maximum 
acceleration as shown in Table 4. 
 
While the purpose of this study was to clarify the kinematic 
interaction of the batter piles, consideration must also be given 
to effects from the mass of the footing (made of steel, size: 
3×5×5 cm). The inertial interaction caused by the inertial force 
of the footing might be included in the results, which 
consequently may not represent the perfect kinematic 
interaction. 
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Photograph 1 Testing Model 

(The pile foundations have four piles.) 
 

Table 4 Test cases 

Input Motion Freq. of input 
motion (Hz) 

Max. acc. of input 
motion (Gal) Test case No. 

Sweep test motion 1.7-10 Hz 
5 1-1 

15 1-2 
30 1-3 

Sinusoidal 
excitation 3.5 Hz 

50 2-1 
100 2-2 
200 2-3 

El Centro record El Centro record 
N-S component 

50 3-1 
100 3-2 
200 3-3 

 

KINEMATIC NATURE OF SEISMIC BEHAVIOR OF 
BATTER PILE 
 
Figure 3 shows the frequency transfer function calculated by 
the acceleration records between the soil surface and the input 
motion of the sweep test. The predominant frequency of the 
ground is 3.5 Hz in the case of maximum acceleration of input 
motion at 5 Gal. The predominant frequencies are 3.2–3.3 Hz 
and 3.0–3.1 Hz, and also the peak acceleration amplification 
factors decrease corresponding to the increase in maximum 
acceleration of the input motion to 15 Gal and 30 Gal. 
 
Figure 4 shows the frequency transfer function between the 
ground surface and input motion obtained from El Centro 
record excitation. The predominant frequency of the ground is 
3.4 Hz in the case of maximum acceleration of input motion at 
50 Gal. The predominant frequencies are 2.8–2.9 Hz and 2.4–
2.5 Hz, and also the peak acceleration amplification factors 
decrease according to the increase in maximum acceleration of 
the input motion to 100 Gal and 200 Gal. These phenomena 
were obviously produced by the nonlinearity of the soil. 
 
Figure 5 shows the relationship between horizontal 
displacement and rotational angle of the footing based on the 

data from sinusoidal excitation of 3.5 Hz, in order to 
investigate the rotational characteristics of the footing of the 
vertical-pile foundation and the batter-pile foundation. The 
rotational angle is calculated by dividing the difference in the 
vertical displacement based on the data of the accelerometers 
installed at both sides of the footing by the distance between 
the two accelerometers. 
 
The fact that there is no phase difference between the sway 
and the rocking motion indicates that the response of the 
footing to motion to the right is counterclockwise rotation, as 
shown in Figure 7. There is no phase difference between the 
sway and the rocking motion of the vertical-pile foundation; 
on the other hand, anti-phase behavior can be seen in the data 
for the batter-pile foundation. 
 
Figure 6 shows the data obtained from El Centro record 
excitation at the maximum acceleration of 200 Gal. The same 
trend as seen in the case of sinusoidal excitation can also be 
found in Figure 6. The phenomena of the opposite phase 
between the sway and the rocking motions of the vertical-pile 
foundation and the batter-pile foundation can be found in all 
of the other test data. From Figures 5 and 6, it can also be seen 
that the rotation angles of the batter-pile foundation are almost 
two times larger than those of the vertical-pile foundation.  
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Figure 3 Frequency transfer function of the ground surface obtained from sweep test  
(5 Gal, 15 Gal, 30 Gal) 

 
 

   

▼ 
▼ 

▼ 

 
 

Figure 4 Frequency transfer function of the ground surface obtained from the El Centro record excitations  
(50 Gal, 100 Gal, 200 Gal) 

 
 

  

 
 

Figure 5 Comparisons of horizontal displacement and rotational angle of the footings between the vertical-pile foundation  
and the batter-pile foundation (Sinusoidal excitation: 3.5 Hz, 200 Gal) 

 

Figure 8 shows the maximum-value distribution of the bending and axial strains of the piles in the vertical-pile  
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Figure 6 Comparisons of horizontal displacement and rotational angle of the footings between the vertical-pile foundation  
and the batter-pile foundation (El Centro record: 200 Gal) 
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Figure 7 Kinematic responses of footings 
 

 
Figure 8 shows the maximum-value distribution of the 
bending and axial strains of the piles in the vertical-pile 
foundation (pile-VA1) and the batter-pile foundation (pile-
BA1) obtained from sinusoidal excitation of 3.5 Hz. The 
frequency of 3.5 Hz closely corresponds to that of the 
predominant frequency of the ground as shown in Figure 3. 
The largest values were obtained at the pile heads, and the 
bending and axial strains of the batter-pile foundation are 
larger than those of the vertical-pile foundation in all cases, as 
shown in Figure 8. 
 
Figure 9 shows the maximum-value distribution of the 
bending and axial strains of the piles in the vertical-pile 
foundation (pile-VA1) and the batter-pile foundation (pile-
BA1) obtained from El Centro record excitation. The largest 
values were obtained at the pile heads, and the bending and 
axial strains of the batter-pile foundation are larger than those 
of the vertical-pile foundation, likely due to the sinusoidal 
excitation. 
 
