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Pza Leonardo da Vinci 32 
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ABSTRACT 

Recent experimental and analytical research on seismic behavior of shallow foundations is illustrated. The most significant results on 
the seismic bearing capacity of footings with pseudo-static approaches are reviewed first, including an analytical formula recently 
proposed for the new version of the “seismic” Eurocode 8. Afterwards, we present the salient experimental results of large-scale cyclic 
tests of a shallow foundation model (lm x lm in plan) resting on a large volume of sand, with relative densities 45% and 85%, dis- 
cussing them in detail. Under earthquake-like cyclic loading, with peak values close to the pseudo-static failure limit, significant per- 
manent settlement and rocking were observed, approaching serviceability limit states in lowdensity soil conditions. A series of dis- 
placement cycles of increasing amplitude was subsequently applied, up to the ultimate capacity of the soil-foundation system. 
Although the experimental cyclic bearing capacity is much higher than that predicted by pseudo-static approaches, this advantage is 
offset by the occurrence of large permanent deformations that may lead the structure to collapse. Finally, a recent theoretical method 
for performing simple nonlinear dynamic soil-structure interaction analyses is reviewed, and applied to estimating the reduction of re- 
sponse spectrum ordinates in strong earthquakes. Reductions up to 30%-50% were found for spectral accelerations exceeding 0.4g. 

INTRODUCTION 

This special presentation addresses some closely intercon- 
nected topics concerning the earthquake behaviour of shallow 
foundations. 
The spectacular failures suffered by a number of recent build- 
ings in Ada@ city, Turkey, during the disaslrous Kocaeli 
earthquake of August 1999 provide outstanding field evidence 
on the role of rotations and overiurning moments acting on 
shallow foundations during strong ground motion. These were 
mostly rigid body failures, sometimes with complete overtop- 
ping of the structure; affected buildings typically had a mat- 
type shallow foundation and rather large heighthidth ratio. 
Liquefaction .of foundation soils was certainly an important 
factor, but probably not the only one. Even in buildings that 
did not suffer spectacular Wures and possibly rested on pre- 
dominantly cohesive soils that prevented liquefaction, signifi- 
cant tilting and settlements were observed. According to 
Gazetas (2000), buildings in Adapazari with aspect ratio WB 
e 1 did not experience visible tilting, even if they were free 
laterally; buildings with aspect ratio of about H/B w 1.5 expe- 
rienced tilting of about 5 degrees; and buildings with aspect 
ratio of H/B > 2 toppled, if of course they were free laterally. 
One key question of interest for the geotwhnical designer, 
discussed in the following sections, is the assessment of the 
“seismic“ bearing capacity of foundations in the light of the 
most recent developments of tbis subject, including experi- 

mental validation by large scale tests. More specifically: how 
safe, in terms of permanent deformations, can we consider a 
foundation that satisfies a bearing capacity criterion where the 
design earthquake enters only in the form of pseudo-static ac- 
tions? Does the fulfilment of the bearing capacity requirement 
impose excessive limitations on the foundation displacements 
and rotations, or vice-versa? 
We give in the next section an outline of the most recent de- 
velopments in the field of pseudo-static methods for bearing 
capacity assessment; based on such developments, the part of 
Eurocde 8 (1994) devoted to foundations and geotechnical 
aspects is currently being updated. Next, after reviewing re- 
cent experimental results, notably those obtained in the centri- 
fuge, we illustrate perhaps the core of this presentation, 
namely the validation provided by large-scale cyclic test both 
to bearing capacity criteria and to methods for deformation 
analysis. These cyclic tests are of unprecedented size for the 
laboratory and the results have allowed to throw light on sev- 
eral signiscant aspects of the problem. 
Finally, theory and experiments consistently indicate that both 
research and design applications would significantly benefit 
from improved accuracy in estimating permanent displace- 
ments resulting from nonlinear soil foundation interaction 
during strong earthquake shaking. A simplified method based 
on a macro-element approach is reviewed, and its application 
to determining the reduction of spectral response due to non- 
linear dissipation of the soil foundation system is described. 
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I I 

PSEUDO-STATIC METHODS 

The seismic bearing capacity of shallow foundations is gener- 
ally checked using the classical superposition formula: 

where y, c, e are the unit weight, soil cohesion and lateral 
overburden, respectively, and Ny, N, and Nq the well known 
bearing capacity factors, depending on the soil fiction angle. 
The seismic action is treated as an equivalent static force that 
af€ects the S and i correction factors, taking into account the 
load eccentricity and inchtion. 
In the early 90s this approach has been improved by several 
theoretical studies based on limit equilibrium techniques 
(Sarma and Iossifelis, 1990; Budhu and Al-Karni, 1993; Ri- 
chards et al., 1993), where the effect of soil inertia on bearing 
capacity was included. 
Although these studies contributed significantly to clarifying 
the subject, they suffered from the following main limitations: - the effect of load eccentricity was not investigated, espe- 

cially under high lateral loads that may induce foundation 
uplift, 
the effect of soil inertia was not separated fkom that of 
load inclination, leading to a partial misunderstanding of 
its consequences on bearing capacity. 

