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ADJUSTMENT METHOD OF THE HYSTERESIS DAMPING 
FOR MULTIPLE SHEAR SPRING MODEL 

Osamu Ozutsumi Susumu Iai 
Inst. of Japanese Union of Scientists & Engineers Port and Harbour Research Institute, Ministry of Transport, Japan 
Sendagaya S- 1 O-9, Shibuya-ku, Tokyo 15 l-005 1, Japan Nagase 3-l-1, Yokosuka 239-0826, Japan 

ABSTRACT 

In simulating the behavior of sandy soil under the cyclic loading condition using the multiple shear spring model, it is necessary to adjust 
the damping constant of the model. We describe a method for adjusting the constant in this paper. If you adopt the conventional Masing 
rule to decide the unloading curve of each spring, the entire damping constant of this model, which is superposition of those of all springs, 
would become larger than that measured in the laboratory for large strain level. Though the damping constant of each spring is 
controllable by amending the Masing rule, there is no obvious way to decide the constant of each spring. In order to reproduce the actual 
damping constant, we expressed the damping constant of each spring as a function of displacement at which unloading of the spring has 
started, and determined the coefficients of the expression from the actual damping constant. So we can amend the Masing rule for each 
spring so as to realize the damping constant for each spring. The method is adopted to the effective stress analysis program FLIP 
developed by the authors. In this paper we explain the method and show the results of the computer simulations by FLIP program. 

INTRODUCTION 

Characterization of cyclic behavior of sandy soil is important 
for evaluating deformation in soil structures during earthquakes. 
Towhata et al. [ 19851 proposed a multiple shear spring model 

to represent the relationships between shear stress and shear 
strain for sandy soil under the plain strain condition. As shown 
in Fig. 1, this model is represented by a movable point located 
within the circular fixed boundary defined in shear stress/strain 
space and connected to the boundary with an infinite number of 
virtual springs. Each spring corresponds to a virtual simple 
shear mechanism having a various orientation. The relationship 
between force and displacement of each spring follows the 
hyperbolic type load displacement relationship. The 
displacement of the movable point from the center represents 
the mobilized shear strain and the resultant of forces acting on 
the point represents the shear stress induced in the soil. This 
model automatically takes into account anisotropic behavior of 
soil caused by principal stress axis rotation. 

During earthquakes, soil undergoes cyclic loading, and the 
shear stress - shear strain relationship of soil traces a hysteresis 
loop. The area enclosed with the loop corresponds to the 
hysteresis damping. In order to simulate soil behavior, we must 
set the shear stress - strain relationship for unloading or 
reloading process. For idealizing the soil behavior under 
drained condition, we often idealize these hysteretic behavior 
based on the Masing rule. The unloading and reloading curves 
with the Masing rule, if combined with hyperbolic stress strain 

relationship, reproduce larger damping constant than that 
typically measured in the laboratory in large strain level. For a 
commonly adopted one dimensional simple shear type model, 
Ishihara et al.[1985] proposed a method for adjusting the 
damping constant by amending the Masing rule. 

displacement u 

Fig. 1 Multiple shear spring model 

A problem remains for the multiple shear spring model. If we 
apply the Masing rule to each spring composing the multiple 
shear spring model, the model would also overestimate the 
damping constant of the soil in large strain level. Iai et al. 
[ 1990,a] proposed a method for determining the damping 
constant for each spring in order to adjust the damping constant 
of the multiple shear spring model as a whole. The damping 
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constant of each spring was defined as a function of its 
displacement, which corresponds to the reverse point on the 
backbone curve. They used the method proposed by Ishihara et 
al.[ 19851 for adjusting the damping constant of each spring. lai 
et al.[l990,b] had installed this procedure in the computer 
program called FLIP which estimates damage to the soil 
structures caused by liquefaction based on the effective stress 
method. 

In this paper, we will explain the method for determining the 
damping constant of each spring from the damping constant 
defined for overall stress-strain relationships of soils. We will 
show the shear stress - shear strain relationships of sandy soil 
under the drained condition obtained from the simulations 
performed using FLIP program to demonstrate the validity of 
the proposed method. 

MODELLING OF SHEAR MECHANISM 

We trace the formulation described by Iai et a1.[1990,a] for 
shear mechanism of sandy soil under the plain strain condition 
using the multiple shear spring model. 

