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Numerical Computation of Earth-Pressures 
During Earthquakes 
D. Aubry 
D. Chouvet 

Ecole Centrale des Arts et Manufactures, 92290 Chatenay, France 

SYNOPSIS After reviewing sorre :irrqxlrtant features of earth pressures against retainina wall during earthquakes the authors 
propose an implicit-explicit scherre for time integration of the elastoplastic equations in dynamics. Same results obtai 
-ned with the developed computer code are presented and discussed. 

INI'RODUCI'ION 

The computation of earthpressures against retaining walls 
during earthquakes is not so well developed as in the sta 
-tic case where the engineer may use a lot of more or less 
sophisticated theories. Though the progress of nurrerical 
rrethods applied to earthquake engineering has been tre
mendous in-general it has not been uniform. In the area of 
soil-structure interaction with lightly embedded founda
tions there exist well-known nurrerical techniques and 
computer codes frcm which the geotechnical engineer may 
pick up an acceleration spectrum at the base of the buil
ding which is of utmost importance for the structural en
gineer. The constitutive ecn.1ations which are used are 
generally of the viscoelastic type with hysteretic dam
ping so that no constraint is imposed on the stress level 
(yield) and no nerrnanent displacement may be evaluated 
frcm these codes. 

It is often reckognized that in the area of earth-pressure 
these constitutive equations are inadequate especially if 
the distribution of initial earthpressure is close to the 
active state and this is certainly the reason why the ana
lyst usually resorts to a simplified theory such as the 
fvbnonobe-okabe equation, whose basic hypotheses are no.v 
sUI1Th3rized. 

The displacerrents of the wall are supposed to be large 
enough to induce a state of plastic equilibrium behind it. 
A failure surface exists starting from the toe of the wall 
Along this surface the shear stress is maximum with resp
ect to the olastic state. The sliding wedge lying between 
the wall and the failure surface ~haves as a rigid body 
with constant horizontal and vertical accelerations at the 
base of the wall. Finally the resultant force against the 
wall is assurred to act at one third of the height of the 
wall. Numerous discussions of the validity of these assum 
ptions have been proposed in the literature (Seed and 
Whitman (1970)). Concerning the height at which the resul 
-tant force is acting Prakash et al. (1969) have indicated 
that it might well be above H/3 and sould be influenced 
by the wall angle of friction among other parameters. 

Starting with such experirrental observations many authors 
have tried to perform further tests ( fvbnonobe et al. 
(1929), Jacobsen (1939), Ishii et al. (1960)) The conclu
sions of these investigations seem to confirm that the 
acceleration is uniform behind the wall and is equal to 
the acceleration at the toe. The maximum pressure was 
found to be slightly less than predicted by the Mononobe 
equation and the resultant was roughly acting at 0.35H. 
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The pressure distribution was found to be composed of twc 
terms : (i) a residual nressure larger than the initial 
one and havino a hydrostatic distributiDn (ii) a dynamical 
pressure increrrent having a parabolic distribution with 
the origin at the base of the wall exolaininq why the ooint 
of application of the resultant should be higher than H/3. 

More recently Ishihara et al. ( 1973) have pe~·forrred tests 
on shakino tables and have been able to sho.v that i.f the 
maximum horizontal acceleration is less than 0.25g then 
the point of application of the resultant may be always 
lo.ver or higher than H/3, but when it is larger then the 
point of aolication will oscillate around ~/3. These au
thors have also shawn that the value of the resultant gi
ven by the ~1ononobe equation is obtained exoerirrentall y 
when the friction between the soil and the wall is maxi
mum and when an average horizontal displacerrent of the 
wall is eoual to 0.5%H. Prakash et al. (1973,1979) have 
studied rigid and flexible walls and confjrmed that t~e 
increrrental dyn~c pressure has a narabolic shane and 
that the point of application of the increrrental resultant 
is at about one half of the height. 