These effects were thoroughly analyzed in subsequent papers 
(Pecker and Salenpn, 1991; Dormieux and Pecker, 1995; 
Paolucci and Pecker, 1997a and b) using the upper bound 
(kinematic) approach of the yield design theory (Salenpn, 
1990). 

- 

Kinematic approach 

The core of the kinematic approach is the assumption of one 
(or several) admissible kinematic mechanisms describing the 
velocity field of the soil-foundation system at failure. An ex- 
ample is shown in Fig. 1, in the case of a homogeneous cohe- 
sionless (Tresca) soil. This is an improvement on the classical 
Prandtl-type rupture mechanism, because foundation uplift is 
allowed. Any rupture mechanism is defined by a set Y of un- 
known geometric parameters (for example a, p and h in Fig. 

E we denote by Q the set of external loads applied to the 
foundation, by P& the power of such external loads, and by 
P", the maximum resisting power, depending on the soil 
strength and the mechanism geometry, the necessary condition 
of stability of the soil-foundation system requires: 

1). 

P"' (Q, Y) I P" (Y?, soil strength). (2) 

A- 'on procedure applied to inequality (2) allows to 
find the upper bound of the extemal loads Q and the corre- 
sponding "optimum" parameter set of the rupture mechanism. 

In the seismic case, the external loads typically include: 
- vertical action (N) 
- horizontal action (H) 

- overturning moment (MJ 
- soil inertia force (F) 
All admissible loads, satisfying (2), lie within the so-called 
bounding suvface defined in the external load space as: 

Z e 

K K 

H h \ 

N 

Fig. 1. 3 0  view of one of the kinematic mechanisms consid- 
ered for bearing capacity calculations in cohesive (Tresca) 
soils. From Paolucci et al. (19976). 

Analvtical formula for seismic bearing camcitv calculations 

Using the concept of bounding surface, as an alternative to the 
classical superposition formula (l), a new method has been 
introduced for computing the seismic bearing capacity of 
shallow foundations (Pecker, 1997). 
Based on the results of a wide set of theoretical analyses using 
the kinematic approach, the following analytical expression of 
the bounding surface has been proposed for the new version of 
E u r d e  8 (Provisions for earthquake resistance of struc- 
tures), presently under preparation: 

_ - _ _  
@(N, H, M, F) = 

(4) 

where : 
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"ax = ultimate bearing capacity under a vertical centered 
load, to be calculated by (1) with the appropriate material safety 
factor; 
p = partial safety factor that accounts for model uncertainty 
during dynamic loads, and depends on soil conditions as in Tab. 
1; 
B = foundation width; 
F 
- 

= dimensionless soil inertia forces defined as follows: 

- 
F=- kH for purely cohesive soil (6a) 

CU 

F=- - for purely cohesionless soil (6b) 
tarwp 

In the previous expressions, (b is the soil friction angle, c, the 
undrained shear strength, and kH the horizontal seismic design 
coefficient. The other parameters a, b, c, d, e, f, g, k, k', CT, cM, 
cINL f3, yM are defined according to the soil nature, as given in 
Tab. 2. 
The foundation is safe if, under the prescribed seismic loads, 
inequality (3) is satisfied. 

A 3D elevation view of the bounding surface (4) in the case of 
cohesionless soils is illustrated in Fig. 2% while two cross- 
sections are shown in Fig.2b, for the case F =O (no soil iner- 
tia) and eccentricity ratio e/B=O and e/B=1/6. As discussed by 
Paolucci and Pecker (1997a) these curves are close to those 
obtained experimentally by other researchers (e.g. Nova and 
Montrasio, 1991; Butterfield and Gottardi, 1994). It can be 
easily verified &om (4) that for 4 < 0.1 and reasonable values 
of the static safety factor, soil inertia effects can be neglected 
for cohesionless soils, while for cohesive soils F can be taken 
equal to 0. 
Although the bounding d a c e  (4) has a rather cumbersome 
expression, its use for seismic bearing capacity calculations 
presents several advantages: - a single expression is used for purely cohesive and cohe- 

sionless soil conditions; - it represents a theoretical upper bound for failure loads; 
- the effect of soil inertia is accounted for explicitly. 
Besides, if the soil inertia effect is neglected (F =O), equation 
(4) takes a more "manageable" form. 

