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PASSIVE EARTH PRESSURE FORCE-DISPLACEMENT RELATIONSHIPS 
 

Patrick Wilson                                                                                         Ahmed Elgamal 
University of California, San Diego                                                         University of California, San Diego 
La Jolla, CA-USA 92093-0085                                                                La Jolla, CA-USA 92093-0085 
 
 
ABSTRACT 
 
During a strong earthquake, passive earth pressure can provide resistance to excessive displacements along bridge abutments and pile 
caps.  To account for this contribution, the force-displacement relationship is required, in addition to the peak resistance value.  
Experiments were performed at the University of California, San Diego to record the passive earth pressure force-displacement 
relationship behind a 1.7 meter tall vertical wall section.  The experimental configuration of the soil container and wall system is 
described first. Backfill consisting of dense well-graded silty sand was placed in the soil container which measured 5.6 meters long, 
2.9 meters wide and 2.15 meters deep.  A finite element (FE) model is calibrated next, on the basis of this experimental response.  FE 
analysis is then employed to compute the backfill resistance considering a range of representative backfill soils and depths.  Results 
from these simulations help to illustrate the significant dependence on soil type and supported backfill depth on the passive force-
displacement response. Calibrated hyperbolic model parameters are provided to represent the simulated passive resistance for use in 
practical applications. 
 
 
INTRODUCTION 
 
Passive earth pressure provides a mechanism to resist lateral 
foundation movement, resulting in either an increase or a 
decrease in the demand placed on the other structural 
components.  For instance, acting on the cap of a pile group 
(Fig. 1), passive pressure contributes to lateral stiffness and 
capacity (Gadre and Dobry 1998, Cole and Rollins 2006, 
Rollins and Cole 2006). Integral abutment bridges may 
mobilize passive pressure (Fig. 2) due to thermal expansion, 
applying a compressive load to the bridge deck (Duncan and 
Mokwa 2001, Peric et al. 2007, Shah 2007).      
 

 
 

Fig. 1.  Passive earth pressure acting on a pile cap 
 

In seismic design (Caltrans 2004, Shamsabadi et al. 2007), a 
seat abutment system relies on the soil backfill to provide 
resistance to excessive longitudinal bridge deck displacement 
(Fig. 3).  During strong shaking, if the deck impacts the 
abutment, a sacrificial portion (the backwall) is designed to 
break off into the backfill (Fig. 3).  Resistance to further 
displacement of the deck and backwall is then provided by 
passive earth pressure (Shamsabadi et al. 2007).    
 

 
 

Fig. 2.  Passive earth pressure acting on an integral abutment 
 
While the Log-Spiral method (Terzaghi et al. 1996) has been 
shown to provide good estimates of experimentally measured 
peak passive resistance (Duncan and Mokwa 2001, Rollins 
and Cole 2006, Bozorgzadeh 2007, Lemnitzer et al. 2009), it 
does not offer information concerning the force-displacement 
relationship.  For such force-displacement response, soil 
stiffness may substantially depend on depth (Terzaghi et al. 
1996).  Different types of soils used in backfills have also 
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shown an extensive range of variation in shear stiffness and 
strength (Earth Mechanics 2005).    
 
Recently, a few large scale passive pressure load-displacement 
tests have been performed (Duncan and Mokwa 2001, Rollins 
and Cole 2006, Bozorgzadeh 2007, Lemnitzer et al. 2009).  
However these experiments cover only a limited range of 
backfill soil types and wall heights (up to 2.3 meters). 
 

 
 

Fig. 3.  Passive earth pressure acting on the sacrificial 
backwall portion of a seat abutment 

 
With regard to the above issues, two additional passive earth 
pressure load-displacement experiments are presented first.  
Next, finite element (FE) models are calibrated to reproduce 
the observed force-displacement curves.  Upon achieving a 
good match with the test data, the FE models are employed to 
produce curves for a range of backfill types and wall heights.  
Hyperbolic model representations of the simulated load-
displacement curves are provided.  These models may be 
useful to represent the backfill passive resistance in practical 
applications such as the pile cap, integral abutment, and 
sacrificial backwall scenarios described above (Figs. 1 through 
3). 

LARGE SCALE TESTS 

Test Setup 

Primary components of the experimental configuration include 
a large soil container (Fig. 4), a model wall section suspended 
from a supporting beam (Fig. 5), a loading mechanism (Fig. 6) 
and a compacted sandy backfill (Figs. 7 and 8).  The inside 
dimensions of the soil container were about 2.9, 6.7 and 2.5 
meters in width, length and height, respectively.    
 
