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ABSTRACT

For many decades the analysis of earth retainingtsires under dynamic or seismic conditions hanlearried out by means of
standard limit equilibrium (Coulomb, M-O) or elasthethods (Wood, Veletsos and Younan).

These approaches are simplified, as they make fusensiderable approximations which are often ayaiie only under particular
conditions. A different and perhaps more realiapproach is possible using established computezs;adhich integrate numerically
the governing equations of the soil and wall me&imce these problems may involve significant Ilsvefl strain in the backfill,
material non-linearity should be taken into accdontealistically simulate the response of the esystin the herein-reported study, a
parametric analysis is carried out through theddiifference code FLAC 5.0.

Starting from simple cases involving elastic reggrand moving gradually towards more realisticd@ions, salient features of the
dynamic wall-soil interaction problem are addressBuok case of non-linear hysteretic behaviour df aod flexibility of wall is
considered at a second stage. Results indicatewtdtiatincreasing levels of acceleration, there islear transition from elastic
behaviour (in which the aforementioned V-Y type noels are applicable), to plastic behaviour in witi® methods are thought to
be more suitable under pseudo-static conditions. rEults of the parametric analyses are repontéerims of pertinent normalized
parameters, to provide a general framework foagsessment of wall-soil dynamic interaction undi®ng seismic excitation.

INTRODUCTION

Analysis and design of earth retaining structunegen seismic with the formation of a failure surface.

conditions poses a challenging problem, as the aréch of Ways to account for wall flexibility have been diped in the
wall-soil interaction are not well understood. Dgma soil- realm of the second group of methods, leading tdaie
structure interaction effects are dominant and khbe taken closed-form solutions for visco-elastic soil (Wda@73], Arias
into account in the assessment and quantificatibnthe et al. [1981]). These solutions are often considered undul
problem. conservative, as the kinematical constraint astatiavith a
Analysis procedures can be roughly classified imto main rigid wall generates pressures twice as large asetipredicted
groups: pseudo-static limit equilibrium approachesed on by the M-O formula. Recent work by Veletsos and Nawu

the well-known Mononobe and Okabe solution (Monanob [1994, 1997] has shown a significant reduction oésgures
and Matsuo [1929], Okabe [1926]) and its variaats] elastic with increasing wall flexibility and/or base congatice.

approaches following the seminal works by Wood []97 Notwithstanding the theoretical significance andagpical
Arias et al. [1981] and, more recently, Veletsos and Younan appeal of the above methods, they can both becizet for

[1994, 1997]. making use of considerable approximations, whicke ar
The first group of methods is essentially an extansof applicable only under particular conditions. A difint and
Coulomb’s classical solution, including additionaiertial perhaps more realistic approach is possible usstgbbshed
forces due to seismic shaking. The method has been numerical methods, which aim at integrating in gpand time
extensively studied and modified (Seed and Whitiji&@v0], the governing differential equations of the soitlamall media.
Richards and Elms [1979]), and it is widely used fhe Since these problems may involve significant lewdlstrain in
analysis and design of both rigid and flexible stuues, the backfill, material non-linearity should be takieto account

regardless of the actual amount of wall displacdraesociated to realistically simulate the response of the systén the
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herein-reported study, a parametric analysis isiezhrout by
means of the finite-difference code FLAC.

Starting from simple elastic analyses and progngst more
realistic cases, salient features of dynamic waillisteraction
problem are addressed. Two basic systems havednedyred
under both pseudo-static and dynamic conditions:
homogenous elastic backfill retained by a verticahtilever
wall, and a vertically inhomogeneous backfill, dwerized by
a parabolic or exponential variation of soil steffis with depth.
In the first case, walls varying from rigid to fible, with or
without rotational base compliance, are simulatéd.the
second case, the effect of soil inhomogeneityvestigated for
a wide class of walls and soil configurations.

Moving towards more realistic conditions, the ca$dlexible
vertical cantilever wall retaining a horizontal éay of
inhomogeneous backfill, obeying an elastic-plastiohr-
Coulomb criterion, is analyzed. The excitation dstssof a
single-cycle sinusoidal pulse with a given ampltudnd
frequency applied at the bottom of the model.

The results of the parametric analyses are repantégims of
pertinent normalized parameters, to provide a ggner
framework for the assessment of soil-wall dynamteraction
under strong seismic excitation.

ELASTIC PROBLEM

In this section, the models used for the simulatibthe elastic
problem for both homogeneous and inhomogeneous audl
corresponding results are reported. Results haven be
compared, whenever possible, with available cldeea
solutions.