- 

- 

LARGE-SCALE SOIL-STRUCTURE INTERACTION 
EXPERIMENTS 

Overview of recent experimental results 

Laboratory tests encounter several major difticulties for a 
sound experimental reproduction of the complex, nonlinear 
dynamic soil-structure interaction problem, such as: 

careful control of soil properties: the deposition proce- 
dure and the saturation (if required) of the soil specimen 
must be carelidly conducted and checked; 
boundary conditions: the boundaries of the testing appa- 
ratus should be enough removed from the foundation so 
to prevent any constraint on the development of failure 
mechanisms. Besides, flexible boundaries should be used, 
with well calibrated properties to reproduce free-field 
boundary conditions; 
scale problems: large-scale tests are more expensive, in- 
volve a very large amount of material, and cannot be re- 
peated easily, while the use of scaling laws in small-scale 
tests is questionable when applied to the grain size of soil 
materials, especially for strongly non-linear problems 
with pore-pressure build up; 
seismic loa&. both seismic actions transmitted by the su- 
perstructure (vertical and shear force, plus overturning 
moment) and soil inertia effects should be taken into ac- 
count Simdtan"1y. 

0 0.5 1 

""ax 

Fig. 2. a) 30 view of the bounding surface (4). b) Cross- 
sections of the bounding suvace (4), in the case of no soil in- 
ertia and two digevent values of eccentricity ratio (e&). 
Squares denote the limit value of the horizontal force H during 
Phase III of the large-scale cyclic tests, with en3 in the range 
0.35-0.40. Triangles denote the peak value of H, during Phase 
II of the large-scale cyclic tests, with e5=1/6. 

Paper No. SPL-5 Page 3 



Tab. 1. Partial safety factor p to accounting for model un- 
certainties in seismic conditions (proposed for the 
new version of Eurocode 8, under preparation) . 

Medium- Loose Loose satu- Non sen- 

densesand sand 

Sensitive I< 
I I I I I 

Tab. 2. Parameters in the equation (4) of the bounding 
surface. 

Parameter Purely cohesive soil Purely cohesionless soil 

a 0.70 0.92 
b 1.29 1.25 
C 2.14 0.92 
d 1.81 1.25 
e 0.21 0.41 

1.00 0.39 
2.00 1.14 

CM 2.00 1.01 
. C'M 1.00 1.01 

R 2.57 2.90 
YM 1.85 2.80 

It is impossible to cope with all of these requirements with the 
same testing apparatus. Centrifuge testing has encountered a 
notable success in the recent years, with several applications 
to the seismic analysis of shallow foundations (see e.g. Zeng 
and Steedman, 1998; Gamier and Pecker, 1999). Another po- 
tentially usem apparatus for testing geotechnical structures is 
the shear stack mounted on the shaking table of the University 
of Bristol paylor et al., 1994), that allows to perform large- 
scale experiments and to closely simulate free-field boundary 
conditions. 
Zeng and Steedman carried out a series of centrifuge experi- 
ments with mediumdense (relative density varying in the 
range 46-63%) and dry or saturated soil conditions. A sum- 
mary of test results is given in Tab. 3. In the most favourable 
conditions, consisting of a light foundation model with high 
static safety factor and low aspect ratio (height of the center of 
gravity/foundation width) the foundation underwent only 
slight permanent deformations even under several peaks of 
horizontal acceleration of 0.45g. 
In a subsequent series of tests with a "heavy" model (static 
safety factor about 8, with aspect ratio 1.5), the foundation 
failed both on dry and saturated soil, under cycles of peak 
ground acceleration ranging between 0.24g and 0.3 lg. 
The key parameter leading foundation to failure was identified 
by the authors as the foundation rotation cumulated during 

several cycles of loading, leading to a progressive reduction of 
the contact area between soil and foundation. 