The model wall supported 1.7 meters of backfill in height, 
across the full container width.  Additional backfill below the 
wall (about 0.5 meters in height) was supported by a wooden 
box.  The walls of the container were lined on the inside with 
smooth plastic to minimize side friction (friction angle of 11.5 
to 14 degrees, Fang et al. 2004).  In that configuration, the test 
wall resembled a plane-strain section along the width of a seat 
abutment sacrificial backwall (Fig. 3). 
 

 
Fig. 4.  Soil container and reaction tower 

 

 
Fig. 5.  Test wall section and supporting beam 

 

 
Fig. 6.  View looking down at extended plunger jacks reacting 

against load cells behind test wall 
 

Hydraulic jacks reacted through load cells onto concrete-filled 
steel posts (Fig. 6) to push the wall into the backfill while 
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measuring the applied load.  Transducers also recorded the 
wall displacement.    
 
Well-graded sand with about 7 percent silt content and up to 7 
percent fine gravel was compacted (Fig. 8) for each test in 
compliance with Caltrans (2006) standard specifications for 
structure backfill.  Soil total unit weight was approximately 
20.6 kN per cubic meter.  Dimensions of the backfill were 
about 2.9, 5.6 and 2.15 meters in width, length and height, 
respectively. 
 
Direct shear and triaxial tests were performed on samples 
remolded as closely as possible to the experimental backfill 
placement conditions.  From the direct shear tests, the peak 
friction angle  = 48 degrees, and cohesion intercept c = 14 
kPa.  Compared with direct shear, the triaxial tests resulted in 
a lower peak  = 44 degrees, and the same c = 14 kPa. 
 
 

 
Fig. 7.  Backfill placement 

 

 
Fig. 8.  Backfill compaction 

Test Procedure 

The hydraulic jacks (Fig. 6) were used to push the test wall 
into the backfill during two separate tests.  At the time of Test  

1, the backfill was drier than the placement condition due to 
23 days between construction and testing.  Test 2 occurred 
only 3 days after the backfill was placed. In each test, the 
force-displacement relationship was recorded up to and 
beyond the peak measured resistance.  In the employed testing 
configuration, the wall was free to move upwards with the 
adjacent backfill soil (similar to a relatively light anchor wall), 
resulting in a low mobilized wall-soil friction angle .     

Test Results 

In the conducted tests, the measured horizontal force increased 
with lateral wall displacement up to a peak value (Fig. 9), and 
decreased thereafter.  Lacking an externally applied vertical 
load, the wall moved slightly upward with the adjacent 
backfill as it was being displaced horizontally.  Consequently, 
the mobilized wall-soil friction mob was about 2 to 3 degrees 
based on vertical equilibrium of the model wall (Duncan and 
Mokwa 2001).   
 
In terms of maximum passive resistance for these low mob 

tests (Fig. 9), the Coulomb and Log-Spiral predictions 
(Terzaghi et al. 1996) are essentially equal.  Using and c 
from the direct shear and triaxial tests, the Coulomb and Log-
Spiral predictions were close to the measured peak passive 
resistance from Test 2 (with backfill conditions closest to the 
laboratory tested soil samples), but fell considerably short for 
the drier backfill of Test 1 (Wilson 2009).   
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Fig. 9.  Backbone force-displacement relationships from Test 

1 and Test 2 compared with the FE model predictions 
 

FE SIMULATION OF THE EXPERIMENTS 

In this section, the experimental results of Fig. 9 are compared 
with FE plane-strain simulations using Plaxis (2004).   
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Configuration of FE Model and Boundary Conditions 

For simulation of the passive pressure load-displacement 
experiments, the FE model backfill was 5.6 meters long and 
2.15 meters tall with 1.7 meters of backfill in contact with the 
model wall (Fig. 10).  The far end of the backfill, and the soil 
domain beneath the model wall were fixed in the horizontal 
direction and free in the vertical.  To simulate the interface 
between the backfill and the base of the steel soil container, 
interface friction (δ) along the bottom of the model backfill 
was 0.2 (McCarthy 2007). 
 

 
Fig. 10.  FE model mesh for simulation of the soil container 

experiments 
 
Stiff plate elements (1.7 meters tall) supported the soil 
laterally (Fig. 10), with the same weight as the experimental 
wall and supporting beam (Fig. 5).  During simulation of the 
experiments, a friction interface ensured that the plate (wall) 
would move upwards with the adjacent soil elements as the 
lateral displacement was being applied. 