There are still two important factors which deserve a de
tailed study and which are not accounted for by the Mono
nobe equation. These are the wall inertia and flexibility. 
Richard et al. (1979) have studied the former and have 
been able to derive an eCTUation for the weight of the wall 
in order to satisfy an equilibrium equation. In narticular 
there seems to exist an upper limit to the horizontal acce 
leration so that the vmeight of the wall under desion 
keeps a finite value. This acceleration was found to be 
indeoendant on the geometry of the .;~11 but related to the 
friction between the wall and the foundation soil under
neath. Ho.vever the satisfaction of this equilibrium eaud

tion at any instant of tirre induces too heavy walls so 
that we are bound to accept the develocment of irreversiblP 
displacerrents. Consequently the authors have nerformed 
an analysis of the accumulated nermanent displacerrents 
each tirre th~ horizontal acceleration of the erathquake 
is larger than the maximum value reouired to still satis
fy the eouilibrium. 

This l::Ir .iie E review of the existing literature on earth pres
sure during earthquakes sho.vs the necessity to perform 
further exoerirrental tests and to develop numerical com
putations taking into account. several important factors. 
The "''all inertia and flexibili tv must be accounted for. The 
possibility of relative displacements between the wall and 
the backfill must be i;1cluded in the analysis. Finally the 
evaluation of the soil pressure during the cycles cannot 



be simulated by a linear elastic law and thus the elasto
plastic behaviour of the soil must be incorporated in the 
analysis. Fully nonlinear analyses are costly and if para
metric are to be conducted, on one hand the usual fully 
irrplicit time integration scherres are prohibjtive and on 
the other hand the fully explicit ones are not adapted 
to the sanewhat low frequency content of earthquake 
accelerogrammes because then the time step must be chosen 
on the basis of stability consideration only and thus is 
always toe small. It is the ouroose of this paper to intro 
-duce ·a mixed implicit-explicit nonlinear technique to 
anlyse the soil-wall interaction while accounting for 
other factors which we have just discussed. 

MIXED IMPLICIT-EXPLICIT TJME INI'EGRATION SCHEMES 

The analysts in fluid-structure interaction have recently 
developed mixed time integration schemes for dynamical 
loadings. Let us recall that in an explicit algorithm 
the time step is constrained by an upper limit which is 
reciprocal to the highest frequency of the finite element 
or diffrence mesh. Implicit algorithms do not suffer this 
sometimes stringent condition when they are built to 
be unconditionally stable. Hcwever they need much ITOre 
computer storage and a skyline linear system must be sol
ved. at each time step. This is why explicit algorithms 
are well suited for either rapid loading or soft media 
while the inverse is true for irrplicit algorithms. h'hen 
zones of highly different stiffnesses are oresent in an 
analysis it should thus be helpful to have a scheme which 
could take advantage of both methods. 

Belytschko et al. (1977) have recently implerrented and 
analyzed such a mixed scheme using mesh partition. As 
noted by Hughes et al. (1978a,1978b,1979) an element 
based oartition should facilitate the imnlementation star 
-tinq from an existing finite element code. Hughes et al. 
(197Ba,b) have developed a mixed scheme based on Newmark 

method. We present here a more general scheme adapted to 
elastoplastic computations. For the convenience of the 
reader we shall divide the presentation inthree steps. In 
the first two steps we shall review with our notations 
the features of (i) a fully implicit scherre for elasto
plastic behaviour (ii) a mixed implicit-explicit tec~i
que for linear elasticity. Then we shall have the b~SlC 
tools to go to the nonlinear case. In all the algorlthms 
discussed underneath we only present what is called a 
semi-discretization in time which sirrplifE~eatly 
the notations. Obviously a full discretization with eg. 
finite elements will always be understood. 

A Fully Implicit Scheme For Elastoolastic D)mamics 

Let u be the displacements ,E(u) the corresponding strains 
tr the stresses. V andt:"will designate respectively a 
virtual displacemetns and stress in the variational for
mulation. Let f be the distrubuted forces over the do
main _o.. that we want to study. To sirrplify the notation 
the dot product ( , ) will either stands for : 

(u,v) 1 ui.vi dx (l) 
.(). 

or for : 

cu;c;J = l (}ij"'t""ij dx (2) 

whenever the above quantities are respectively vectors 
or tensors. (The summation over repeated index will al
ways be implied) . Then the variational formulation of 
the dynamical equilibrium equations reads : 

<fi· v) + ( (Y,c (v) ) (f,v) (3) 
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where p is the density. Equation (3) is clearly equivalent 
to the principle of virtual work. We shall assumethat the 
boundary conditions are of the Dirichlet type. The varia
tional fonm1lation of an elastonlastic equation may be 
written : 

c &. n cc W)ll . E Cul , t" l (4) 

where C(u,A) is the elastoplastic matrix depending on the 
stresses and the olastic multipliers A in the case of per
fect plasticity. It is important to recall that r\ depends 
itself on the stresses but also on the rate of strains 
and that C has at least two different exnressions accor
ding the loading-unloading criterion. 

