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@ Proceedings: First International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil
Dynamics, April 26 - May 3, 1981, St. Louis, Missouri

Numerical Computation of Earth-Pressures

During Earthquakes

D. Aubry
D. Chouvet

Ecole Centrale des Arts et Manufactures, 92290 Chatenay, France

SYNOPSIS After reviewing some important features of earth pressures against retaining wall during earthquakes the authors
propose an implicit-explicit scheme for time integration of the elastoplastic equations in dynamics. Same results obtai
-ned with the developed camputer code are presented and discussed.

INTRODUCTION

The computation of earthpressures against retaining walls
during earthquakes is not so well developed as in the sta
-tic case where the engineer may use a lot of more or less
sophisticated theories. Though the progress of numerical
methods applied to earthquake engineering has been tre-
mendous in general it has not been uniform. In the area of
soil-structure interaction with lightly embedded founda-
tions there exist well-known numerical techniques and
camputer codes from which the geotechnical engineer may
pick up an acceleration spectrum at the base of the buil-
ding which is of utmost importance for the structural en-
gineer. The constitutive ecuations which are used are
generally of the viscoelastic type with hysteretic dam-
ping so that no constraint is imposed on the stress level
(yield) and no mermanent displacement may be evaluated
fraom these codes.

It is often reckognized that in the area of earth-pressure
these constitutive equations are inadequate especially if
the distribution of initial earthpressure is close to the
active state and this is certainly the reason why the ana-
lyst usually resorts to a simplified theory such as the
Mononobe-Okabe equation, whose basic hypotheses are now
summarized.

The displacements of the wall are supposed to be large
enough to induce a state of plastic equilibrium behind it.
A failure surface exists starting from the toe of the wall
Along this surface the shear stress is maximum with resp-—
ect to the plastic state. The slidina wedge lying between
the wall and the failure surface BFehaves as a rigid body
with constant horizontal and vertical accelerations at the
base of the wall. Finally the resultant force against the
wall is assumed to act at one third of the height of the
wall. Numerous discussions of the validity of these assum
otions have been proposed in the literature (Seed and
whitman (1970)). Concerning the height at which the resul
~tant force is acting Prakash et al. (1969) have indicated
that it might well be above H/3 and sould be influenced
by the wall angle of friction among other parameters.

Starting with such experimental observations many authors
have tried to perform further tests ( Mononobe et al.
(1929), Jacobsen (1939), Ishii et al. (1960)) The conclu-
sions of these investigations seem to confirm that the
acceleration is uniform behind the wall and is equal to
the acceleration at the toe. The maximun pressure was
found to be slightly less than predicted by the Mononobe
equation and the resultant was roughly acting at 0.35H.
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The pressure distribution was found to be camosed of two
terms : (i) a residual wressure larger than the initial

one and having a hydrostatic distribution (ii) a dynamical
pressure increment having a parabolic distribution with

the origin at the base of the wall explaining why the voint
of application of the resultant should be higher than H/3.

More recently Ishihara et al. (1973) have performed tests
on shaking tables and have been able to show that if the
maximum horizontal acceleration is less than 0.25g then
the point of application of the resultant may be always
lower or higher than H/3, but when it is larger then the
point of aplication will oscillate around H/3. These au-
thors have also shown that the value of the resultant gi-
ven by the Mononobe equation is obtained experimentally
when the friction between the soil and the wall is maxi-
mum and when an average horizontal displacement of the
wall is equal to 0.5%H. Prakash et al. (1973,1979) have
studied rigid and flexible walls and confirmed that the
incremental dynamic pressure has a marabolic shave and
that the point of application of the incremental resultant
is at about one half of the height.

There are still two important factors which deserve a de-
tailed study and which are not accounted for by the Mono-
nobe equation. These are the wall inertia and flexibility.
Richard et al. (1979) have studied the former and have
been able to derive an ecuation for the weight of the wall
in order to satisfy an equilibrium equation. In marticular
there seems to exist an upper limit to the horizontal acce
leration so that the wheight of the wall under desian
keeps a finite value. This acceleration was found to be
independant on the geometry of the w1l but related to the
friction between the wall and the foundation soil under-
neath. However the satisfaction of this equilibrium ecua-
tion at any instant of time induces too heavy walls so
that we are bound to accept the develomment of irreversible
displacements. Consequently the authors have performed

an analysis of the accumulated permanent displacements

each time the horizontal acceleration of the erathquake

is lardger than the maximum value required to still satis-
fy the equilibrium.