Soil Model 

The employed Plaxis (2004) Hardening Soil (HS) model uses 
the Mohr-Coulomb failure rule, and a nonlinear hyperbolic 
stress-strain relationship (Fig. 11).  All analyses were 
restricted to the pre-peak loading range, with numerically 
stable solutions.   
 

 
Fig. 11.  Hyperbolic stress-strain relationship (Plaxis 2004) 

 
For simulation of Test 2 (Soil T2, closest to the lab test 
condition), backfill shear strength parameters ( and c) were 
determined based on the direct shear and triaxial tests (Table 
1). The reference stiffness parameter E50

ref (Fig. 11) was 
selected at a reference stress pref = 100 kPa from the triaxial 
test stress-strain data according to a power law with m = 0.5 

(Plaxis 2004).  Soil total unit weight was specified as  = 20.6 
kN/m3, according to the field condition.  A failure ratio (Rf = 
qf/qa, as shown in Fig. 11) value of Rf = 0.75 was also adopted, 
which is within the range recommended by Duncan and 
Mokwa (2001).  User manual recommendations and internal 
adjustments made by Plaxis (2004) determined the remaining 
HS model parameters. 
  
For simulation of Test 1 (Soil T1, drier condition), backfill 
shear strength parameters (Table 1) were adjusted based on 
analysis of the observed passive failure wedge (Wilson 2009).  
A larger E50

ref accounted for the experimentally observed 
higher stiffness compared with Test 2 (Fig. 9). 
 

Table 1:  FE model soil parameters  

T1a T2a D-Sb MD-SMb MD-SCb Units

 52 46 38 33 23 degrees
c 13 14 0 24 95 kPa

 22 16 8 3 0 degrees

p ref 100 100 100 100 100 kPa

m 0.5 0.5 0.5 0.5 0.5 ~

E 50
ref 50000 40000 35000 30000 30000 kN/m2

E oed
ref 50000 40000 35000 30000 30000 kN/m2

K 0
nc 0.4 0.4 0.4 0.45 0.6 ~

g 20.6 20.6 20 19 19 kN/m3

R f 0.75 0.75 0.75 0.75 0.75 ~
aCurrent experimental study
bEarth Mechanics Inc. (2005)

SoilFE model 
parameter

 

Simulation Results 

FE simulations of the soil container passive earth pressure 
experiments were made by prescribing a horizontal 
displacement boundary condition along the wall plate (left 
side of Fig. 10), while allowing free vertical displacement.  
Using this configuration, the wall moved upwards with the 
backfill in accordance with the experiments.   As shown in 
Fig. 9, the FE models provide a satisfactory representation of 
the experimental load-displacement behavior.    

FE SIMULATIONS FOR A RANGE OF BACKFILL SOILS 
AND DEPTHS 

In this section, FE Simulations are performed considering 
walls ranging from 1 meter (e.g., a pile cap, Rollins and Cole 
2006) to 5 meters (e.g., a tall bridge abutment, Siddharthan et 
al. 1997) in height.  Four different backfill soils are 
investigated to cover a range of likely backfill soil properties 
(Earth Mechanics 2005). 
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Adjustments to the Model 

In order to consider taller wall configurations, and to minimize 
potential interference with the model boundaries, these 
additional simulations were performed on extended and 
deepened backfill domains (Fig. 12), with dimensions 
determined through a trial and error process.  Horizontal and 
vertical fixities were applied along the model base, with 
horizontal fixity also along the far end of the backfill and the 
soil domain beneath the model wall.   
 

 
Fig. 12.  Sample deformed mesh from simulation of a 3.5 

meter tall wall with backfill Soil MD-SC 
 
Lemnitzer et al. (2009), recently conducted a bridge abutment 
passive pressure experiment in which the test backwall 
displaced essentially solely in the horizontal direction.  This 
was done in consideration of the potentially large friction 
force between the end of the bridge deck and the backwall 
(Lemnitzer et al. 2009), which may prevent vertical wall 
movement.  In that configuration, δ = 0.35was measured at 
the instant of the peak measured load (Lemnitzer et al. 2009).   
 
In the case of pile caps and integral abutments, a restriction 
from vertical wall uplift may also be anticipated (Duncan and 
Mokwa 2001).  On that basis, a δ = 0.35interface Rinter 
(Plaxis 2004) was provided along the plate-soil boundary for 
the FE simulations.  A horizontal displacement was again 
ascribed to the plate that represented the wall, but the vertical 
displacement was assigned as zero (Fig. 12), in accordance 
with the Lemnitzer et al. (2009) experiment. 
 