New cont.rarv to the linear case it is not ]X)ssible to eli
minate ir from (4) and get from (3) a nonlinear equation 
for u. We shall rather introduce a time discretization 
and solve iteratively for the disPlacements and the stres
ses using (3) (4) at each tjme steP. Let n be the time step 
number, then a fully implicit scheme reads as follcws 
solve for un+ 1 , o--n+ 1 , the follewing E'Cjllations: 

Cflin+l ,v) + (ll'n+1 ,E (v)) = (fn+l ,v) 
(5) 

with un,ll'n previously computed. 

Any given implicit scheme will orovide us with a method 
for computing un+1 from un' un' (in,(in+1. Thus the NeMnark 

algorithm gives us, with u 'I< 
1 

defined as follcws : 
2n+ 

un +At un +¥ (1-2~) lin 

(6) 

where At is the current time steo, ~ and 3' are classical 
parameters (Newmark,1959). New equations (5) are still 
nonlinear equations and same sort of iterative process 
is necessary for the camputation of un+ 

1
, tr n+ 

1
. 

Let b (u,v) denotes a symetric bilinear form to be chosen 
laternon, and i be the iteration number, then a useful 
scheme is as follows : 

Step 1 : Solve for i+1 
un+1 

Step 2 Solve foro- i + 1 
n+1 

( i + 1 ..,_) ( i + 1 ([ ( . ) .,.. 
ll"n+1-u n'" = cn+1. c ufi:H - un ,.,) 

Step 3 : Test for convergence . 

(7) 

It can be shewn that whenever the numerical scheme is con
ducted uo until converaence the elastoolastic law does not 
destroy unconditional stability. Hcwever sane loacal instu. 
-bilities might occur vmich are not easily detected if the 
convergence criteria are not stringent enough. 

Implicit-Explicit Sc~eme for Elastodynamics 

As vie already noticed ir1 the finite element analysis of 
soil-structure-interaction inearthauake enaineering 



it could be interesting to take advantage of the typical
ly different stiffnesses of the structure and the soil 
esoecially when we have nonlinear computation in mind. 
Thus to do so, we split the domain into tw:J partsJ\ 

and Jl. E and we shall assurre that the elerrents belonging 

to.n-I and.O..E will be treated respectively implicitely 
and expliciEely respectively. Then the dot-product 
on .1\: will be denoted by 

(u,v)k = 1 u .• v. dx ,k=I,E (8) :1\ 1 1 

and also when u,v are replaced by stress or strain tensors 
Furthermore in linear elastodynamics it is possible to 
eliminate the stresses with respect to the displacements 
and we shall write : 

~ (u,v) = J.n.k Dij £ij (u). E ij (v) dx , k=I,E (9) 

where D is the matrix of the elastic coefficients. Then 
following Hughes et al. (1978b) an implicit-explicit sche 
-me based on a domain partition and starting from Newmark 
algorithm may be written : 

be given 

Step 2 Compute (10) 

Step 3 Solve for un+1 
l/Jo.i'{C~Il.,1 1"lt(5'tln.1·"\ \ +c:~:r(uotl. ,v) =(fntl• ~)+ 1/~t.2 {~•C.!''\ t{f't1,vJe\-'\lu;::,jo1) ( 11) 

Step 4 : Compute 

Step 5 

un+1 

n = n+1, go to 1. 

The equation (10), (11) are fundamental to the mixed impli 
-cit-explicit scheme.u 1 may be called a predictor whilR 
u is a corrector.~hg± is essential to the mixed treat 
-~~t is the fact that the part of the elastic energy re 
-lated to the ~~omainft1 is implicitly tre~ted while it 
is almost expl1c1tly treaEed for the subdoma1~ .Regar 
-ding finite element analysis it is important to take 
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full advantage of the exoliciteness of domain.O.E using a 
numerical quadrature for (8) with k=E with the 1ntegration 
points placed at the nodes. In this manner the mass matrix 
for subdomain~ will be diagonal and the profile of the 
linear system (T1) will be considerably reduced whenever 
{l is large compared to .1l..