This Iriefreview of the existing literature on earthpres-—
sure during earthquakes shows the necessity to perform
further experimental tests and to develop numerical com-
putations taking into account several important factors.
The wall inertia and flexibilitv must be accounted for. The
possibility of relative displacements between the wall and
the backfill must be included in the analysis. Finally the
evaluation of the soil pressure during the cycles cannot



be similated by a linear elastic law and thus the elasto-
plastic behaviour of the soil must be incorporated in the
analysis. Fully nonlinear analyses are costly and if para-
metric are to be conducted, on one hand the usual fully
implicit time integration schemes are prohibitive and on
the other hand the fully explicit ones are not adapted

to the samewhat low frequency content of earthquake
accelerogrammes because then the time step must be chosen
on the basis of stability consideration only and thus is
always too small. It is the purpose of this paper to intro
-duce -a mixed implicit-explicit nonlinear technique to
anlyse the soil-wall interaction while accounting for
other factors which we have just discussed.

MIXED IMPLICIT-EXPLICIT TIME INTEGRATICN SCHEMES

The analysts in fluid-structure interaction have recently
developed mixed time integration schemes for dynamical
loadings. Let us recall that in an explicit algorithm
the time step is constrained by an upper limit which is
reciprocal to the highest frequency of the finite element
or diffrence mesh. Implicit algorithms do not suffer this
sometimes stringent condition when they are built to

be unconditionally stable. However they need much more
computer storage and a skyline linear system must be sol-
ved at each time step. This is why explicit algorithms
are well suited for either rapid loading or soft media
while the inverse is true for implicit algorithms. When
zones of highly different stiffnesses are present in an
analysis it should thus be helpful to have a scheme which
could take advantage of both methods.

Belytschko et al. (1977) have recently implemented and
analyzed such a mixed scheme using mesh partition. As
noted by Hughes et al. (1978a,1978b,1979) an element
based partition should facilitate the imnlementation star
-ting from an existing finite element code. Hughes et al.
(1978a,b) have developed a mixed scheme based on Newmark
method. We present here a more general scheme adapted to
elastoplastic camputations. For the convenience of the
reader we shall divide the nresentation inthree steps. In
the first two steps we shall review with our notations
the features of (i) a fully implicit scheme for elasto-
plastic behaviour (ii) a mixed implicit-explicit techni-
que for linear elasticity. Then we shall have the basic
tools to go to the nonlinear case. In all the algorithms
discussed underneath we only present what is called a
semi-discretization in time which simplifesreatly

the notations. Obviously a full discretization with eg.
finite elements will always be understood.

A Fully Implicit Scheme For Elastoplastic Dynamics

Let u be the displacements ,g(u) the corresponding strains
6 the stresses. V andTwill designate respectively a
virtual displacemetns and stress in the variational for-
mulation. Let f be the distrubuted forces over the do-
main Q-that we want to study. To simplify the notation
the dot product ( , ) will either stands for :

(u,v) = j u; v, dx (1)
e
or for :
(6,5) = Lo’ij'rij dx (2)

whenever the above quantities are respectively vectors
or tensors. (The summation over repeated index will al-
ways be implied). Then the variational formulation of
the dynamical equilibrium equations reads :

(pl,v) + o,EW)) (£,v) (3)

(8]

where is the density. Equation (3) is clearly equivalent
to the principle of virtual work. We shall assumethat the
boundarv conditions are of the Dirichlet tvpe. The varia-
tional formulation of an elastonlastic equation may be
written :

(6, T) CON . Ew,T) (4)

where C(G,A) is the elastoplastic matrix depending on the
stresses and the plastic multipliers A in the case of per-
fect plasticity. It is important to recall that depends
itself on the stresses but also on the rate of strains

and that C has at least two different exnressions accor-

ding the loading-unloading criterion.

