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(\ Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, ~ March 11-15, 1991, St. Louis, Missouri, Paper No. 5.30 

Seismic Response of Floating Piles to Obliquely Incident Waves 
Shahid Ahmad 
Assistant Professor, Department of Civil Engineering, State 
University of New York at Buffalo, Buffalo, New York 

S.M. Mamoon 
Senior Staff Engineer, Woodward-Clyde Consultants, St. Louis, 
Missouri 

SYNOPSIS: The response of single piles under vertically and obliquely incident SH, SV, and P waves is obtained using a 
hybrid boundary element (BEM) formulation. The piles are represented by compressible beam-column elements and the soil 
as a hysteretic viscoelastic half-space. A recently developed Green function corresponding to the dynamic Mindlin prob­
lem is implemented in the numerical formulation. Exact analytical solutions for the differential equations for the 
piles under distributed harmonic excitations are used. Treating the half-space as a three-dimensional elastic continuum, 
the interaction problem is formulated by satisfying equilibrium and displacement compatibility along the pile-soil inter­
face. Solutions adopted for the seismic waves are obtained by direct integration of the differential equations in terms 
of amplitudes. Salient features of the seismic response are identified in several non-dimensional plots. Results of 
the analyses compare favourably with the limited data available in the literature. 

I NTRODUCTI 0N 

Over the years, significant progress has been made in 
developing procedures for evaluating the response of 
single piles and pile groups to both static (Banerjee 
1978; Banerjee and Driscoll 1976; Banerjee et al. 
1987; Poulos and Davis 1980) and dynamic loads 
(8dnerjee and Sen 1987; Banerjee et al. 1987; Kaynia 
and Kausel 1982; Sen et al. 1985; Waas and Hartmann 
1981; Wolf and VonArx 1978). Most of the work is 
essentially restricted to pile foundations subjected 
to forced periodic excitation (Banerjee and Sen 1987; 
Banerjee et al. 1987; Sen et al. 1985; Waas and 
Hartmann 1981). The effect of vertically and 
obliquely incident seismic waves on surface and 
embedded shallow foundations has also been 
investigated in recent years (Dominguez and Roesset 
1978); Wong and Luco 1978). Simplified rules have 
been suggested to estimate both the translational and 
rotational responses from the free-field motion. 
Although some work has been done to investigate the 
response of end-bearing piles to vertically incident 
waves (Flores-Berrones and Whitman 1982; Gazetas 1984; 
Kaynia and Kausel 1982; Kobori and Minai 1981), no 
study has yet been reported encompassing the effects 
of obliquely incident waves on piles. 

Gazetas (1984) has presented results of a 
numerical study on the seismic response of end-bearing 
piles due to vertically incident SH waves. The one­
dimensional soil amplification theory was used to 
evaluate the steady-state free-field displacements. 
The analysis was performed by expressing the response 
as a superposition of two effects: (1) A kinematic 
interaction effect; and (2) an inertial interaction 
effect. 

Flores-Berrones and Whitman (1982) have used the 
Winkler soil model to study the dynamic soil-pile­
supported mass interaction as an aid to understanding 
pile foundation behavior during earthquakes. This 
study also considers the case of end-bearing piles, 
driven through a soft stratum and resting on a hard 
rock bed. The seismic motion was modeled by assuming 
a simplified one-dimensional representation for the 
ground shaking at the pile end only. Damping was 
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neglected and the coefficient of subgrade reaction was 
assumed constant with depth. 

Kayn i a and Kause 1 ( 1982) presented a more genera 1 
formulation for the seismic response of single piles 
and pile groups in layered media. They presented 
absolute values of transfer function from horizontal 
displacement of ground surface to the pile head and 
pile cap displacement. However, they considered 
vertically incident shear waves only. 

Wolf and Von Arx (1978) used an axisymmetric 
finite element formulation to obtain the impedance and 
transfer functions of a group of piles to vertically 
propagating waves. They later extended their work to 
incorporate horizontally traveling waves and studied 
the kinematic interaction in piles (Wolf and VonArx 
1982). 