Simulations were performed considering four soils (Soils T2, 
D-S, MD-SM, and MD-SC).  Model parameters for these soils 
(Table 1) were determined based on conducted direct shear 
and triaxial tests (Earth Mechanics 2005) as described above 
for Soil T2.  Soil T2 represents the placement condition 
backfill from Test 2 of the current experimental study.  Soils 
D-S, MD-SM, and MD-SC represent three categories of sandy 
soils found in California in an extensive investigation of actual 
bridge abutment backfills (Earth Mechanics 2005).  Soil D-S 
is dense (clean) sand, MD-SM is medium-dense silty sand, 
and MD-SC is medium-dense clayey sand. 

Simulation Results 

Figs. 13 through 16 show the simulated passive force-
displacement response, per meter of wall width, for the 4 soils 
mentioned above, considering wall heights H ranging from 1 
to 3 meters.  These curves are limited to the numerically stable 

solution range, and may not fully reach the peak passive 
resistance.   FE simulations of 4 and 5 meter walls were also 
conducted (shown further below in order to maintain a more 
reasonable scale in Figs. 13 through 16). 
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Fig. 13:  Soil T2 ( = 46 degrees, c = 14 kPa, E50

ref = 40,000 
kN/m2) 
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Fig. 14:  Soil D-S ( = 38 degrees, c = 0 kPa, E50

ref = 35,000 
kN/m2) 

 
From Figs. 13 through 16, there is clearly a wide range in 
backfill strength and stiffness, depending on both the soil type 
and the wall height (H).    According to the FE model 
simulation with clean sand backfill (Soil D-S), the passive 
resistance with H = 3 meters reached nearly 10 times that of 
the H = 1 meter case (Fig. 14).  The stiffness also increased 
rapidly as the wall became taller for Soil D-S (Fig. 14).  For 
instance at a horizontal wall displacement of 1 centimeter, 
about 4.4 times the passive resistance was mobilized for H = 3 
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meters, compared with H = 1 meter (Fig. 14).  In contrast, for 
the high c and lower  Soil MD-SC (Fig. 16), the passive 
resistance with H = 3 meters reached only about 4 times that 
of the H = 1 meter case, and the stiffness increase for taller 
walls was also less pronounced. 
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Fig. 15:  Soil MD-SM ( = 33 degrees, c = 24 kPa, E50

ref = 
30,000 kN/m2) 
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Fig. 16:  Soil MD-SC ( = 23 degrees, c = 95 kPa, E50

ref = 
30,000 kN/m2) 

 
The drastic difference in load-displacement response for Soils 
T2 (Fig. 13) and D-S (Fig. 14) helps to further illustrate why it 
can be important to accurately account for the backfill soil 
strength and stiffness.  Soil shear strength is often roughly 
approximated for earth pressure predictions, sometimes 
neglecting the cohesion in sandy soils (e.g., CSBC 2007).  In 
some cases, it may be conservative (possibly resulting in 
costly over-design) to neglect cohesion and use a typical dense 
sand friction angle  = 38 degrees (Earth Mechanics 2005), 
such as Soil D-S in Fig. 14.  However when the passive 
pressure imposes loads which might damage the structure 

(e.g., expansion of an integral abutment bridge), the opposite 
may be true.  For instance, if a dense sand backfill similar to 
Soil T2 ( = 46 degrees and c = 14 kPa) were characterized 
with the more typical  = 38 degrees, and c = 0 values of Soil 
D-S, the passive resistance could be underestimated by a 
factor of more than 2 (Figs. 13 and 14).   
 
Load-displacement simulations of the four backfill soils are 
also compared for the 1 and 5 meter tall wall in Figs. 17 and 
18, respectively.  Behind the 1 meter tall wall (Fig. 17), the 
highly cohesive Soil MD-SC was quite strong and preserved 
its stiffness over a large range of deflection.  However, due to 
the higher confining stress conditions (Terzaghi et al. 1996) 
for the 5 meter wall (Fig. 18), the soil with the greatest  (T2) 
became the strongest and stiffest by a significant margin.  
Similarly, the cohesionless Soil D-S was clearly the weakest 
for the 1 meter wall (Fig. 17), but came close to matching 
Soils MD-SM and MD-SC in Fig. 18, due to its relatively high 
 and the deeper (5 meter) backfill. 
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Fig. 17.  Comparison of Soils T2, D-S, MD-SM, and MD-SC 

for a 1 meter tall wall 
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Fig. 18.  Comparison of Soils T2, D-S, MD-SM, and MD-SC 

for a 5 meter tall wall 
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Comparison of the Simulated Curves with Design Models 