Homogeneous Case

The system consists of a semi-infinite layer afcerelastic
material of heightH retained along one of its vertical
boundaries by a uniform flexible cantilever retagniwall
restrained by a rotational spring of stiffndgsat its base. The
system is excited by a harmonic horizontal motemshown in
fig. 1.

The properties of the soil are:

e Mass density: p
* Shear modulus: G
» Poisson’s ratio: v
» Material damping factor: 4
The properties of the wall are:
e Thickness: tw
e Mass per unit surface area: Lhw
e Young’s modulus: E.
» Poisson’s ratio YV
e Material damping factor: B
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X4 (t) = Ay sin(wt)

Fig. 1. Elastic model

The relevant parameters for a parametric analysés the
relative flexibility between wall and retained sdj} defined by:

GH?®
d,~ 1
T (1)
whereD,, is the flexural rigidity of the wall:
Euwtw’
W )
12(1-v,)

and the relative flexibility between rotational basonstraint
and retained sody, defined by:

=GH2
Ry

dg 3)

The elastic soil is characterized by uniform sheave velocity
Vs = 100 m/s and mass densjpy= 1.8 Mg/m, therefore
G = 18 MPa. Furthermore, Poisson’s ratio is assuncetiet
v = 1/3 and the material damping factBr= 5%. The grid
dimensions are (0.5 x 0.5 m).

The height of the wall isl = 8 m and it is discretized by means
of beam elements of unit longitudinal dimension #mdkness
ty = 0.20 m. The mass per unit of surface area isnasg
tw = 2.5 Mg/nf. It's worthwhile to mention that V-Y solution
was obtained based on the assumption of a mass#ksThe
Young's modulus of the wall can be linked to thehest
parameters using equations (1) and (2) (as alrekhe by
Psarropoulost al. [2005]):

12GH3{L-v,?
e, - 126H°0-v?) @

" dW tW3

The values ofi, assumed here are 0 (for rigid wall), 1, 5 and
40; the values afi, are O (for a fixed base wall), 0.5, 1 and 5.
The interface between the soil and the wall wasctetl as
bonded in order to permit a comparative study ajaimailable
closed-form solutions (see fig. 2).



When the frequency of excitatiow, is very low compared to
the fundamental frequency of the soil layex, the excitation
will be referred to asstatic’, a term which should not be
confused with that normally used to represent tfiects of
gravity forces. To avoid possible confusion, in #msuing the
term pseudo-static loading will be used. In this case it's more
convenient to replace the excitation with a sethofizontal

body forces equal t [ﬂXg(t))maX = pAy applied to all grid
nodes, as shown in fig. 2.

Bonded interface

Finite difference grid

"1

o

Beam
\

Fig. 2. Pseudo-Satic seismic loading via equivalent body
forcesin wall and soil

To achieve convergence of the model, the pseudiz-dtad

was applied gradually in several steps.

The results are normalized according to the folfmnactors:
* Horizontal pressures:

Oy

agH

®)

wherea, = A;/g is the maximum horizontal ground

acceleration expressedgny = p g is the unit weight
of the soil;
* Base shear:

agvlj;z ©®
* Base moment:
a:;’_]s @)
« Effective height:
e @
H HV,

which defines the point of application of the reéasnt
force, measured from the base of the wall;
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» Wall displacements:

wG
agH 2 ©)

Notice that the results reported in the ensuingoemass
exclusively horizontal shakingd.e. to determine the complete
state of stress, the initial stresses due to grde#ds should be
added.

Figure 3 shows the heightwise distribution of tharitontal
pressures on the wall, determined by V-Y, as famctof
relative wall flexibility (fig. 3a), and relative dase flexibility
(fig. 3b)(n7 =y / H is the normalized height). Results of analyses
with FLAC have been compared with same simulatioth
the FEM code PLAXIS. Figures 4 and 5 show, respebtj the
case of fixed base wall and rigid wall; PLAXIS r#suare
displayed with solid line, whereas FLAC results depicted
with dots.

The numerical results are in a very good agreemsétht the
results obtained by V-Y, except from the upper parthe wall
where some discrepancies are visible. Similar featwere
also observed by Wood [1973] and Psarropoeta. [2005],
and are probably to the assumption of complete ingndas
well as that of soil homogeneity, which implies itén soil
stiffness not to vanish near the top of wall.