Figures 10 and 11 show the maximum values for acceleration 
of the footings and the ground surface, and the bending and 
axial strains at the pile heads corresponding to the increments 
in maximum acceleration of the input motion. From the 
figures, it can be seen that the maximum acceleration of the 
footing of the vertical-pile foundation is larger than that of the 

batter-pile foundation and that both the bending and axial pile 
strain of the batter-pile foundation are larger than those of the 
vertical-pile foundation in both the sinusoidal and El Centro 
record excitation. 

ASEISMICITY OF BATTER PILE 
 
Figures 12 and 13 compare the frequency transfer functions of 
the horizontal acceleration of the footing and input motion 
between the vertical-pile foundation and the batter-pile 
foundation obtained from sweep test and El Centro record 
excitation. The difference between the frequency transfer 
functions of the two pile foundations represents the 
aseismicity of the batter-pile foundation. From these figures, it 
can be elucidated that the batter-pile foundation has a certain 
level of aseismicity in all of the frequency ranges. 
 
Figures 14 and 15 compare the frequency transfer functions of 
the bending and axial strains of the piles and input motion 
between the vertical-pile foundation and the batter-pile 
foundation calculated using the data from the sweep test and 
El Centro record excitation. From these figures, it can be seen 
that the strain of the batter piles is larger than that of the 
vertical piles. Therefore, it is considered that the compensation 
for the aseismicity of batter piles seeks large cross-sectional 
efficiency for the batter piles. 
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(a) 50 Gal                               (b) 100 Gal                                  (c) 200 

Gal 
Figure 8.1 Bending strain distributions of the vertical-pile foundation (pile-VA1) and the batter-pile foundation (pile-BA1) 

obtained from the sinusoidal excitation of 3.5 Hz (50 Gal, 100 Gal, 200 Gal) 
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(a) 50 Gal                                 (b) 100 Gal                                  (c) 200 

Gal 
Figure 8.2 Axial strain distributions of the vertical-pile foundation (pile-VA1) and the batter-pile foundation (pile-BA1)  

obtained from the sinusoidal excitation of 3.5 Hz (50 Gal, 100 Gal, 200 Gal) 
 

  

 
     (a) 50 Gal                             (b) 100 Gal                              (c) 200 Gal 

Figure 9.1 Bending strain distributions of the vertical-pile foundation (pile-VA1) and the batter-pile foundation (pile-BA1) 
obtained from El Centro record (50 Gal, 100 Gal, 200 Gal) 
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(a) 50 Gal                               (b) 100 Gal                                 (c) 200 Gal 

Figure 9.2 Axial strains distributions of the vertical-pile foundation (pile-VA1) and the batter-pile foundation (pile-BA1)  
obtained from El Centro record (50 Gal, 100 Gal, 200 Gal) 

 
 

 

 
 
 

Figure 10 Maximum values of the accelerations of the footings and the ground surfaces, and the bending and axial strains  
at the pile-heads (Sinusoidal excitation: 3.5 Hz) 

 

CONCLUSIONS 
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Figure 11 Maximum values of the accelerations of the footings and the ground surfaces, and the bending and axial strains  
at the pile-heads (El Centro record) 

 
  

 
   (a) 50 Gal                          (b) 100 Gal                            (c) 200 Gal 

Figure 12 Aseismicity of the batter-pile foundation: Comparison of the frequency transfer function between the horizontal 
acceleration of the footing and input motion in the vertical-pile foundation and the batter-pile foundation  

obtained from sweep tests (5 Gal, 15 Gal, 30 Gal) 
 

  

 
   (a) 50 Gal                         (b) 100 Gal                           (c) 200 Gal 

Figure 13 Aseismicity of the batter-pile foundation: Comparison of the frequency transfer function between the horizontal 
acceleration of the footing and input motion in the vertical-pile foundation and the batter-pile foundation  

obtained from El Centro record (50 Gal, 100 Gal, 200 Gal) 
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(a) Bending strains 

 
  

 
(b) Axial strains 

 
Figure 14 Comparisons of the frequency transfer functions of the bending and axial strains of the piles and input motion  

between the vertical-pile foundation and the batter-pile foundation (sweep tests) 
 
 

  

 
(a) Bending strains 

 
  

 
(b) Axial strains 

 
Figure 15 Comparisons of the frequency transfer functions of the bending and axial strains of the piles and input motion  

between the vertical-pile foundation and the batter-pile foundation (El Centro record) 
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CONCLUSIONS 
 
The main conclusions of the study are as follows: 
 

1) The response of the footing of the vertical-pile 
foundation to motion to the right is counterclockwise 
rotation. On the other hand, that of the batter-pile 
foundation is rotation in the opposite direction to that of 
the vertical-pile foundation. 

2) Bending and axial strains attain the largest values at the 
pile heads in both the vertical-pile foundation and batter-
pile foundation. 

3) Improved aseismicity by adopting batter piles can be 
gained in almost all frequency ranges. 

4) Bending and axial strains of the batter-pile foundation 
are larger than those of the vertical-pile foundation. In 
other words, the compensation for the aseismicity of 
batter piles seeks large cross-sectional efficiency for the 
batter piles. 
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