For use in bridge seismic design, AASHTO (2007) provides 
bi-linear abutment passive resistance models for “cohesive” 
and “non-cohesive” soils.  Peak passive resistance (Pp) and 
abutment stiffness (Kabut) for the non-cohesive backfill model 
are derived from Equations (1) and (2): 
 

wwpp wHpP                               (1) 

ww

p
abut HF

P
K


                                     (2) 

 
where pp is the passive lateral earth pressure, Hw is the wall 
height, ww is the width, and Fw is a factor ranging from 0.01 
for dense sands to 0.05 for compacted clays (Clough and 
Duncan 1991).  For “non-cohesive,” non-plastic backfill (fines 
content < 30%), AASHTO (2007) provides an estimated pp = 
100Hw kPa.  For cohesive backfill (clay fraction > 15%), 
AASHTO provides an estimated pp = 240 kPa. 
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Fig. 19.  Soils T2, D-S and MD-SM compared with the 

AASHTO (2007) bilinear model with Fw = 0.015 for non-
cohesive soil and a 1.7 meter tall wall 

 
For a typical abutment sacrificial backwall height of 1.7 
meters (Shamsabadi et al. 2007), Fig. 19 compares the FE 
curves with the AASHTO (2007) “non-cohesive” backfill 
model, for the soils that are closest to the criteria described 
above (T2, D-S, and MD-SM).  A similar comparison is 
shown in Fig. 20 for a taller (3 meter) wall (Siddharthan et al. 
1997).  Figs. 21 (1.7 meter wall) and 22 (3 meter tall wall) 
compare the AASHTO (2007) “cohesive” backfill model, with 
the Soil MD-SC (which meets the above criteria) simulated 
force-displacement curve. 
 
According to the simulation results for the 1.7 meter tall wall 
of Fig. 19, the AASHTO (2007) non-cohesive backfill model 
with Fw = 0.015 provides a good match with Soil MD-SM, but 
significantly under and over predicts the resistance provided 

by Soils T2, and D-S, respectively.  For the 3 meter wall of 
Fig. 20, the AASHTO (2007) model provides a better 
representation for Soil T2, while over estimating in terms of 
both stiffness and capacity for Soils D-S and MD-SM. 
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Fig. 20.  Soils T2, D-S and MD-SM compared with the 

AASHO (2007) bilinear model with Fw = 0.015 for non-
cohesive soil and a 3 meter tall wall 
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Fig. 21.  Soil MD-SC compared with the AASHTO (2007) 
bilinear model with Fw = 0.025 for cohesive soil and a 1.7 

meter tall wall 
 
For the 1.7 meter wall with Soil MD-SC, the AASHTO (2007) 
“cohesive” soil model with Fw = 0.025 provides a satisfactory 
match in terms of stiffness, but underestimates the capacity 
(Fig. 21).  With the 3 meter wall, the AASHTO (2007) model 
underestimates both the stiffness and capacity, compared with 
the FE model results (Fig. 22).  Based on the comparisons in 
Figs. 19 through 22, higher order approximations of the 
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passive force-displacement relationship could clearly lead to a 
safer or more economic design. 
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Fig. 22.  Soil MD-SC compared with the AASHTO (2007) 

bilinear model with Fw = 0.025 for cohesive soil and a 3 meter 
tall wall 

HYPERBOLIC LOAD-DISPLACEMENT MODELS 

Hyperbolic models have been shown to provide a good 
representation of the passive load-deflection behavior up to 
the peak resistance (Duncan and Mokwa 2001, Cole and 
Rollins 2006, Shamsabadi et al. 2007).  Duncan and Mokwa 
(2001) employed a model defined by the initial stiffness (Kmax) 
according to the following equation: 

ult
f F

y
R

K

y
yF




max

1
)(                                (3)             

where F is the resisting force, y is the horizontal displacement, 
Fult is the maximum passive resistance, and Rf  is a failure 
ratio.   
 