1.0 —————
i 1|~d,=0 05

0.8 1
40
n J

0.6 1

0.4 1 1

0.2 1

(a) Fordg = 0 - (b) Ford,, =0

. 1 -2 -1 0
2 1 0 o,,(m) o)
pX H

Fig. 3. Wall pressures for different wall and base flexibilities
according to Veletsos and Younan [ 1997]

It's observed that both for large relative wall athse
flexibilities, tensile stresses are developing niar top of the
wall, clearly stated as a limit of elastic solusdoy V-Y, since
these tensile stresses can cause de-bonding irtlmsexceed
the value of initial compressive stresses due &wiy.

Figures from 6 to 8 show the variation of normalizmse shear
(Vp), effective heightlf) and top displacements/) for different
dy and dg, whereas solid lines indicate the corresponding
closed-form solution results. An excellent agreemes
observed, except for the case of rigid walls, nghthe
aforementioned numerical problems play a slighthyoren
important role.
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Fig. 4. Wall pressures for a fixed base wall (dg= 0)

Note, however, the large reduction in terms of bslsgar due
to both wall and base flexibility, as analyticalproved by
V-Y, and numerically confirmed by these analyses.

It can be also observed that for the effective lieggvery good
agreement with Seed aki¢hitman[1970]modification of M-O
method (0.6H) is visible for rigid walls, whereas for flexible
walls only a reasonable agreement can be found thi¢h
Rankine distribution (1/81), the reason being the large tensile
stresses near the top that are “lowering” the &ffedeight.

The comparison for top displacements is once agaiyn good
but a little deviation from analytical results idserved,
especially for flexible walls or walls with flexiblbase.

Similar results are found for the dynamic casevidich, as
analytically shown byeletsos and Younan [1994, 1997], and
numerically by Psarropoulogt al. [2005], the dynamic
guantities are the product of the correspondingtistones by
an appropriate amplification or deamplificationtfac

Inhomogeneous Case

The assumption of soil homogeneity, which is praily
unrealistic, is one of main limitations of the aysas discussed
in the previous section. Indeed, in reality, thd smdulus is
likely to increase with depth, that is with configipressure.
Under this assumption V-Y have analyzed the casa 6§id
wall elastically constrained against rotation a base, from a
‘static’ point of view. As proposed by Veletsos and Younan
[1994] the inhomogeneity is expressed througipaeabolic
variation of shear modulus with depth (see fig. 9):
G() = Go [1-1?) (10)
in which Gy is the value of shear modulus at the base of the
horizontal soil layer.
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Fig. 5. Wall pressuresfor arigid wall (d,, = 0)
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Fig. 6. Normalized base shear for different d,, and dg
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Fig. 7. Normalized effective height for different d,, and dg
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The numerical analyses reported herein are limited wall
with flexibility (d,) fixed at the basedg = 0), therefore only
the case of rigid wall can be compared with anedytiesults.
The main parameter of the problem is, again, tHative
flexibility of the wall and retained soil, defindxy:

— GavH °

d 11
" p, (11)

whereG,, is the average value of shear modulus, for thig cas

equal to 2/35,.

The soil stratum considered has an average shee wedocity
Vsav = 100 m/s while the others soil parameters havwenbe
maintained to allow a comparative study with thesecaf
homogeneous soil.

The properties of the wall are the same, excep¥dang’s
modulus, obtained using relation (4), by substigtG with
Ga. The values ofl,, taken into account are 0O (rigid wall), 1, 5
and 40.

A comparison of pressures for the case of rigidl vgathown

in fig. 10: good agreement is observed, exceptinafya the
upper part of the wall, where a value of pressifferént from
zero is observed, whereas the pressures shouldilheas in
the solution by V-Y. This is due to the shear moduhear the
top, which in the numerical analysis assumes &efimalue, as
well as the assumption of complete bonding.

In general, the assumption of soil inhomogeineity i
responsible for a sensible reduction of stresses.

This is clearly shown in figures 11 and 12, whemespures and
bending moments for different wall flexibilitieseapresented
together with corresponding values for the homogeasease.
The reduction is higher for the case of a rigidIvilaan for a
flexible wall, especially in terms of bending morterand this
is due to the fact that for flexible walls both qu@ssive and
tensile stresses are lower. The reduction of terstilesses for
flexible walls @,, = 40) is another important effect arising from
the assumption of soil inhomogeneity. Indeed nowsite
stresses are practically not influent in theerall behaviour,
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Fig. 9. Different soil inhomogeneities taken into account
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Fig. 10. Parabolic law: comparison of wall pressures
for arigid wall (d,, = 0)
(modified from Veletsos and Younan [ 1994])

and a more realistic simulation of the interactghrenomenon
is achieved.