Large-scale experimental setup 

A programme of large-size, cyclic loading experiments has 
been carried out in 1997-98, by the first two authors and other 
specialists, within the framework of the European research 
Project TRISEE (3D Site Effects and Soil-Foundation Interac- 
tion in Earthquake and Vibration Risk Evaluation, see Internet 
site http://www.crs4.it/trisee), to investigate the non-linear in- 
teraction between direct foundations and the supporting soil 
under seismic loading. The basic set-up of the experiments 
consists of a footing lying on a saturated sand of known prop- 
erties, and excited by a time-varying horizontal force and 
moment, intended to simulate the inertial forces transmitted to 
the foundation by the superstructure. The soil mass is at rest, 
so that the wave propagation and inertia effects in the soil are 
neglected with respect to the dynamic inertia forces " i t -  
ted by the foundation. As mentioned in the previous section, 
soil inertia has a negligible influence on the failure loads for 
reasonable values of the static safety factor. 
The tests were performed at the soil relative densities D, 
85% and D, m 45%, that are representative of high (HD) and 
low density (LD) soil conditions. The latter can be considered 
as a lower bound for design of shallow foundations in practice, 
since the presence of sands at lower density generally leads 
the engineer to other design solutions. 
The experimental prototype consists of a sti f f  concrete caisson 
filled with sand (Ticino sand, described in Bellotti et al., 
1996), and of a steel mock-up, representative of a concrete 
footing, see Fig. 3. The caisson has dimensions 4.60 m by 4.60 
m in plan and 4 m in height, while the foundation is 1 m by 1 
m in plan. The walls of the caisson are rigid and waterproof. 
While the bottom of the caisson is enough removed from the 
foundation to avoid inter€erence with the possible failure 
mechanisms, the vertical walls may have a significant influ- 
ence on the bearing capacity of the foundation on dense sand, 
that should be taken into account in the interpretation of ex- 
perimental results. On the other hand, the effect of the lateral 
constraints on the development of permanent displacements 
and rotations is less important, except at failure. 
The foundation is made of steel, and has a concrete interface 
with the underlying soil that ensures a high fiction resistance 
under horizontal loads. As shown in Fig. 1, the foundation is 
embedded 1 m in the sand, corresponding to a lateral overbur- 
den of about 20 Ha.  A 1 m high steel fonnwork was placed 
around the foundation to retain the sand 
The vertical load is transmitted by an air cushion system de- 
signed to keep the force constant throughout the test. A hy- 
draulic actuator, acting 0.9 m above the foundation level, 
transmits to the foundation the prescribed time-varying hori- 
zontal force or displacement. 
Details on the reconstitution and saturation of the soil samples, 
on the evaluation of soil properties and on the instrumentation 
are reported elsewhere (Jamiolkowski et al., 1999). Full satu- 
ration of the soil mass was attempted but could not be at- 
tained, so that the tests should actually be representative of 
drained soil conditions. 

Paper No. SPL-5 Page 4 



Fig. 3: Scheme of the experimental setup. 

Static 
safety 

Aspect Relative Soilcon- PGA Peak Peak Residual Residual 
ratio density ditions (g) Rocking Settl. Rocking Settl. 

- 
failure due to progressive rotation 

Large-scale tests I 
LS1 I 7 45 I Sam. I 0.18 I 6 11 2 I 11 

' 0.9 I 85 I satur. I 0.18 I 3 3 I 0.5 I 3 

Test seauence 

The HD and LD specimens were subjected to a similar test 
sequence, consisting of the application of the design-level 
vertical load (which was kept constant throughout the whole 
loading sequence), and of three subsequent cyclic loading 
phases reproducing different levels of horizontal excitation. 
The design vertical loads were 300 kN and 100 kN for HD and 
LD specimens, corresponding to design pressures of 300 kPa 
and 100 Wa, respectively. These are typical design values for 
foundations on medium to dense sands, and are govemed by 
admissible settlement requirements. The resulting static safety 
factor, based on the superposition formula (l), was found to be 
about 5 in HD and 7 in LD conditions. 
The jinal vertical settlement experienced by the foundation 
under static load was about 7 mm for HD, and about 16 mm 
for the LD soil conditions. A detailed analysis of the static 
settlements can be found elsewhere (Jamiolkowski et al., 
1999). 
After completion of the static loading, the horizontal cyclic 
loading was applied in three phases, as follows. 

Phase I. A series of small-amplitude, forcecontrolled pulses 
was applied first, to identify the onset of non-linear behaviour 
in the soil. Each pulse consisted of two sinusoidal cycles, with 
frequency S 0 . 5  Hz. Their amplitude was gradually increased 
up to about 5% of the vertical load, to obtain evidence of 
stiffness degradation and development of hysteresis loops. 

Phase II. The foundation was then subjected to an earthquake- 
like variable horizontal force and overturning moment 
transmitted by the hydraulic actuator at 0.9 m height. The time 
history of the horizontal force was adapted from that of the 
base-shear measured on a four-story RC building, designed 
according to EC8 and tested at the ELSA laboratory (Negro et 
al., 1996). The peak of the seismic excitation was scaled to a 
seismic coefficient (horizontal force divided by vertical force) 
of about 0.2, as shown in Fig. 4. The seismic coefficient was 
combined with the height of application of the horizontal force 
(h=O.9m) in such a way that a compressive stress was 
maintained everywhere on the foundation interface. The 
absolute value of the force peak was of about 60 lcN and 20 
kN for the HD and LD tests, respectively. To preserve the 
accuracy in the force-control system, the original time scale 
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was expanded. For the HD test, the time scale was expanded 
by a factor of 6, whereas for the LD test the original time scale 
was expanded by a factor of 3. Since the original record of 
horizontal force had a fundamental frequency of about 0.8 Hz, 
the horizontal force diagram actually applied had, instead, a 
fundamental frequency of 0.13 Hz for the HD test and of 0.27 
and for the LD test. 