1
. This way of building an imoli 

-~it-explicit scheme proposed by Hughes et al. (1978a) is 
particularly elegant and almost straightforward to be im 
-plemented. For the stability analysis we refer to the 
same paper. With these notations and above conceots we 
can now proceed to a non-linear mixed implicit scheme. 

Implicit-Explicit Scheme for Elastoplastic Dynamics 

The different steps of the algorithm are as follows: 

Step 1 : Let u ,u ,U be known n n n 
2 

Step 2 Compute u" =u + Lit un + 11
2t (1-2A) U n+1 n r n 

,., 
Step 3 : Solve foro-n+ 1 in fiE : 

Step 4 : Solve for~+1 in.t\.I,and for un+1 

(12) 

p~t2[(eun+1'v)E+(f'un+1'vli] + (o-n+1'E (v))I= (fn+1'v) 

+ _1_ [(Fun:1,v)I+(fu~+1'v)E1- (0"'~+1't.(v))E 
pll.t2 

( (J n+ 1- (Jn, t" ) r= ( en+ 1. ( E (un+ 1)- E (un)) I r; ) I 

Step 5,6 : Identical to steps 4,5 of previous algorithm. 

Now step 3 of the preceedinq algorithm is highly nonlinear 
and some kind of iterative process is necessary. Using the 
concept of the first algorithm the solution of step 4 is 
given by: 

i+l i+l Step 4d: Check for convergence tolerance on un+1 ,CYn+1 . 

To take advantage of the mixed implicit-explicit it is of 
utmost importance to choose a wellsuited bilinear form 
b(u,v). The bilinear form must conseauently be solit 
into tw:J parts tooreserve a reduce profile : 

b(u,v) = bi(u,v) + bE(u,v) 

The author's present choice for bi and bE is 
1 bi (u,v) = - 2 (.f u,v) I + ai (u,v) 

foc.t 
1 

bE (u,v) = --2 (J u,v)E 
~At 

(16) 

(17) 

where ai(u,v) is the elastic energy of the implicit subdo 
-main. This choice seems to nerform well but other ]X)ssi 
-bilies are currently under study. If the finite element 
matrix corresponding to bE(u,v) is diagonal then the riqht 
-hand side contribution in (14) of elements strictly inclu 
-ded in the explicit subda>Bin vlill be constant and so for 
their nodes. However for explicit elements there will be 
a force contribution when the stresses are adlusted so 
that the interface nodes will be iteratively corrected ac 
-cording to the correction of the stresses in the imolicit 
elements although the stresses in the exolicit eleme~t 
are in a locked-on status. ·· 

The stability analysis of the pro]X)sed scheme and some mo 
-difications of it will be studied elsewhere in a forthco 
-mina paper. Nurrerous nurrerical tests have been oerformed 
and the efficiency of such mixed scheme has been shown to 
be particularly helpful in the area of elastoplastic soil
structure interaction. In the subsequent section we shall 
proceed to the analysis of a soil-wall interaction with 
such a scheme and shaw some results on earth-pressures 
computations. · 

CCMPUI'ATIONS OF SOIL-WALL INI'F.RACTION 

~€ shall describe in this final section some recent results 
obtained with a finite element camputer code included the 
mixed implicit-explicit nonlinear scheme described above. 
We have cho-sen an actual wall 9.50m high wit..'-1 a variable 



cross-section (from 1.35 m2 at th~ toe to .55m
2 

at the4 
top) and variable inertia (. 236 m at the toe to j014 m 
at the top) . If)e d~si ty of the wall is 2500 kg/m , Ymmg's 
modulus 4. 10 N/m and Poisson's ratio 0.2. In order to 
ac=unt accurately for the flexibility of the wall classi
cal beam elements were in=rporated into the finite ele
ment mesh. The me13hani2al properties of the soil 'iere the 
following: E = 10 N/m ; v= 0.46 ; f = 2270 kg/m . The 
soil was a sand with zero cohesion and 35° of angle of 
friction. Its behaviour was assumed to be described by 
the Drucker-Prager elastoplastic law with associated flo.-r 
rule. The inherent shortcomings of this law when aoplied 
to sands is well-known but it was considered to be suffi 
-cient for the first tests. The initial state of stress 
was assumed to =rrespond to the active state throughout 
the whole soil mesh. This last assumption is also oversim 
-plified but its ITBin ad'.rantage was that it did not pre 
-elude the computation of the initial state of stress du 
-ring the =nstruction of the wall and the backfill. Spe 
-cial interface elements taking into account a Coulomb 
law of friction between the soil and the wall have been 
included in the analysis. Finallv the wall and the soil 
are assumed to lay directly on a rigid bedrock submitted 
to an horizontal acceleration. We shall now oroceed to 
discuss some of the most interesting observations that 
can be extracted from the computation. 