F, = (1/4)~,,, (5) 

-I,,, = (FrnG+ (6) 

T,,,~ and Go in these equations stand for the shear strength and 
the initial shear modulus of the soil respectively. 

Fig.2 Schematicfigure of loading/unloading in the normalized 
plane 

Multinle Shear Snring Model 
Unloading and Reloading 

y(O) stands for the displacement of the spring located in the 
e-direction (see Fig. I). F(y) stands for the force per unit angle 
ofthe spring. The relationship between the spring displacement 
and the strain components in the soil is given by Eq.( I) and the 
relationships between the spring forces and the shear stress 
components in the soil are given by Eq.(2) and Eq.(3). 

VW = (my-E,)COS~ + yxy sine (1) 

(o,-0,)/2 = IF(y(B))cosB de (the integral range : 0-+2rc) (2) 

Txy = IF(y(e))sine de (the integral range : 0-2~) (3) 

(my-4 and yxy in Eq.(l) are strain difference and shear strain 
respectively. ((~,-a,)/2 in Eq.(2) and TV in Eq.(3) are stress 
difference and shear stress respectively. 

Loading 

We postulate that the relationship between the force F(y) and the 
displacement y of the spring conforms to the hyperbolic model 
under the loading condition. That is, the relationship between 
the spring force v (= F(y)IF,) which is normalized by the 
strength of the spring (F,) and the spring displacement u (= 
y/y,,,) which is normalized by the reference strain of the spring 
(ym) is given by Eq.(4). 

v=u/(l+(u() (4) 

This function is shown as a backbone curve in Fig.2. The 
strength (F,) and the reference strain (ym) are given by Eq.(5) 
and Eq.(6) respectively. 

We suppose that a spring is unloaded at a point (u,,v,) on the 
backbone curve as shown in Fig.2. The coordinate (u,,v,) 
denotes the reversal point from the backbone curve in the 
normalized plane. 

It is assumed that, until getting back to the backbone curve, the 
relationship between the force and the displacement of the 
spring is described as a hyperbolic curve, the neutral point of 
which is located on the last reversal point (Q,v,) (these points 
are designated as I, 2 or 3 in Fig.2) and which cross the point 
(u,,v,) or (-u,,-v,) in case of reloading or unloading respectively. 
These hyperbolic curves are given by Eq.(7): 

(Q-v:)/26 = {(u’-ll:)/26} i ( l+~(u’-u,‘)/2S~} (7) 

in which u’, v’, etc. are transformed variables from u, v, etc. 
using Eq.(8) or Eq.(9) in order to adjust the magnitude of the 
hysteresis damping. 

u’ = u /<(u,) 03) 

v’ = v /q(u,) (9) 

6 in Eq.(7) isgiven by Eq.(lO) which is derived from a condition 
that the hyperbolic curve given by Eq.(7) crosses the point 
(-u,‘,-v,‘) or (u,‘,v,‘). 

s = (l/2) I(al,‘-u,‘)lj(%v,‘-v,l)l / I(~u,‘-u,‘)-(iv,‘-v,‘>l (10) 

In the above equation, the double signs become minus in case 
of unloading, and plus in case of reloading. In the first 
unloading process from the backbone curve, we want to make 
the Eq.(7) have the same form as the unloading curve based on 
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the Masing rule. This condition derives the expression of n(ul) 
as follows. 

Ilk4 = (5h)+W / (l+hb (11) 

We can decide the value of &ui) solving the next equation 
numerically. 

DWi> = Mud (12) 

The unloading curve from the backbone curve conforms to the 
Masing rule on the n-v’ plane as stated previously, so its 
damping constant on this plane is given by the function D(ui’), 
the expression of which is shown in Eq.(13) (Ishihara et 
al.[ 19851). 

D(u) = (4/rr)(l+lllul){l-(l/lul)ln(l+lul)} - (2/n) (13) 

The function h(u,) in Eq.( 12) stands for a damping constant of 
the spring. We could determine the function h(uJ in order that 
the multiple shear spring model as a whole shows the given 
damping constant. We describe the method for determining 
h(ui) in the next chapter. 

DAMPING CONSTANT OF EACH SPRING 

Damping Constant of MultiDle Shear Spring Model 

As stated previously, the damping constant of each spring of the 
multiple shear spring model is designated as h(ui). 