In the present work, the problem is modeled by a 
hybrid boundary element (Banerjee and Butterfield 
1981) formulation. The piles are presented b~ . 
compressible beam-column elements, and the so1l 1s 
represented as a hysteretic viscoelast~c hal:-sp~ce. 
The numerical scheme is based on the d1scret1zat1on 
into elements of the pile and the soil domain around 
the pile. Within each element the displacement and 
traction are assumed constant (or can be interpolated 
between nodal values in a higher order formulation). 
The boundary element method offers considerable 
advantage over other numerical methods, for this type 
of problem, primarily because of its ability to ~ake 
into account the three-dimensional effects of so1l 
continuity and boundaries at infinity. 

This paper presents the results of a numerical 
study on the behavior of single piles subjected to 
vertically and obliquely incident SH, SV, and P waves 
(Figure 1). Soil-pile interaction effects are taken 
into account around the shaft interface as well as at 
the pile base. For soil domain, a new fundamental 
solution (Banerjee and Mamoon 1990; Mamoon et al. 
1988), corresponding to a periodic dynamic_point force 
in the interior of an elastic half-space, 1s 
implemented. The solution adopted for the free-field 



motions due to the seismic waves is obtained by direct 

integration of the differential equations of motion in 

terms of amplitudes (Michalopoulos 1976). The 
methodology presented also takes into account the 
spatial variation in the distribution of seismic 
excitation, which leads to a more realistic modeling 
of the problem. Both the free-field displacement and 
stress components are used as the seismic input. 
Finally, results are presented in the form of 
nondimensional plots, and the pile-soil interaction is 

studied. Further details of the study can be found in 
Mamoon and Ahmad (1990). 

Fig. 1 -Model for Pile and System Coordinates 

METHOD OF ANALYSIS 

The hybrid boundary element formulation used herein 
involves the construction of an integral 
representation for the soil domain and coupling it 
with the equations of motion for the piles. The 
procedures embodies a number of assumption which are 
listed below. 

1. The pile shaft-soil interface is discretized into 
arbitrary cylindrical segments and the base into 
one circular disk. The actual distribution of 
surface tractions is replaced by piecewise 
constant distributions over each segment. 

2. The longitudinal and transverse pile-soil 
interface tractions are uniform along the 
circumferential direction and act respectively in 
the z- and x-directions. 

3. Incident waves are assumed to be parallel to the 
y-z plane, producing little or no motion in they­
direction (Figure 1). Therefore, displacements 
and tractions in the x- and z-directions only are 
considered ; i.e., each node has only two degrees 
of freedom. For the purpose of simplicity these 
displacements and tractions are computed at the 
pile axis. 

It should be noted that the assumptions listed 
above can all be relaxed if one is prepared to pay for 

the higher computational effort. The present analysis 
was developed for a desk-top computer. 

Soil Equations 

For semi-infinite soil media, the solution for the 
governing differential equation can be expressed as an 
integral equation, describing the motion of the soil 
as 
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( 1) 

where u. is the displacement in the soil, G .. is the 
J lJ 

Green function for an elastic, homogeneous half-space, 

and ¢i is the traction at the pile-soil interface. 

By discretizing the pile-shaft-soil interface into 
n cylindrical segments, the base of the pile being a 
circular disc, we can use equation (1) to write the 
displacements at the pile-soil interface as the 
following matrix equation: 

(2) 

where superscript 's' represents the scattered values 
and the subscript 's' indicates that the stress and 
displacement values are obtained from a consideration 
of the soil domain alone. 

For the purpose of this work, a new Green function 

(G matrix) corresponding to the displacement field due 

to a dynamic point force in the interior of a semi­
infinite solid is implemented. Diagonal terms of this 
matrix are weakly singular and therefore determined 

easily by numerical quadrature methods. Details of 
this are discussed in Mamoon et al (1988), Banerjee 
and Mamoon (1990). 

Scattering problems dealing with semi infinite 
regions are usually formulated by decomposing the 

total displacement and stress fields (uf,¢f) into two 

parts: (i) a known free-field (uf,¢f), and (ii) the 

scattered field (us ,¢s), i.e. 