Phase II 

-0.2 

"e (8 )  
Fig. 4: Phase 11: time-histog of normalized horizontalforce 

Phase III. Finally, sine-shaped displacement pulses of 
increasing amplitude were imposed to the top of the sttucture, 
up to the attainment of a limit threshold of the foundation 
resistance. In this final phase, the test was displacement- 
controlled in order to avoid excessive movement of the system 
close to its ultimate capacity. Pairs of cycles (e1/6 Hz) were 
used for HD test and single cycles (*1/3 Hz) for LD test. 

Main test results 

Phase I The application of force-controlled cycles of small 
amplitude resulted in substantially similar behaviour in the 
two tests. The hysteresis loops for the overturning moment vs. 
rocking were narrow and quite stable, denoting a limited 
amount of dissipation. The rocking stiffness for the HD case 
was more than twice that in the LD case. The settlement of the 
foundation at the end of this phase was about 0.15 mm in both 
HD and LD cases, indicating that for values of the seismic 
coefficient not exceeding about 0.05 g, the permanent 
foundation displacement and rocking are negligible. 

Phase IL This loading phase is the most meaninghl for 
throwing light on foundation behaviour under earthquake 
loading. Representative results are illuscrated in Figures 5 and 
6, namely the overturning moment vs. rocking diagrams and 
the vertical settlements, respectively. In both HD and LD tests, 
the largest cycle occurred for the peak of horizontal force, 
while the subsequent cycles were essentially contained inside 
this loop. During the most severe cycle, stiffness r e d u d  to 
about 30% of the iuitial value for the HD case, and to about 
20% for the LD case. However, as shown in Fig. 5, the initial 
stiffness is gradually recovered in the subsequent cycles. 
Note that in this phase the seismic coefficient does not exceed 
0.2 and the peak eccentricity ratio is e/l3=1/6. In such condi- 
tions, the seismic loads lie on, or very close to the failure sur- 
face (4), as shown by the triangles in Fig. 2. However, the 
permanent deformations of the foundation were significant, 

especially in terms of rocking (see Tab. 3). Recalling that a 
foundation rotation of 2 mrad is considered as a threshold 
value for the onset of cracking on the superstructure (e.g. 
Lambe and Whitman, 1969), this value is slightly exceeded 
during several cycles in the HD case, while in the LD case the 
peak rocking reaches 6 mrad. The latter value is the relative 
rotation likely to cause an ultimate limit state in static condi- 
tions (Lambe and Whittnan, cit.). At the end of this phase, the 
permanent rotation in the LD test was about 2 mrad. Vertical 
settlements experienced by the foundation are less severe than 
rocking, in terms of serviceability limit state. However, for LD 
conditions, the final settlement was about 10 mm, or 60% of 
the static vertical settlement. For HD conditions, the settle- 
ment increment is about 30%. 
These results point to the need of improving the accuracy of 
current predictions of foundation settlements and rocking 
caused by earthquakes; the indication is that the movements 
may attain significant values, possibly beyond serviceability 
limit states, even under a moderate seismic excitation like that 
considered in these tests. 

Phase 11 
HD sand 

04 

Rocking angle (rad) 
1 

I Phase I1 

0.002 0.004 

-20 ' 
Rockingangle (rad) 

Fig. 5: Phase I.: Overtuming moment vs. rocking for HD and 
LD conditions. 

T i m  e 

0 
0 

1 2  U --- D e n s e  s a n d  
a 4  

$ 8  

3 

8 6  

* 
1 L o o s e  s a n d  
1 

Fig. 6: Phase II: Vertical displacement of the foundation. 
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Phase III. During th is  phase, displacement-controlled cycles of 
increasing amplitude were applied to the foundation with the 
aim of reaching the ultimate foundation resistance. 
The loops described by the m e s  of overturning moment vs. 
rocking are remarkably regular (Fig. 7). For the HD case, not 
shown in Fig. 7, the loops exhibit a characteristic S-shape, 
which has been satisfactorily modelled and interpreted in 
terms of foundation uplift under eccentric loading (Pedretti, 
1998). This effect does not appear for LD conditions, since 
‘‘punching is the prevailing failure mode of the foundation in 
low to medium dense conditions (Vesic, 19’73): the foundation 
sinks into the sand and uplift effects are prevented. 

1 

Fig. 7: Phase III: Overturning moment vs. rocking for LD 
conditions. 