Ngw contrary to the linear case it is not possible to eli-
minate ¢ from (4) and get from (3) a nonlinear equation
for u. We shall rather introduce a time discretization

and solve iteratively for the displacements and the stres-
ses using (3) (4) at each time stev. Let n be the time step
number, then a fully implicit scheme reads as follows :

solve for U 0’n+1’ the following ecuations:
©U )+ (6 EWV)) = (£ 4pV)
(5)
-6 =
(€n+l n'r) (CnJrl . (E(un+]_-un)) /B

with un,O'n previously computed.

Afny given implicit scheme will rrovide us with a method
or uti . e

computing Uil fram U, U CIL R Thus the Newnark
algorithm gives us, with unil defined as follows :
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- At os
Ui u o+ At u, 3= (1—2@) u
P _ * 2
Un+l = Y1 L1r1+1) / PAt (6)
8= u, tat (1 -Y) g, +yatu,,

where at is the current time step, B and? are classical
pararpeters (Newmark,1959) . Now equations (5) are still
nonlinear equations and some sort of iterative process

is necessary for the computation of un+l,0’n+1.

Let b_(u,v) denotes a symetric bilinear form to be chosen
later on, and i be the iteration number, then a useful
schemre is as follows :

Step 1 : Solve for url]ii
Byl V) = bl v (g, W —(crrilﬂ,e(v))-(furiﬂv)
Step 2 : Solve for0~i+1
n+1 (7)
@-0,0 = €l €y - )0
Step 3 : Test for convergence.

It can be shown that whenever the numerical scheme is con-
ducted un until convergence the elastoplastic law does not
destrov unconditional stability. However some loacal insta
-bilities might occur which are not easily detected if the
convergence criteria are not stringent enough.

Implicit~Explicit Scheme for Elastodvnamics

As.we already noticed in the finite element analysis of
soil-structure-interaction inearthcuake enaineering



it could be interesting to take advantage of the typical-
ly different stiffnesses of the structure and the soil
especially when we have nonlinear computation in mind.
Thus to do so, we split the domain into two parts JII

and.ﬁ. and we shall assume that the elements belonging

to-ﬂ- andﬂ- will be treated respectively implicitely
and expllcljéely respectively. Then the dot-product
on.ﬂ.k will be denoted by :

s WV,

k = j_nmul
and also when u,v are replaced by stress or strain tensors
Furthermore in linear elastodynamics it is possible to

eliminate the stresses with respect to the displacements
and we shall write :

(u,v) dax ,k=I,E (8)

ak(u,v) =/‘“'k Dij eij (v . Eij (v dx , k=I,E (9)
where D is the matrix of the elastic coefficients. Then
following Hughes et al. (1978b) an implicit-explicit sche
-me based on a domain partition and starting from Newmark
algorithm may be written :

Step 1 : Let u,, ﬁn , ﬁn be given

2
Step 2 : Compute u”, = u +4tu + %E (1-2p) & (10)
Step 3 : Solve for u

n+l

1842190 Gt ¥ (s ) <l )18 e KR -4 0 (11

. . _ I 2
Step 4 : Compute Uyq = (o un+1) /PAt
uoTuy +At (1Y) 4, +¥at L
Step 5 : n = n+l, go to 1.

The equation (10),(11) are fundamental to the mixed impli
-cit-explicit scheme.u may be called a predictor while
W is a corrector.what is essential to the mixed treat
-menit is the fact that the part of the elastic energy re
-lated to the subdomainfi. is implicitly treated while it
is almost explicitly trea\I.ed for the subdomai .Regar
~-ding finite element analysis it is important to take
full advantage of the expliciteness of domainfl_ using a
numerical quadrature for (8) with k=E with the Integration
points placed at the nodes.In this manner the mass matrix
for subdomain will be diagonal and the profile of the
linear system (I1l) will be considerably reduced whenever
N_ is large compared tof}_ .This way of building an impli
—Cit-explicit scheme proposed by Hudghes et al. (1978a)is
particularly elegant and almost straightforward to be im
-plemented. For the stability analvsis we refer to the
same paper. With these notations and above conceots we
can now proceed to a non-linear mixed implicit scheme.