We think a hypothetical stress path of the soil corresponding to 
a simple shear test under the drained condition. That is, fist, 
we consolidate the soil isotropically, second, load simple shear 
stress rXY on the soil giving shear strain yXY (= Uya, third, unload 
the stress until getting to the reverse point on the backbone 
curve, and finally reload until getting back to the former state. 
The variable U is equal to uI of the spring placed in the direction 
of angle 90 degree. 

The displacement of the spring located in the O-direction at the 
beginnings of the unloading is given by Eq.( 14). 

UsinO yrn (14) 

At this moment, the force per angle de of the spring is given by 
Eq(15): 

(Usin / (l+IUsinel)}F,,,de (15) 

because each spring stays on the backbone curve. The strain 
energy per angle dt3 is designated by Eq.(16). 

w(u,e)de = e(u,e> yrn F,de (16) 

The function e(U,e) in the above equation is defined as follows. 

e(U,e) = 1/2(Usin8)2 / (1 +IUsinOl) (17) 

The damping energy Awde of a hysteresis loop is given by 
Eq.(18) based on the definition of the damping constant h(U). 

Aw(U,B)de = 4rtw(U,B)h(Usine)dt3 (18) 

Therefore the damping constant of the multiple shear spring 

model is given by Eq.( 19) or (20). The range of the integrations 
in these equations is from 0 to 2~. 

H(U) = (1/47t) Ifb(u,e)de / h(u,e)de (19) 

= je(U,e) h(UsinQdt3 / je(U,B)dO (20) 

This damping constant is compatible with the damping constant 
calculated on the corresponding stress-strain space (Iai et 
a1.[1990,a]). 

DamDing Constant of Each Snrinq 

We assume that the damping constant of each spring could be 
expressed by Eq.(21). 

h(U) = Ck Ek(lUl/r,J / (l+IUl/r~ (21) 

Each term of the right side of the above equation is a function 
whose value increases approximately from zero to Ek as the 
normalized displacement IUI varies from ~/lo to 10~~. 
Therefore, if we arrange the values of rk in the suitable interval, 
the unknown function h(U) could be expressed by Eq.(21), even 
if it has any form. We should determine the values of Ek. 

We substitute Eq.(21) for h(U) in the Eq.(20), then the damping 
constant of the multiple shear spring model is given by Eq.(22). 

H(U) = Ck (Pk(U) Ek (22) 

The function (pk(U) in the above equation is given by Eq.(23). 

(pk(U) = fe(U,B)(IUsinel/r,J(1+IUsint31/riJd0 / je(U,B)de (23) 

On the other hand, we let H’(U) denote the actual damping 
constant measured in the laboratory test. For example, H’(U) 
represents the hyperbolic relation as proposed by Hardin et 
al. [ 19721, and this damping constant only depends on the shear 
strain at the unloading point as shown in Eq.(24). 

= H,,IrtU/41/ (l+lnU/41) (24) 

The Hm, is the maximum value of the damping constant, and Yref 
= GAGo. 

We decide, finally, the values of Ek using the method of least 
square. That is, we could find the values of Ek which make the 
sum of square I shown in Eq.(25) the smallest. 

I = Cm (H(U,,,) - H’(U,,,))* (25) 

We can obtain Eq.(26) from Eq.(22), because lim (pk(U) = 1 
(U--+~co). 

lim H(U) (u-im) = & Ek (26) 

On the other hand, we can obtain Eq.(27) from Eq.(24). 

lim H’(U) (u+*u$ = H,, (27) 

Comparing Eq.(26) with Eq.(27), we get a following condition 
about parameter Ek. 
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CkEk=Hmax (28) 

This is a constraint condition to decide the values of El, with the 
method of least square. 

When the function h(U) given in Eq.(21) has only one term, 
namely : 

h(U) = E,(lW,) / (I+IUl/T,) (29) 

we can set E, = H,, by Eq.(28). So, we should adjust r, so that 
the sum of square I of Eq.(25) becomes the smallest. 

Approximation of H’ (U) by This Method 

We will show the validity of the above-mentioned method using 
a model of sand whose initial shear modulus (G,) is 85000kPa, 
shear strength (TV) is 63.0kPa, and reference strain (rr,r) is 
7.4x 10-4. 