As a consequence of foundation punching, in the LD test set- 
tlements were observed to increase linearly in this phase, 
probably due to the progressive expulsion of sand from uuder- 
neath the plate toward the sides during the sinking of the 
foundation. A linear increase of settlements occurred also for 
HD conditions, but final values in this case did not exceed 20 
mm. 
In Fig. 8 foundation settlements are plotted as a hc t ion  of the 
seismic coefficient 4,. A limit value of 4 slighily lower than 
0.4 is suggested by the curves, both for HD and LD soil con- 
ditions. However, such value cannot be straightforwardly in- 
terpreted to correspond to attainment of the true bearing ca- 
pacity limit, even in the HD case. First, the lateral walls of the 
concrete caisson are too close to the foundation for a shear 
failure mechanism to completely develop, so that the observed 
bearing capacity should increase with respect to the theoretical 
value. second, the experiments were carried out in cyclic 
loading conditions, that generally lead to an increase of the 
bearing capacity with respect to the conventional monotonic 
loading (Vesic, 1973). Considering again Fig. 2, the experi- 
mental values of WN,, corresponding to cyclic failure are 
denoted by squares and compared with the pseudo-static limit 
curves. Recalling that at failure a peak load eccentricity e/B = 
0.35 was attained, the experimental values are much higher 
than those corresponding to such eccentricity, and tend to lie 
on the curve corresponding e/B=O. 

0 

20 

40 

60 

80 

acceleration factor % 
0 0.1 0.2 0.3 0.4 0.5 

Phase I1 i \ Phase 111 

LD sand ‘i 
I 

Fig. 8 - Comparison of foundation settlements in HD an, LD 
soil conditions as a function of the seismic coeflcient 
&,=H,,,a). From Pedretti (1998). 

For application to soil-foundation intemction analyses with 
linear equivalent stif€neeSs and damping, we have estimated 
from the experimental forcedisplacement cycles of loading 
phase III, shown in Fig. 9, the values of some such p m e t e r s .  
With reference to Fig. 10, a secant stiffness K was measured 
by the slope of the line joining the extreme points of the force 
- displacement cycle, while the damping factor 77 was ob- 
tained from the area D of the hysteresis loop(dissipated en- 
ergy) and the stored elastic energy AW through the standard 
expression 

D q=- 
4nAW (7). 

The low-stmh horizontal stiffness pH was computed from the 
nearly constant slope of the narrow loops observed in loading 
phase I; its HD value was 110 MN/m. The stiffness and 
damping estimates for the soil-foundation system were limited 
to the case of horizontal force and displacement in the HD 
test, because the phase III cycles in the LD test were severely 
non-symmetric due to the occurrence of large permanent hori- 
zontal displacement and rotations. On the other hand, as pre- 
viously mentioned, the phase III moment-rotation cycles in 
the HD test were afKected by partial foundation uplift, and be- 
cause of this the associated values of the equivalent parame- 
ters are not discussed here. 

150 1 

Q 
E 
k -  - --- I 

Fig. 9: Phase III: Horizontal force vs. displacement for HD 
conditions. 
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Fig. IO. Typical non-linear stress-strain curve under cyclic 
loading. 
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Figure 11 illustrates, on the left, the normalized translational 
stiflkess KH/?IP~ as a function of the peak horizontal founda- 
tion displacement observed in each cycle. On the horizontal 
axis, we also show a characteristic value of the shear strain 
in the soil, which was estimated by simply dividing the hori- 
zontal displacement by the width of the foundation (1 m). 
Similarly, the graph Fig. 12 displays the equivalent damping q 
vs. the same previous variables on the horizontal axis. The 
decay trend of the normalized m e s s  in Fig. 11 appears gen- 
erally consistent with the experimental shear modulus 
(G/G-) vs. cyclic shear strain curves, albeit the values are on 
the high side. On the other hand, the q values fall within the 
range of experimentally observed values, as shown in Fig. 12. 
It should, be noted however, that the experimental curves of 
soil shear modulus and damping as a function of cyclic shear 
strain are ill defined in the large strain range involved in the 
present tests. 

. . . . . . . , ,  . I , . . . , . ,  

DYNAMICMETHODS 

Truly dynamic approaches to the evaluation of permanent 
foundation displacements during earthquakes have been rela- 
tively few, and mostly limited to the well-known method of 
Newmark (1965), under the basic assumption that such dis- 
placements develop only &er a critical load has been reached, 
typically the failure load, and that the superstructure and foun- 
dation response are decoupled. Examples of application of 
such approach to the seismic behaviour of shallow foundations 
can be found in Sarma and Iossifelis (1990), Richards et al. 
(1993), Pecker and Salengon (1991). One of the main draw- 
backs of the Newmark approach is that nonlinear interaction 
effects between the foundation and the superstmctwe are ne- 
glected. This may lead typically to the overestimation of the 
seismic actions transmitted by the superstructure and the inac- 
curate evaluation of the fundamental frequency of the inter- 
acting system. 
On the other side, the rigorous modelling of the soil- 
foundation-supemcture system by dynamic finite-element 
analyses can be prohibitive in terms of computational effort, 

owing to the transient nature of the problem and the need for 
an accurate mathematical description of soil behaviour (Fac- 
cioli and Paolucci, 1996). 