In order to explore in more detail the role of soil
inhomogeneity, aexponential variation of shear modulus with
depth has been taken into account, according texpeession:

G(n7) =Gy (1"7)n:Go - (12)
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Fig. 11. Parabolic law: wall pressures for different d,,

in which:
* Gy is again the shear modulus at the base of the laye
e (=2z/H=1-n isthe normalized depth
* nis a soil inhomogeneity exponent (fig. 9):
- n=0 represents the case of homogenous soil
- n=1 the case of linear variation with depth.

The exponenh has been assumed equal to 0.2, 0.5, 0.7 (fig. 9):
particularly important is the case= 0.5 which reproduces the
observed increase & in loose coarse grained soils.

Figure 13 shows the distribution of horizontal gregs on the
wall, for different degrees of soil inhomogeneity énd wall
flexibilities (dy,). The case of homogeneous soil as well as the
parabolic case considered by Veletsos and Younaw)(\are
also reported.

Evidently as soil inhomogeneity increases, the Zuotal
stresses on the wall decrease, the reduction beioge
important for rigid walls. As in the case of paribweariation,

a reduction of tensile stresses on the upper gaobserved,
especially for high values of

The reduction of stresses transferred from theteoihe wall,
results in a reduction of internal forces, as shawfig. 14 for
base shear. The continuous lines show closed-fmiotions
for the homogenous case. As can be seen, thenme anzost
constant reduction of base shear wdih whereas a consistent
reduction of base moment for rigid walls can bevahoas
already seen in fig. 12.

In terms of effective height (fig. 15) these diffat reductions
produce a reduction for rigid walls (around-0% H, which is
close to Seed and Whitman [1970] suggestion) wisessa
increase is observed for flexible walls (clearlyedto the
reduction of tensile stresses on the upper padyjimg towards
the Rankine valueH/ 3).
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Fig. 12. Parabolic law: bending moments for different d,,

The simple assumption of soil inhomogeneity implias
reduction of internal forces in the wall, and tHere a more
realistic simulation of the interaction between swid retaining
structure. Similar observations have been madeshyr&oulos
et al. [2005].

As for the homogeneous case, dynamic results artgeoinas
they are similar to the corresponding ‘static’ gr&ace elastic
behaviour has been assumed in this part of theysisaln the
following a more realistic non-linear elastic-plasinteraction
simulation is attempted.

NON-LINEAR ELASTIC-PLASTIC PROBLEM

Since soil-wall interaction may involve significatevels of
strain in the backfill, material non-linearity shid be
accounted for toealistically simulate the response (Callisto and
Soccodato [2007]). Several studies have been daoig to
assess, approximately, the main features of naatidynamic
soil-wall interaction, but there is a lack of rigos analyses. In
the following, results of a series of parameftity non-linear
analyses will be presented, and a generalizatioth@fresults
will be made, to provide a general framework foderstanding
complexities associated with the problem.

Description of the Model

The proposed model (fig. 16) is essentially a “boxtwhich a
pair of verticalflexible cantilever walls, at a relative distance of
10 H, retains a horizontal layer of inhomogeneous sbile
material obeys an elastic-plastic Mohr-Coulomb eciitn
coupled with hysteretic damping, resulting from tais-
dependent modulus decay law.
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The excitation (5(9 =a,) is a full cycle sinusoidal acceleration

pulse with given amplitude and frequency applied tla
bottom of the model.
The fundamental parameters of the problem are:
» shearing resistance angle: ¢ =35°
« relative soil-wall flexibility: d, =40
» peak base acceleration: Ag=(0.05+0.35) ¢
» normalized excitation frequencyw/a = 1+3