{ut}={uf}+{us} 

{¢t}={¢f}+{¢s} (3) 

The free-field is the wave motion that would be 
present in the absence of scattering surfaces and the 
scattered part is the wave diverging from the 

scattering region. The scattered field {us} satisfies 

the radiation condition at infinity, which guarantees 
the absence of reflected radiation. 

Writing equation (2) in terms of equations (3), 

or 
(4) 

where 

{bs}=[G]{¢:} - {u:} ( 5) 

Pile Equations 

The set of equations represented by equations (4) has 
to be coupled with an equivalent set for the pile 
domain obtained by solving the governing differential 
equations (Sen et al 19B5a) of the piles for axial and 

transverse harmonic excitations. These solutions have 

been explicitly given in (Sen et al 19B5b). Writing 
separately the axial and lateral pile displacements, 
we have 



(6) 

In the above equation, superscript 't' indicates 
the total field values, and subscript 'p' indicates 
that the pile-soil interface displacements are 
obtained from a consideration of the pile domain 
alone. Since the distribution of tractions along the 
pile-soil interface is a complex function of nodal 
values of traction, a direct determination of the 
displacements is scarcely possible. For arbitrary 
pile head displacements and rotations, it is necessary 
to examine the behaviour of individual piles when 
subjected to axial and lateral dynamic loads. This 
can be best done by considering the effects of applied 
pile head displacements and rotations as the algebraic 
sum of the motion of an unsupported pile (i.e. no soil 
reaction) under arbitrary pile head boundary 
conditions and those of a fixed head pile. 

If the pile head undergoes a vertical 
displacements equal to w0 , a horizontal displacement 
equal to u0 and a rotation amounting to 8 0 (Figure 2) 

superposition of all these solutions leads to the 
linear sets 

where, 

[Dz] is the coefficient matrix derived for axial 
vibration; 

(7) 

(B) 

[Dx] is the coefficient matrix derived for transverse 
vibration; 

{b~} is the displacement vector for unit pile head 
vertical displacement; 

{b~} is the corresponding vector for unit pile head 
transverse displacement; 

{b~} and {b~} are the vertical and lateral 
displacement vector for unit pile 
rotation, respectively; 

{e;} and {e;} are the axial and lateral pile soil 
interface reactions, respectively. 

For detail on these coefficients see Sen et al 
(1985b). 
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Fig. 2 - Pile Head Boundary Conditions: 

(a) Vertical Displacement w 0 , 

(b) Horizontal Displacement= u0 , and 
(c) Rotation = 0 0 

It is to be noted that, for a single pile, the 
value contributed by {b~} is zero. These equations 
can now be rearranged into 

[B J {ut} 
z z (9) 

where [Bz] and [Bx] are mat~ice~ incorporating the 
displacement and rotat1u~ vectors for unit pile head 
boundary conditions ;. eu;ations (7) and (8). 
Combining equations (Si and (10) we have 

Assembly and Solution 

Now premultiplying both sides of equation (4) with 
[B] matrix we have 

where 

[E] 

and 

[B] [G] {~~} - [B] {bs} 

[E] {~~} - {ds} 

[B] [G] 

( 12) 

(13) 

(14) 

By satisfying the equilibrium and compatibility 
conditions at the pile-soil interface, the total 
tractions acting on the piles may be determined from 
(11) and (12) as 

{~~} = -[[D] + [E]]-
1 

{ds} 

The total displacements are then obtained from 
equation (4). 

(15) 

In equation (5) information is needed about the 
known values of the free-field displacements {u:} and 

tractions {~:} which are discussed next. 

Incident Waves 

Consider the half-space z ~ 0 (figure 1) and a train 
of plane SH-waves, propagating parallel to the y-z 
plane. The waves are assumed to be inclined with 
respect to they-axis in the y-z plane (Figure 1). 
Therefore, it will produce motions in the x-z plane 
only. 



The solutions adopted for these waves are obtained 
by direct integration of the differential equations in 
terms of amplitudes (Michalpoulos 1976). The motion 
for an elastic medium with one-dimensional geometry in 
the case of SH-waves has the form (Dominguez and 
Roesset 1978), 

ux = [ ASHexp (~z) + A~Hexp (- ~z)]f(y,t) (16) 
s s 

I 

where w is the angular frequency, ASH and ASH are 

amplitudes of the incident and reflected waves, Cs the 

shear wave velocity of the soil, ~ and n are the 
direction cosines of the direction of propagation. 