Fig. 11. Decay of the translational s tmess  Km estimatedfiom 
the hysteresis loops in Fig. 9. From Pedretti (1 998) 

10” 10“‘ 10” lo-* 
W 

‘yo 
Fig. 12. Increase of damping ratio with shear strain ampli- 
tude. Dots indicate values estimated Pom results of large- 
scale tests on shallow foundations, as explained in the text. 
Modijied after Seedet al., 1986. 

The macro-element auuroach 

An alternative promising method for capturing the salient 
features of the coupling between the nonlinear response of the 
soil-foundation system and the superstructure, and reasonably 
predicting the development and magnitude of permanent dis- 
placements, is the macro-element approach. Originally intro- 
duced by Nova and Montrasio (1991) for the theoretical analy- 
sis of shallow foundations under static loading, it has been 
first applied to the seismic case by Paolucci (1997). 
The crucial idea behind this approach is to concentrate the 
material or geometrical (uplift) nonlinearities occurring at the 
soil-foundation interface in a single element described by an 
adequate elasto-plastic constitutive law. 
Paolucci (cit.) modelled the dynamic nonlinear soil-structure 
interaction problem by a 4 degrees of freedom @OF) system 
(Fig. 13), with the following basic assumptions: 
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- 1 DOF for the structure (horizontal translation) and 3 
DOF for the foundation (horizontal and vertical transla- 
tion, rocking); 
nonlinearity concentrated in the foundation DOFs; 
elastic behaviour of the foundation until the yield surface 
is reached. 
spring and dashpot coefficients to model soil-structure 
interaction (SSI) in the elastic range, calculated by stan- 
dard formulas (e.g. Gazetas, 1991). 
perfectly plastic flow (no hardening), with non-associated 
flow rule. 

- 
- 
- 

- 
- 

+ + h4 t 

".I*... 

>.. -.., 
; ml 'i 
'.. .. ...< ...._.... . 

h f  

Fig. 13. Four degrees ofpeedom model for nonlinear dynamic 
soil-structure interaction analyses. From Paolucci (1997). 

More recently, these assumptions have been refined to take 
into account foundation uplift by Cremer et al. (1999) and 
more complex constitutive descriptions of soil behaviour by 
Pedretti (1998) and Le Pape ef al. (1999). 
It must be stressed that, while numerous analytical or experi- 
mental works exist for the definition of a yield surface for 
shallow foundations, e.g. the bounding surface defined by (4), 
there are few experimental data to support the choice of a 
plastic potential function. Recent studies (Gottardi et al., 1999; 
Le Pape et al., 1999) may be helpful to fdl this gap. 

Reduction of mctral ordinates due to soil nonlinearity 

While the evaluation of permanent deformations of shallow 
foundations during earthquakes has been thoroughly dealt with 
by Paolucci (1997), we analyse here the effect of soil yielding 
on the base shear transmitted by the superstructure. 
For this purpose we have selected three real configurations, 
consisting of bridge piers on shallow foundations (Vhero, 
2000). Foundations widths vary in the range from 5 to 9 m 
with 1-2 m of embedment. Mediumdense soil conditions .at 
foundation level were considered, with a representative value 

of shear wave velocity Vs=200 m / s  to calculate the spring and 
dashpot coefficients of the SSI problem. The fixed-base fun- 
damental period of the systems under study varies between 0.5 
s and 1 s, while the elastic soil-structure interaction was found 
to induce ti moderate increase of the fundamental period, 
ranging from 8% to 12%. 
Starting form these configurations, we made some slight real- 
istic changes to structural properties, especially in terms of 
pier height and structural mass, and generated a set of "ficti- 
tious" structures that allowed to cover in a dense way the pe- 
riod range from 0.4 and 1.2 s. 
Each fictitious structure, modelled by the nonlinear oscillator 
of Fig. 13, was shaken by several real accelerograms, repre- 
sentative of various levels of ground motion severity. We il- 
lustrate here the results in terms of spectral accelerations (Fig. 
14) and spectral displacements (Fig. 15), respectively, only for 
the most severe accelerograms. The nonlinear effects induced 
by the ground motions of smaller amplitude were negligible. 
In Figs. 14 and 15 the continuous line is the elastic response 
spectnm, while the three dotted lines represent the computed 
peak response of the nonlinear oscillator, starting from the 
three Merent real configurations discussed previously. 
Some interesting comments on these results are in order: 