Implicit-Explicit Scheme for Elastoplastic Dynamics
The different steps of the algorithm are as follows:

Step 1 : Let u_,0 ,i_ be known
n’ n’n

2
(1—2}!) iin

Step 2 Compute u:+l=u + at u + At

™

R .
Step 3 : Solve forO‘n+1 in O.E :

Lol - ”
(67 =G Tg = (E(u

(c -6, Ty (12)

n+1

Step 4 : Solve foro;l u

in N
in I,and for L

+1
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J?__A;2 Uounyy VI pt Uy g + (0 E WD = (£, /9)
1 * * - *
i pp [(fun+1 ) I+(yun+1’V)E—l n+l’ £ (v))E
(0 =T B = (- (Elu - E@ D),y

Step 5,6 : Identical to steps 4,5 of previous algorithm.

Now step 3 of the preceeding algorithm is highly nonlinear
and some kind of iterative process is necessary. Using the
concept of the first algorithm the solution of step 4 is
given by:

i i

Step 4a : Let W ,0’thl be known.
i
Step 4b : Solve for u_,, (14)
i+l i
b Uy r V)= by {-un+1'v)+(fn+1’v) 2[: n+1 u¥y) vk
i
Pl muty) v)E] ¢ E - ( L EWD)
Step 4c : Solve for 0-n+1
i+l
(G n+1—0;1 C) =( r1+1.(£(un+1)-&(un)),?:)I (15)
Step 4d : Check for convergence tolerance on ul+1 , O l+1.
n+1 n+1

To take advantage of the mixed implicit-explicit it is of
utmost inmportance to choose a wellsuited bilinear form
b(u,v). The bilinear form must consequently be snlit

into two parts toopreserve @ reduce profile :

b(u,v) = bI(u,V) + bE(u,V) (16)
The author's present choice for b and b :
by (u,v) = _t )ou MV toag (u,V)
PA (17)
bE (u,v)

= ;;;2())H'V)E

where a.(u,v) is the elastic energy of the implicit subdo
-main. '11:1’115 choice seems to werform well but other possi
-bilies are currently under studv. If the finite element
matrix corresponding to b_(u,v) is diagonal then the right
-hand side contribution in (14) of elements strictly inclu
—ded in the explicit subdamain will be constant and so for
their nodes. However for explicit elements there will be
a force contribution when the stresses are adjusted so
that the interface nodes will be iteratively corrected ac
—cording to the correction of the stresses in the implicit
elements although the stresses in the explicit element
are in a locked-on status. B

The stability analysis of the proposed scheme and some mo
—difications of it will be studied elsewhere in a forthco
-mina paper. Numerous numerical tests have been merformed
and the efficiency of such mixed scheme has been shown to
be particularlv helpful in the area of elastoplastic soil-
structure interaction. In the subsequent section we shall
proceed to the analysis of a soil-wall interaction with
such a scheme and show some results on earth-pressures
camputations.

COMPUTATIONS OF SOIL-WALL INTERACTION

We shall describe in this final section some recent results
obtained with a finite element computer code included the
mixed implicit-explicit nonlinear scheme described above.
We have cho.sen an actual wall 9.50m high with a variable



cross—section (from 1.35 m2 at the toe to .55 m2 at the4
top) and variable inertia (.236 m  at the toe to 3014 m
at the top). TBe deasity of the wall is 2500 kg/m~,Young's
modulus 4. 1077 N/m~ and Poisson's ratio 0.2. In order to
account accurately for the flexibility of the wall classi-
cal beam elements were incorporated into the finite ele-
ment mesh. The meghanirz*.al properties of the soil were the
following: E = 10 N/m“ ; V= 0.46 ; £ = 2270 kg/m” . The
soil was a sand with zero cohesion and 35° of angle of
friction. Its behaviour was assumed to be described by
the Driicker-Prager elastoplastic law with associated flow
rule. The inherent shortcomings of this law when applied
to sands is well-known but it was considered to be suffi
—cient for the first tests. The initial state of stress
was assumed to correspond to the active state throughout
the whole soil mesh. This last assumption is also oversim
-plified but its main advantage was that it did not pre
-clude the computation of the initial state of stress du
-ring the construction of the wall and the backfill. Spe
—-cial interface elements taking into account a Coulomrb
law of friction between the soil and the wall have been
included in the analysis. Finallv the wall and the soil
are assuned to lay directly on a rigid bedrock submitted
to an horizontal acceleration. We shall now proceed to
discuss some of the most interesting observations that
can be extracted from the computation.