We expressed the damping characteristics of sand, giving 
damping constant as shown in Eq.(21) or Eq.(29), which is a 
special case of Eq.(21), to each spring. Although the springs of 
the multiple shear spring model are continuously distributed in 
the B-direction, we replaced an infinite number of springs with 
30 springs per a quarter of circle. 

Typical damping characteristics of sandy soil obtained 
experimentally (Zen et al.[ 19871) is shown with dashed line in 
Fig.3a. We consider this curve to be a target function H’, and 
show the approximated curves in the same figure. In case of 
polynomial approximation (Eq.(21)), we use 10 terms and 
choose the values of rk as follows. 

Tk=0.001X1005(k-‘) (k= 1, *.., 10) (30) 

Though test value is reproduced well as for the polynomial 
approximation, the monomial approximation misfits the 
damping constants at lower strain level by Fig.3a. 

On the other hand, if we pick the hyperbolic relation by Hardin 
et al.[1972] shown in Eq.(24) for the target damping function 
H’, both the polynomial and the monomial approximation 
reproduce the H’ well (see Fig.3b). 

A hyperbolic type function shown in Eq.(24) is adopted as a 
target function H’ in the FLIP program. Though the actual sand 
displays a few percent of damping constant at lower strain level 
as shown in Fig.3a, the hyperbolic curve can’t reproduce these 
damping constant. We think that this characteristics in such a 
low strain level can be reproduced by Rayleigh damping given 
separately. 

RESULTS OF SIMULATIONS 

We carried out computer simulation using the FLIP program to 
examine the adequacy for the proposed method. We used the 
same characteristics of soil for the simulation as mentioned 
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above, i.e., Go = 85000kPa, ‘cf = 63.0kPa, and Yref = 7.4x I Om4. 

First, a finite element for sand was consolidated isotropically or 
anisotropically under the drained condition. Then we examined 
the stress-strain relation ofthe soil element during monotonic or 
cyclic simple shear under the drained condition. At this stage, 
we loaded shear stress ~~~ onto the element under the restraint 
condition of constant vertical normal stress (a,) and constant 
horizontal strain (E,) (see Fig.4). We also disregarded any 
effect of dilatancy. And we supposed, for sake of simplicity, 
that ~~~ and G,, did not depend on the effective confining 
pressure. We adopted the Eq.(24) as a target function H’, and 
used the polynomial approximation (Eq.(21)), but we could 
have the same result using the monomial approximation 
(Eq.(29)). We replaced an infinite number of springs with 6 
springs per a quarter of circle for this simulation.. 

i;I:] 5 040 ;I Polynomtal approxtmation (IO terms) 

l.OE-06 l.OE-05 l.OE-04 l.OE-03 l.OE-02 l.OE-01 
Shear strain 

Fig.3a Typical damping characteristics of sand obtained 
empirically and its approximated curves 

5 040 
g::: 1 

- Polynomtal approxunatton (I 0 terms) 

I.OE-06 l.OE-05 I.OE-04 l.OE-03 l.OE-02 l.OE-01 

Shear strain 

Fig. 36 Hyperbolic type damping characteristics by 
Hardin et a/.[1 9721 and its approximated curves 

Fig.4 Conceptual diagram of simulation for simple shear test 
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Cyclic Simple Shear afier Isotropic Consolidation the unloading curve of each spring conforms to the Masing rule. 

After isotropic consolidation with confining pressure 98kPa, we 
applied shear stress oscillating sinusoidally with amplitude 
55kPa. The relationships between shear stress (TV) and shear 
strain (yxY) are shown in Fig.5. The figure has four graphs. The 
first three of them correspond to the case of H,, = 0.35, 0.25, 
0.15 respectively. The last figure corresponds to the case where 

We confirmed that each area surrounded by the hysteresis loop 
is just equal to the prescribed values, and the smaller the H,,,, 
the smaller the tangential modulus (- AQAyxY) at the 
unloading point. The area corresponds to the last figure based 
on the Masing rule is fairly large. 

HmaF0.35 

-, 
-1 .OE-02 

Hmall-0.25 

O.OEtOO 

shear strain y,: 

I .OE-02 

-~ 
-1 .OE-02 

Hmax=O. 15 

O.OE+OO 

shear strain yxY 

I .OE-02 

-1 .OE-02 

Masing rule 

O.OE+00 

shear strain yY1 

l.OE-02 

-l.OE-02 O.OE+OO 

shear strain y,! 