I 

For the half-space, ASH =ASH' and for unit 

amplitude of the motion on the surface, equation (16) 
reduces to (Dominguez and Roesset 1978): 

(~z)f(y,t) 
s 

( 17) 

where 

f(y,t)=exp(- iw~y) exp(iwt)=exp[iw(t - ~ )] (18) 
cs c s 

The shear stresses are obtained from the displacements 
by differentiation, 

iw w 
Txy=G(- Cs ~) cos (Csnz)f(y,t) (19a) 

(~ nz)f(y,t) (19b) 
s 

where G is the shear modulus. Normal stresses due to 
SH-waves are insignificant and therefore ignored. Txz 

is assumed to be constant at each element and directly 
furnished by equation (19b) at the mid-point of that 
element. For SH-waves, equations (17) and (19b) 

directly furnish {uf} and {~f} variations along the 
s s 

depth for equation (5). 

COMPARISONS WITH PUBLISHED RESULTS 

Comparison with Gazetas (1984) 

Gazetas (1984) has presented results for seismic 
response of end-bearing piles due to vertically 
propagating SH-waves, in the form of displacement and 
rotation kinematic interaction factors 

un 
....~::. and (20) 

where r 0 =d/2 is the radius of the pile; u and u0 are 
p 

the amplitudes of the relative horizontal displacement 
of the pile top and the free-field ground surface, 
respectively; and ~ is the pile top rotation. 

p 
Because of damping in the system, the displacement 
components are not in phase with the excitation. The 
interaction factors are complex functions of 
frequency; only their absolute values (amplitudes) are 
studied here. 
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....; 

Gazetas 1 results show the variation of Iu and I¢ 

with the frequency ratio f/f 1 , where f is the 

excitation frequency and f 1 is the fundamental natural 

frequency of the unperturbed soil deposit. For a 
homogeneous soil stratum f 1 (in Hertz) is approx-

imately calculated from (Dobry 1976) 

(21) 

where Cs is the shear wave velocity and H the stratum 

thickness. 

Figures 3 and 4 compare the variation of I and I 
u ¢ 

versus f/f 1 for a pile having L/d = 40, soil density 

ratio equal to 1•60 embedded in a homogeneous soil 
layer with Poisson ratio equal to 0.40 and material 

damping ~=0•05. The ratio E /E is set equal to 50, 
p s 

000. It is to be noted that in the present study u0 

is directly obtained from equation (17), with the 

angle of incidence set equal to 90° (vertically 
incident wave). {up} is obtained from the solution of 

equation (4) and {¢P} from the transverse 

displacements of the top two nodes. It may be seen 
that there is a good agreement between the two 
solutions. The slight variations may be attributed to 
the differences in the assumptions between the two 
models. 
l.Gr--------------------------------------------, 

1.2 

-
.a 

.4 

.0 
.0 

Fig. 3 -

.00 

--------

GAZETAS 
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1.0 2.0 

!/!I 
Comparison of Displacement 
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GAZETAS 
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' ---~ 

3.0 •. 0 

Kinematic 
Over Rigid Base. 

~ .04 
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Fig. 4- Comparison of Rotation"Kinematic Interaction 
Factors, Layer Over Rigid Base (L/d = 40, 
EP/Es = 50,000) 

Comparison with Kaynia (1982) 

Figure 5 displays 
function from the 
displacement, u0 , 

the absolute value of the transfer 
ground surface horizontal 
to the pile head displacement u , p, 

for a single pile, obtained by Kaynia (1982). In his study the seismic excitation corresponds to the case of shear waves propagating vertically through the soil (one dimensional amplification). In this problem, L/d = 15, EP/Es = 1000 and pp/ps = 0•70. Results obtained 
by the present analysis are also plotted in Figure 5. 
1.6r--------------------------------------------~ 

1.2 
' ' ' 

KAYNIA 
PRESENT 

0 
;:l ......_ ' \ 
"- .8 

\ 
\ ;::l 

.. 
.B 

.B .3 .s .8 

Fig. 5 - Comparison of Transfer Function for 
Horizontal Displacement of Pile Head (L/d 
15, EP/Es = 1000). 