Horizontal Stresses in the Soil behind the Wall

The evolution of the stresses for the first 0.01 s is
shown at differents heights. It is clearly seen that espe
—-cially at the top the stresses canmnot decrease below the
active pressure ( the vertical stresses are almost con
—-stant there ) so that at each cycle the soil gives a lar
—ger reaction when the wall moves towards it than when it
moves apart. This phenomenon is not predicted by an elas
-tic law in which we have found that the stresses were
oscillating symetrically around the static values.
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Fig. 1 : Stress history behind the wall

Resultant of Soil Stresses Against the Wall

The hotizontal and vertical camponents of the force exer
-ted by the soil on the wall are shown on figure 2. The
horizontal component is seen to be increasing above the
static value which corresponds te an active state.
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Fig. 2 : Resultant force history ( elastonlastic case)

The average value is below the value predicted by the
Mononobe equation but the duration of the analysisis clea

~rly too small and further computations are obviously nee
—-ded. However the trend is clearly indicated.
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Fig. 3 : Resultant force history ( elastic case )

On figure 3 the same run was performed but with an elastic
law. The horizontal camponent is seen to be much more sy
-metric around the static value. Also the vertical campo
-nent (shear force) is much higher in the elastic case
than in the elastoplastic case.

On fiqure 4,we show the variation of the angle between
the resultant force and the wall. The minimum value cbtai.
-ned is about 70 degrees which corresmonds to an inclina
tion of 20 degrees with respect to the normal to the wall.
This value is not far fram$/2 ohtained in experimental
tests.
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Fig. 4 : Resultant force. Inclination vs time

Pt

Influence of Wall Flexibility

Larger horizontal displacements have obviously been obtai
-ned in that case. But more interesting is the fact that
the horizontal component of the resultant force is decrea
-sed which has been already confirmed by experiments.
Also the shear force is highly increased due to the high
-er vertical movements of the wall with respect to the
soil.

static value

- vertical

-

Fig.5 : Resultant force history
( Flexible wall, elastic case )

Permanent Displacement

On figqure 6, are shown the horizontal displacements at the

top of the wall. It is demonstrated that permanent displa
—-cements are well accumulated ( seisme duration: S5.s )

and seemingly tending to an asvrptotic value of about

.7 mm. This phenarenon may also be explained by the non-
symetric response of the soil starting from an almost ac
-tive state of stress and taking into account the plasti
-city of the soil.
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Fig. 6 :Top of the wall. Displacement vs time

It is to be noted that the low value of the obtained dis
-placements is due to the very low value of the maxirmm
acceleration of the seisme ( 0.02 g )

CONCLUSIONS

In reviewing same important factors contributing to the
building of earthpressures during earthquakes we have
tried to show that the incormoration of truly elastonlas
-tic behaviour of the soil was not solely desirable but
necessary. However the cost of nonlinear finite computa
~tion is well known to be still high and thus it was
found to be efficient to develop a nonlinear imwlicit-ex
-nlicit scheme where the stiff wall could be treated im
-plicitelv while the somewhat softer soil could be analv
-sed by an explicit process. A new type of such a mixed
algorithm has been thoroughly detailed and in a final
section we have presented the first results that were ob
~-tained in a particular case. It is obviously toco early
to make definite conclusions but some exnerifnentally ob
-served results were found to be caught by our camputa
—tions. Tt seems now important to go to more ~uantitative
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informations, and a series of experimental tests on sca
-led models will soon be conducted in order to validate
the results by camparison.
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