Such hyperbolic models can be used as nonlinear springs to 
represent the passive earth pressure load-displacement 
resistance.  For dynamic simulations, a material 
(“hyperbolicgapmaterial”) is also available for use as a spring 
in the finite element code OpenSees (Mazzoni et al. 2006).  
The “hyperbolicgapmaterial” implements a backbone curve 
using hyperbolic model Equation (3), an adjustable expansion 
gap, and a linear unloading and reloading stiffness 
approximation (Wilson and Elgamal 2008, Dryden 2009, 
Wilson 2009).  
 
Hyperbolic model parameters are provided in Tables 2 
through 5 as approximations of the FE simulation results 
(Figs. 23 through 26).  These models can be scaled according 
to the structure width, with an applied 3D correction factor in 
the case of narrow walls (e.g. Brinch-Hansen 1966).  Using 
Fult based on the Log Spiral prediction, the additional 

parameters were selected to match the FE curves.   Compared 
with the bi-linear models shown in Figs. 19-22, the hyperbolic 
curves clearly provide a superior representation of the passive 
force-displacement relationship. 
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Fig. 23:  FE simulated force-displacement curves for Soil T2 
(1, 1.3, 1.7, 2, 2.5, 3, 4 and 5 meter tall walls) and hyperbolic 

model approximations 
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Fig. 24:  FE simulated force-displacement curves for Soil D-S 
(1, 1.3, 1.7, 2, 2.5, 3, 4 and 5 meter tall walls) and hyperbolic 

model approximations 
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Fig. 25:  FE simulated force-displacement curves for Soil 

MD-SM (1, 1.3, 1.7, 2, 2.5, 3, 4 and 5 meter tall walls) and 
hyperbolic model approximations 
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Fig. 26:  FE simulated force-displacement curves for Soil 
MD-SC (1, 1.3, 1.7, 2, 2.5, 3, 4 and 5 meter tall walls) and 

hyperbolic model approximations 
 

Table 2.  Hyperbolic model parameters for Soil T2 

H (m) Kmax (kN/cm/m) Rf Fult (kN/m)

1 180 0.7 230
1.3 210 0.75 350
1.7 240 0.8 550
2 250 0.8 725

2.5 280 0.85 1050
3 310 0.85 1450
4 330 0.8 2350
5 350 0.75 3500

Soil T2

 
 

Table 3.  Hyperbolic model parameters for Soil D-S 

H (m) Kmax (kN/cm/m) Rf Fult (kN/m)

1 170 0.8 65
1.3 200 0.8 110
1.7 240 0.8 190
2 250 0.8 265

2.5 280 0.8 410
3 310 0.85 600
4 380 0.85 1000
5 420 0.8 1600

Soil D-S

 
 

Table 4.  Hyperbolic model parameters for Soil MD-SM 

H (m) Kmax (kN/cm/m) Rf Fult (kN/m)

1 160 0.7 155
1.3 180 0.7 225
1.7 210 0.75 325
2 230 0.75 410

2.5 270 0.8 575
3 310 0.8 750
4 350 0.8 1200
5 400 0.8 1700

Soil MD-SM

 
 

Table 5.  Hyperbolic model parameters for Soil MD-SC 

H (m) Kmax (kN/cm/m) Rf Fult (kN/m)

1 110 0.75 365
1.3 130 0.75 485
1.7 150 0.75 650
2 180 0.8 775

2.5 210 0.8 1000
3 230 0.8 1250
4 270 0.8 1750
5 320 0.8 2350

Soil MD-SC
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CONCLUSIONS 

Large scale passive earth pressure load-displacement tests 
were presented, along with FE simulations.  In the conducted 
low mob (2 to 3 degrees) experiments: i) the measured peak 
passive pressure was close to the Coulomb and Log Spiral 
predictions, and ii) using shear strength parameters determined 
from laboratory tests and analysis of the experiments, FE 
model simulations provided a satisfactory representation of the 
load-displacement behavior up to the peak resistance. 
 
A series of passive pressure numerical simulations was 
performed next, considering four different backfills and a 
range of wall heights.  Results show how the different backfill 
soils can provide substantially different load-displacement 
resistance, in terms of both stiffness and strength.  It was also 
shown that the increase in supported backfill height, and the 
depth dependent stiffness of the soil, contributes to significant 
variations in the available resistance.   
 
For practical applications, hyperbolic model approximations 
were provided for 32 different combinations of backfill soil 
type and wall height.  Such hyperbolic models can be used as 
nonlinear springs to represent the passive earth pressure load-
displacement resistance in pushover analyses and dynamic 
simulations. 
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