Horizontal Stresses in the Soil behind the Wall 

The evolution of the stresses for the first 0.01 s is 
shown at differents heights. It is clearly seen that espe 
-cially at the top the stresses cannot decrease below the 
active pressure ( the vertical stresses are almost con 
-stant there ) so that at each cycle the soil gives a lar 
-ger reaction when the wall moves towards it than when it 
moves apart. This phenarenon is not predicted by an elas 
-tic law in which we have found that the stresses were 
oscillating symetrically around the static values. 
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Fig. 1 : Stress history behind the wall 
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Resultant of Soil Stresses Against the \'ilall 

The hotizontal and vertical components of the force exer 
-ted by the soil on the wall are shown on figure 2. The 
horizontal component is seen to be increasing above the 
static value which corresponcs t<"' an active state. 
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Fig. 2 : Resultant force history ( elasto~lastic case) 

The average value is below the value predicted by the 
Mononobe equation but the duration of the analysisis clea 
-rly too small and further computations are obviously nee 
-ded. However the trend is clearly indicated. 

l)tt IN 

VPrt.i Ci\l 

Fig. 3 : Resultant force history ( elastic case ) 

On figure 3 the same run was performed but with an elastic 
law. The horizontal component is seen to be much more sy 
-metric around the static value. Also the vertical campo 
-nent (shear force) is much higher in the elastic case 
than in the elastoolastic case. 
On ficrure 4 ,we show the variation of the angle between 
the resultant force and the wall. The minilnum value obtai. 
-ned is about 70 degrees which corresoonds to an inclina 
tion of 20 degrees with respect_ to the normal to the wall. 
This value is not far from cp /7 obtained in exoerimental 
tests. 
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Influence of Wall Flexibility 

Larger horizontal displacements have obviously been obtai 
-ned in that case. But more interesting is the fact that 
the horizontal component of the resultant force is dPcrea 
-sed which has been already confirmed by experiments. 
Also the shear force is highly increased due to the high 
-er vertical movements of the wall with respect to the 
soil. 

1\ 

vertical 

·/ 

Fig.S Resultant force history 
( Flexjble wall, elastic case ) 
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Permanent Displacement 

On figure 6, are shown the horizontal displacements at the 
top of the wall. It is demonstrated that permanent displa 
-cements are well accumulated ( seisme duration: S.s ) 
and seemingly tendin? to an asvrnptotic value of about 
• 7 rnn. This phenarenon In3.Y also be exolained by the non
symetric response of the soil starting fran an almost ac 
-tive state of stress and taking into account the plasti 
-city of the soil. 

UY !Ml 10tt -d 

from 

~-- ·r·----r----- ., 

~ l 

Pig. 6 :Top of the wall. DisPlacement vs time 

It is to be noted that the law value of the obtained dis 
-placements is due to the very low value of the JnaXimum 
acceleration of the seisme ( 0.02 g ) 

CONCLUSIONS 

In reviewing some important factors contributing to the 
building of earthpressures during earth~uakes we have 
tried to show that the incorooration of trulv elastonlas 
-tic behaviour of the soil was not solely de~irable but 
necessarv. However the cost of nonlinear finite canputa 
-tion is well known to be still high and thus it was 
found to be efficient to develop a nonlinear imnlicit-ex 
-nlicit scheme where the stiff wall could be treated im 
-plici b•] '' while the sanewhat softer soil could be anal v 
-sed by an explicit process. A new tyPe of such a mixed 
algorithm has been thoroughly detailed and in a final 
section we have presented the first results that were ob 
-tained in a particular case. It is obviously too early 
to make definite conclusions but some exPerimentally ob 
-served results were f0und to be caught by our camputa 
-tions. It seems now important to go to more ~antitative 



informations, and a series of experimental tests on sea 
-led models will soon be conducted in order to validate 
the results by camparison. 
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