I .OE-02 

$ -100 I v1 
-I .OE-02 O.OE+OO l.OE-02 

shear strain y,! 

Fig.5 Shear stress - shear strain relationships (computed}: Fig. 6 Shear stress - shear strain relationships (computed). 
Cyclic simple shear afier isotropic consolidation Cyclic simple shear after anisotropic consolidation 

Hmax=0.35 

-1 .OE-02 

Hmax=0.25 

O.OE+OO 

shear strain yb, 

-1 .OE-02 

Hmax=O. 15 

O.OE+OO 

shear strain yxb 

I .OE-02 

-l.OE-02 

Masing rule 

O.OE+OO 

shear strain yA, 

I .OE-02 
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Cvclic Simple Shear after Anisotrouic Consolidation 

The conditions for these simulations are the same as the above 
cases unless stress state after consolidation. We anisotropically 
consolidated the soil element with I& (- aXoio,a) = 0.5. Four 
graphs in Fig.6 are shown in the same way as Fig.5. 

Each graph of Fig.6 shows the same tendency as those in Fig.5, 
and it is understood that the damping constant could be 
controlled in the same way as the case of isotropic consolidation, 
According to Fig.6 shear strain becomes a little large during 
cyclic loading and this tendency is as remarkable as H,, is 
small. The damping constant corresponds to the loop after 
softening is equal to the prescribed value. We suppose that this 
softening depends on increase in the normal horizontal stress 
(ox) due to the decrease in the shear modulus. 

Initial Shear Modulus after Consolidation 

After the consolidation with various I& values, we gave the 
shear strain (y,) of 1O-6 to the soil element by the strain control 
method, and took the shear stress (r,) at that time. Then, we got 
the initial shear modulus (G,) as ratio of the stress to the strain. 
These modulus are shown in table 1. As shown in table 1, the 
initial shear modulus decreases in case of the anisotropic 
consolidation, and the stronger anisotropy, the lager decrease in 
GO. And, the degree of the decrease in Go is as large as H,, is 
small, among the same I&. 

After the anisotropic consolidation, some displacement occurs 
to each spring of the multiple shear spring model unless springs 
located in the direction of 190 degree. If we apply shear stress 
rri to the soil element, which is in that condition, the tangential 
stiffness of each spring is smaller than that of undeformed 
spring. Specially, as for the spring getting unloaded at that time, 
tangential stiffness becomes small, as H,,: is small. So the 
initial shear modulus becomes small, as H,, is small. 

In case of analyzing a horizontally layered system, we first 
apply gravity to the system, and I& of the sandy soil usually 
becomes about 0.5. In such a case, especially with small H,,, 
we should pay attention to the decrease in the initial shear 
modulus. If we consider that the initial shear stress or the shear 
strength depends on the confining pressure, we have to take 
account of another effects by this dependency, though it isn’t 
dealt with here. 

Table 1 Initial shear modulus Go (unit:kPa) 
zz 0.15 0.25 Masinp. rule 

54600 59700 61400 
1.5 67600 70600 70700 
I.0 84900 84900 84900 
0.5 54600 59700 61400 
0.3 30900 37000 49400 

CONCLUSlON 

If we expressed the relationship between shear stress and shear 
strain of sandy soil based on the multiple shear spring model, it 
is necessary to adjust properly the damping constant of each 
spring of the model in order to simulate soil behavior during 
earthquakes. We proposed the method for adjusting the 
damping constant of each spring. In this method, we supposed 
that the damping constant of each spring is a function of the 
displacement at the unloading point of the spring, and could be 
expressed by a polynomial composed of functions, which is 
similar to the hyperbolic type function. The method of least 
square was adopted to determine unknown coefficient of the 
functions. 

Then, we showed that the damping constant of the multiple 
shear spring model could be controlled by this method, through 
numerical simulations by the FLIP program, which is equipped 
with this method. We also demonstrated decrease in initial 
shear modulus after anisotropically consolidation, and the 
decrease in shear modulus is as remarkable as H,,,, is small. So, 
we should pay attention to this phenomenon when we adopt this 
method. 
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