PRESENTATION AND ANALYSIS OF RESULTS 

I.e 

The results of the present study on the seismic 
behaviour of single piles are presented here in a jimensionless form. Among the problem parameters influencing the response, the most important are: the stiffness ratio E /E of the pile Young's modulus over p s 
a characteristic Young's modulus of the soil deposit· the slenderness ratio L/d of the length over the ' diameter of the pile, excitation frequency w and angle of incidence of the seismic waves. The dimensionless frequency parameter is defined as 

a = wd 
0 c 

s 
(22) 

The Young's modulus of the soil was assumed to be constant with depth, typical of stiff overconsolidated clay deposits. The Poisson's ratio of the soil 
deposit was assumed to be 0•4. The ratio of the 
density of pile material to that of the soil was taken as 1 6, typical of concrete piles. Mat~rial damping 
(~) was set equal to 0 05. 

Response Due to SH Waves 

The SH-waves were assumed to produce unit displacement on the free-field. The pile shaft-soil interface was modelled with eleven cylindrical elements and the base as one circular disk. 
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The influence of the E /E ratio is portrayed in p s 
Figures 6(a) and (b) for a pile having L/d = 15. The analysis is performed at a dimensionless frequency a

0
=0 35. This is justified because the spectra of 

earthquake records concentrate mostly on a low frequency range. Figure 6(a) shows the variation along the pile depth of the real part of the ratio 
between the total transverse displacement, u~, and the 
free-field ground surface displacement, U0 • Figure 
6(b) depicts the corresponding imaginary parts. The responses are shown for a vertically incident SH-wave 
(angle of incidence= 90°). It is observed that the E /E ratio has a profound effect on the responses, at p s 
all depths. Also, significant bending seems to occur for a very flexible pile (E /E =100 and 1000) and p s 
almost low, uniform rigid body motion for a very rigid one. Flexible piles are more susceptible to greater motions than rigid piles. It is also apparent that, for piles of lesser flexibility, bending moments are severe around the bottom half of the pile, which may 
be particularly susceptible to damage. 
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Fig. 6 -

(a) 

z/L 

Transverse Displacment Ratios for 
Incident SH-Waves (L/d = 15, a 0 =0 
Real part, (b) Imaginary part 

Vertically 
35): 



Figures 7(a) and (b) show the response of a pile 
having L/d = 15, E /E = 1000 to varying angle of 

p s 

incidence (8=45°, 60°, 75° and 90°) and at frequency 
a 0 =0 35. These figures show the variation of the real 

and imaginary parts, respectively, of the ratio of u~ 
and u0 • It is observed that obliquely incident waves 

produce higher displacement (in the real part) than a 
vertically incident one, particularly in the upper 
two-third portion of the pile. But for the imaginary 
part, an opposite trend is observed. Also, bending 
along the pile decreases as the waves become more 
oblique. 
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.8 
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z/L 

Fig. 7 - Influence of Incident Angles on Transverse 
Displacement Ratios, (L/d = 15, EP/Es = 1000, 

a0 0 35): (a) Real part, (b) Imaginary part 

Figures 8 and 9 show the variation of the 
displacement (Iu) and rotation (I~) kinematic 

interaction factors, respectively, for the same pile 
(i.e. L/d = 15 and E /E = 1000) versus the dimension-P s 
less frequency parameter a 0 • The plots show the 

influence of the incident angles on the seismic 
response. It is apparent from Figure 8 that, at lower 
frequencies, piles appear to essentially follow the 
movement of the ground; hence, their presence has no 
practical effect on the seismic motion at the ground 
surface level. On the other hand, at higher 
frequencies, piles may not be able to follow the wavy 
movements of the free-fields and may thereby 
experience considerably reduced deformations. This is 
in agreement with the actual earthquake observations 
of the response of a pile foundation, as reported by 
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Tajimi (1977). Moreover, at lower_frequ:ncies the 
angle of incidence seems to have l1~tle 1nfluence_on 
the relative pile motion. But at h1gher frequenc1es, 
piles subjected to more obliquely incide~t waves 
continue to almost follow the ground mot1ons. 