The soil inhomogeneity is expressed via the exptialelaw
(egn. (12)) with n = 0.5, Gy = 112.5 MPa 5o = 250 m/s,
o= 1.8 Mg/ni, v = 1/3). The modulus decay 1a®&(}) / Gex
adopted for the soil (fig. 17), simulates the sémaper range)
law proposed by Seed and Idriss [1970]: the apfpdicaof
Masing rules automatically defines hysteretic damgpof the
soil 4()) (wherey is the shear strain). As it may be seen, FLAC
largely overestimates the damping ratio after axipmately
y = 0.3-0.4 %, but this was not the case in the queréd
analyses. A small amount of stiffness-proportioRalyleigh
damping (0.5%) was added, since hysteretic dampiogides
almost no energy dissipation at very low cycliastrlevels,
which may be unrealistic.
The wall height i = 8 m and the wall is discretized by means
of beam elements of unit longitudinal dimension #mndkness
tw C 0.73 m. The wall material is supposed to be cdacre
with mass per unit of surface argg = 2.5 Mg/nf, Young
modulusE,, = 28.5 GPa and Poisson’s ratip= 0.2.
The fundamental frequency of the soil is only atineste,
since there is no closed form solution for an inbgeneous
soil with an exponential increase of shear modwiik depth.
Trials were conducted to identify this frequency efastic
domain, although for non-linear soil these values\alid only
for small strain level.
The computational steps were the following:

1. model the gravitational (initial) condition

2. model the pseudo-static conditionw(= 0) and

dynamic condition.

In the first step the gravity was applied to thedeloand the
initial stresses were imposed to be the geostatjc=p g z,
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Fig. 17. Comparison between FLAC and Seed and Idriss
[1970] modulus and damping ratio decay law for sands

O =054 =Ko, , whereKy = 1 — sing (Jaky, 1944) is the
coefficient of earth pressure at rest.

Gravitational and Pseudo-Static Loading

Figure 18 shows the distribution of horizontal gregs behind
the wall after gravitational loading, normalized horizontal
pressures at rest. Due to the large wall flexipi{d,, = 40), for

a large part the soil behind the wall is close tastic
conditions, where, (active) conditions apply, whereas in the
vicinity of the base (which is fixed against all wemnents) the
pressures gradually move towakis(at rest) conditions.

y/H(-)

K, line

0.0 ‘ — ‘ ‘ > |

0 0.2 0.4 0.6 0.8 1 1.2
oxx Koy H(-)

Fig. 18. Wall pressures after gravitational loading
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Fig. 20. Base moment due to pseudo-static loading

Following the gravitational phase the pseudo-stitéding is
applied. Figure 19 shows the distribution of psestitic
pressures behind the wall (after subtracting gadivibal
pressures), as well as linear analyses resultsyrstio solid
line. Very good agreement with M-O solution isifial for all
levels of ground acceleration taken into accourisTis not
surprising, since the model is now elastic-plasiitd the
loading is applied in a pseudo-static fashion.

It's interesting to notice that for lovay values there is a
reasonable agreement between elastic and elaastepl
results, whereas with increasirsy level this agreement is
gradually lost (except for the lowest part of thallwvhere the
fixity doesn’t allow plastic deformation to occufherefore, a
transition is observed from elastic behaviour, ihick V-Y
type methods seem to be applicable, to plastic \neha in
which M-O methods are thought to be more suitabideu
pseudo-static conditions. This transition becomesenor less
important depending on tleg imposed.

In terms of bending moments (fig. 20), a good corispa
between pseudo-static and application of M-O foanig
observed, taking into account the inertial effeae do wall
mass, that obviously cannot be directly aoted for into
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M-O formula. Indeed, simulations with zero wall redg,, = 0)

clearly point out this aspect. This was not soui@fit in elastic
analyses because of the relatively small wall théds t,,

contrary to the present problem, for which a réialisoncrete
wall with a specific thickness has been simulated.

Linear elastic results seem to provide a lower lboohelastic-
plastic results (neglecting wall mass contributiofhis is

attributed to the improved simulation of soil-watiteraction
phenomenon. Indeed, in elastic analyses completelibg

between soil and wall was assumed, leading tmdition of

tensile stresses near the top of wall. In the ielgdéstic case,
Mohr-Coulomb criterion doesn’t allow the tensileesises to
exceed the gravitational compressive stressesfige&9, for

ag = 0.05 g, where tensile stresses do not exceedthget
gravitational compressive stresses, shown in fig). JAs a
result, an increase in stresses near the top of aval in

associated internal forces in the wall (shear amdhdng

moment) is observed.

Therefore, the common thinking that considering stita
solutions is conservative does not apply for thasec mainly
due to the large wall flexibility assumed.
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Dynamic Loading

Some preliminary analyses were conducted to chéek t
response of the hysteretic model in FLAC. For {hmispose,
the dynamic behaviour of two soil elements locatad
&= x/L=0.5 {.e. on the centerline of the model), respectively
at 3 and 6 m from the model base, was monitoredg|&i
pulses with frequency equal to the fundamental, and
acceleration levels froma; = 0.05 to 0.35 g were applied,
including a special case @ = 0.0001 g, representative of
elastic conditions. The results are presentedenfdhm of 7—y
curves in figures 21 and 22.