The reduction of base shear due to nonlinear SSI effects is 
negligible for spectral accelerations less than about 0.4 g . 
The same indication was derived by Paolucci (1997) in 
terms of permanent deformations of foundation soil. 
The nonlinear acceleration spectrum is smoothed with re- 
spect to the linear one, with peak reduction factors be- 
tween about 30% and 50 % for the highest spectral ordi- 
nates. 
The nonlinear effect is to smooth the isolated peaks in the 
elastic displacement spectrum, but the average reduction 
is considerably lower than in the acceleration spectrum. 
The considerable "beneficiall" effect on the superstructure 
is offset by permanent settlement andor rocking at foun- 
dation level. Paolucci (1997) found that if the elastic 
specbd acceleration exceeds 0.4 g (Fig. 16), permanent 
damage to the foundation system may increase rapidly 
and reach values beyond the serviceability limits. 

These results support both the need for improving the analyti- 
cal tools for predicting footing displacements under dynamic 
loads, and the search for innovative design approaches capable 
of "controlling" the nonlinear behaviour of the soil-foundation 
system under strong loading. An example of such innovative 
approaches is the kapacity design" philosophy applied to the 
foundations of the Rion Antirion bridge near Patras, Greece 
(Pecker, 1998). In this case, the careful control of material 
grading and reinforcement was used as an effective method to 
co& the foundation to dissipate energy in the sliding 
mode rather than in the overturning mode, that would be more 
harmful for the overall behaviour, especially for tall structures. 
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Fig. 14. Acceleration response spectra for digerent base ac- 
celerograms. Contimous line: elastic spectrum. Dotted lines: 
peak response of the nonlinear oscillator of Fig. 13, starting 
jFom three different real conJigurations. 
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Fig. IS.  As in Fig. 14, but for displacement response spectra. 
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Fig. 16. Permanent settlements as a function of the response 
spectral ordinate, calculated with the simple oscillator of Fig. 
13, with fundamental fued-base period T=ls, subjected to 
real accelerograms with different levels of severity. Adapted 
jFom Paolucci (1997). 

CONCLUSIONS 

We have illustrated some recent relevant research develop- 
ments on the seismic behaviour of shallow foundations. Em- 
phasis has been given to analytical methods, such as pseudo- 
static and shnplilied dynamic approaches, and to the experi- 
mental results from well-calibrated and accurate large-scale 
tests on soil-footing interaction under cyclic loading. We 
Summarize here some of the most relevant conclusions of our 
work. 

Large-scale cyclic tests represent a valid experimental 
approach for the analysis of soil-structure interaction 
effects during seismic loading. Their main advantages are 
the following: a) full-scale modelling; b) accurate 
determination of soil properties; c) application of realistic 
time histories of horizontal force and overturning 
moment. On the other side: a) soil inertia forces are not 
taken into account, b) lateral and bottom boundaries are 
close to the foundation and cannot reproduce completely 
free-field conditions, c) repetition of the experiment 
involves the treatment of a large amount of soil material. 
During the moderate excitation used in the earthquake- 
like loading phase of the cyclic tests, (seismic coefficient 
h=O. 18), the seismic loads were very close to the pseudo- 
static Mure surface, but did not exceed it. Even in such 
k f e ”  conditions, permanent settlements and rockini in 
the LD test attained values (see Tab. 3) that may afFect 
significantly the serviceability of the structure. In the HD 
test permanent deformations were below a serviceability 
limit state, but nevertheless significant. 
The bearing capacity in cyclic loading conditions is much 
higher than obtained by pseudo-static approaches. How- 
ever, this is offset by the development of permanent de- 
formations well beyond the ultimate limit state for the 
structural safety. 
Based on the previous results, the use of a pseudo-static 
failure surface to delimit safe seismic loading conditions, 
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such as defined in equation (4), seems a sound approach 
to the seismic design of shallow foundations. Care should 
be taken in LD conditions, because final settlements and 
rocking may attain considerable values. 
This points to the need of improving our capabilities 'of 
prediction of earthquake-induced settlements: the macro- 
element approach, described in this paper, seems to be 
one of the most promising tools for simple estimates in 
dynamic conditions. 
Using the macro-element approach, we have found that 
under strong earthquake loading, indicatively with re- 
sponse spectral ordinates exceeding 0.4 g, the base shear 
reduction may attain values ranging from 30% to 50%. If 
the non-linear effects at the foundation level are con- 
trolled adequately, this may be an effective method for 
reducing seismic actions on the superstructure. 
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