...:; 
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Fig. 8 - Displacement Interaction Factors for Varying 
Incident Angles (L/d = 15, EP/Es = 1000) 

As already mentioned, a rotational component of 
motion is developed at the head of a pile in addition 
to the translational one (this component is not 
present in the free-field surface motion). The 
influence of varying angles of incidence on I~ is 

depicted in Figure 9. It is apparent that, in the low 
frequency range, piles subjected to vertically 
incident waves show higher rotations of the pile head . 
But in the higher frequency range the opposite trend 
is observed; as the incident angle becomes more 
oblique, the pile heads exhibit higher rotations . 
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Fig. 9 - Rotation Interaction Factors for Varying 
Incident Angles. {L/d = 15, EP/Es = 1000) 

Response Due to P and SV-Waves 

The motion of single piles under the influence of a 
combination of P and SV waves is considered next. As 
in the case of SH waves, the results are presented as 
a function of the normalized depth z/L and 
dimensionless frequency parameter a 0 • Incident waves 

are assumed to produce unit displacement on the free­
field ground surface. 



Figs. 10(a) and b) show the variation along the 
depth of the ratio of total axial displacement at the 

pile head u~ and the free-field axial ground motion u~ 
due to an obliquely incident combination of P and SV 

waves (8 = 75°) having a frequency a 0 = 0.5, for a 
short and long pile, respectively. Corresponding 
transverse displacement ratios are portrayed in Figs. 
11(a) and (b). As in the case of SH waves, the 
stiffness ratio and the embedment length have 
significant influence on the responses. Whereas, a 
rigid pile shows almost a uniform rigid body motion, 
flexible piles exhibit oscillatory movements, 
resulting in unacceptable amounts of moments that 
could cause yielding and fracture in the pile. 
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The transverse displacement ratios u;/u~ for the 

top of the pile are depicted in Figs. 12(a) and (b) 
for a short and long pile, respectively, with EP/Es 
equal to 1,000. Again, the increase in the filtering 
effects with the increasing angle of incidence is 
evident. 
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PRACTICAL APPLICATIONS 

The practical significance of all such curves is 
apparent: By multiplying a given free-field design 
response spectrum with the appropriate interaction 
curve, the design response spectrum can be obtained 
and used as input motion at the base of a structure on 
pile foundations. 

Such results would be useful not only for 
developing an improved understanding of the mechanics 
of the problem, but also for deriving simple 
preliminary design rules for foundation engineering 
practice. This study was well worth undertaking, 
since the majority of important structures are 
supported on pile foundations and knowledge of the 
subject is inadequate. Also, the results would 
interest many engineers who have built heavy 
structures on soft soils in seismic-prone areas. 

CONCLUSIONS 

Responses of piles to vertically and obliquely 
incident seismic waves have been analysed. It is 
found that the stiffness ratio, angle of incidence and 
the excitation frequency have significant influence on 
the seismic responses of piles. While the number of 
cases studied is not sufficiently large to derive 
approximate formulae or general conclusions, it 
appears that at the low frequency range piles 
essentially follow the ground motion. On the other 
hand, at higher frequencies they seem to remain 
relatively still, while the free-field soil mass moves 

considerably. This filtering effect is found to be 
severe for a vertically incident wave, gradually 
diminishing for a more obliquely incident one. 

Flexible piles undergo significant bending under 
seismic excitation, whereas rigid piles tend to show 
~lm~st low, uniform rigid body motion. Obliquely 
1nc1dent waves produce higher displacement than a 
vertically incident one throughout the pile depth. In 
the low frequency range vertically incident waves 
produce higher rotations of the pile head· but in the 
higher frequency range the opposite trend'is observed. 

The interaction curves presented in this paper 
have significant practical utility. A design response 
spectrum for a structure resting on a pile foundation 
may be obtained readily by multiplying a given free­
field design response spectrum with the value of 
transfer function from the appropriate interaction 
curve. 
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