At ag = 0.05 g (fig. 22), the behaviour is elastic, Isoime
hysteretic damping is appearing, and the two sk@ments
show different damping since are subjected to whffe shear
strain. When the acceleration is larger this dagpenclearly
increasing. When the base acceleration level besovesy
high (.e. above 0.15 g) plastic effects are observed, coligren
with the hypothesis of elastic-plastic modfr 0.25 g and
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0.35 g large plastic deformations are observed,thisdplastic
behaviour is also taking part in energy dissipatming up
extra damping to the hysteretic component.

Normalized pressures due to horizontal shaking edese for
increasing excitation, as shown in fig. 23, whesereésponding
elastic results are reported with a black solié.lifhis results
in a reduction of internal forces acting on theucture, as
shown in fig. 24. It's clearly visible that for thedastic-plastic
model there is a decay in terms of normalized bepdioment
with acceleration level.

The elastic case is below the elastic-plastic ¢aisthe reasons
discussed previously. Concerning the M-O formuldjich
cannot allow for any kind of dynamic effect, theuks are well
below elastic-plastic results.

Total (gravitational + dynamic) base momerith, for all
frequencies and acceleration levels are plottedfign 25.
Horizontal line indicates the value b, g4, that is the value of
base moment for gravitational loading.
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It is clear that with increasing acceleration levidle base
moment is increasing, but soil non-linearity effeate clearly
visible: as acceleration level increases the “funelatal
frequency” of the system is decreasing, dusoftening of the
soil material. Furthermore, for large acceleratievels @4/ g
= 0.35) the curve is not so regular, which carattebuted to
larger plasticity effects in the soil. As freemqog increases,
base moment tends to move towards the gravitatioakle,
since dynamic effects become less important.

It is instructive to introduce aamplification factor (fig. 26):

AF(Mb) - Mb,tot - Ivlb,grav - My

M b,pst ~ M b,grav

(13)
M b,pst ~ M b,grav

whereMy, .« isthetotal base moment for pseudo-static loading.
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Fig. 26. Amplification factor for different ay/ g and w/ w
Analysing fig. 26 the following conclusions candr@awn:

- as acceleration level is increasiag;(M,) is decreasing due to
hysteretic damping and plasticity effects;

- as acceleration level is increasing, the “fundatalefrequen-
cy” of the system is decreasing, due to soil sarfign

- as excitation frequency is increasing there ianddification
(dynamic bending moment is lower than pseudo-static
moment).

The effective height of the resultant dynamic foiscéocated in
the region of (0.30.4) H as shown in fig. 27, hence in
agreement with Rankine theory (143, and below EC8 part 5
[2004] suggestion (0.5H) or Seed and Whitman [1970]
suggestion (0.61).
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FINAL REMARKS

Results of a series of numerical analyses with fihde-

difference code FLAC presented in the present pdjzee
demonstrated limits of applicability of both limgguilibrium

and elastic methods in the computation of pressbedsnd
rigid and flexible structures. The assumption ofl swn-

linearity has shown aspects that cannot be accduiote by

means of these simplified approaches.

Improvements in elastic analyses have been achieyedeans
of the simple assumption ail inhomogeneity, as already
noted by Veletsos and Younan [1994, 1997], andrBgaulos
et al. [2005]: (1) a consistent reduction of internal fsa@cting
on the structure is observed for rigid walls, a2y {ensile
stresses near the top of wall for large wall flditip or base
compliance are reduced.

Elastic-plastic analyses for flexible walls haveowh several
important features: (1glynamic amplification is important for

excitation frequency between one and two times the

fundamental of the soil layer, therefore the simpfeudo-
static assumption of M-O method results in a unsteration
of effects; (2) non-linearity impliedecrease of the resonant

frequency of the layer, as well as the important effect of

reduction of dynamic amplification effects with increasing
acceleration level, a beneficial effect which ispossible to
take into account by means of M-O and V-Y methods.

In general, with the obtained informations non-$inelynamic
soil-wall interaction effects for flexible walls eclarified, and
a more comprehensive and innovative approach fatysis
and design of earth retaining structures can beldped.

Current research is devoted to comparison of outsomith
available experimental findings, analysis of effecif real
accelerograms, as well as the assumption of aiplastge at
wall base, possibly leading to development qdesformance
based approach for the analysis of cantilever retaining walls.
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