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MULTI-MODAL SYNTHESIS AND VARIABLE MODULUS EFFECTS IN  
RESONANT COLUMN TESTS BY RANDOM EXCITATIONS 

 
Jeramy C. Ashlock  Ronald Y. S. Pak 
Iowa State University  University of Colorado at Boulder 
Ames, IA 50011   Boulder, CO 80309 
 
 
 
ABSTRACT 
 
To extend current measurement and data synthesis techniques for resonant column testing, random vibration transfer functions 
measured using a modified 6 inch (152.4 mm) diameter Drnevich free-free resonant column device are evaluated against viscoelastic 
theories of homogeneous and heterogeneous soil models.  By means of the transfer function approach, it is found that the first four 
resonant peaks of the soil column response can be captured experimentally with some instrumental adaptations.  By calibration against 
theoretical transfer functions, the ability to characterize the modulus and damping properties of the soil samples over a broad range of 
frequencies is demonstrated.  As a generalization of the analytical theory for resonant column tests to a number of practical 
applications, the sensitivity of the experimental procedure to the specimen’s vertical material heterogeneity is examined for a linear 
variation in shear modulus.  The feasibility of applying the experimental and analytical techniques to investigations of the frequency-
dependence of damping properties is demonstrated.  Calibration of theoretical models against measured resonant column soil behavior 
over a wide range of frequencies is anticipated to lead to more accurate material characterization across the spectrum of frequencies 
encountered in seismic and foundation vibration applications.  
 
 
INTRODUCTION 
 
In problems of soil dynamics and earthquake engineering, 
characterization of the soil’s modulus and damping properties 
are often of critical importance.  Various forms of resonant 
column (RC) test methods have been widely studied and 
commonly used to obtain measurements of modulus and 
damping as functions of controlling parameters such as 
confining pressure and shear strain, among others (Hardin 
1965, Drnevich et al. 1978, ASTM D 4015).  While resonant 
column and other dynamic laboratory tests commonly involve 
sinusoidal loading, natural and man-made sources such as 
earthquakes, wind, waves, and traffic often give rise to non-
periodic loadings covering a wide range of excitation 
frequencies.  It is therefore of interest to ascertain whether the 
use of random and impulse excitation types in laboratory tests 
can provide measured dynamic soil properties that more 
accurately reflect those that will control the response in the 
field.  While random excitations along with output-only or 
input-output transfer function techniques have been applied to 
resonant column tests in the past (e.g. Yong et al. 1977, Al-
Sanad et al. 1983, Aggour et al. 1988, 1989, Amini et al. 1988, 
Cascante and Santamarina  1997, Li et al, 1998, Rix and Meng 
2003, Wang et al. 2003, Cascante et al. 2005) they have 
typically involved the use of fixed-free apparati and were 

usually focused on measurements of the fundamental resonant 
peak.  Because the bottom end of the sample is restrained from 
rotation in fixed-free RC devices, corresponding transfer 
function techniques generally involve the measurement of 
both the input and output quantities at the top of the sample.  
These quantities are typically in the form of the top-platen’s 
rotational motion and the applied torque, obtained by applying 
a torque-current calibration factor to a voltage measured 
within the electromagnet drive circuit.  If the drive-circuit 
voltage with respect to ground is used instead of the voltage 
drop across a power resistor, one must also contend with 
distortions of the measured damping ratios caused by the 
effects of back-emf (e.g., Cascante et al. 1997, 2003, Wang et 
al. 2003).  Correction for back-emf effects requires additional 
device-dependent calibrations of the coil inductance and 
resistance, which are usually approximated as frequency 
independent.  It should be noted that a measurement of the 
input current as specified in ASTM D 4015 will implicitly 
account for the back-emf effect.  Therefore, the back-emf 
transfer function corrections are only required if input voltage 
is measured instead of current (Li et al. 1998, Cascante et al. 
2005).  For the common fixed-free type of  RC device, other 
issues such as effects of eddy currents (Cascante et al. 2005) 
and radiation of energy through the base due to a lack of 
perfect fixity can also affect measurements of damping 
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(Drnevich 1978, Cascante et al. 2003, Wang et al. 2003, Khan 
et al. 2008). 
 
 
EXPERIMENTAL METHODS 
 
The need for device-dependent torque-current calibration 
factors as well as the problems of back-emf and base fixity can 
be avoided by a direct measurement of the physical transfer 
function of the soil column.  The free-free or Drnevich type of 
resonant column device can be adapted to provide a direct 
transfer function measurement, as it features transmission of 
motion from the bottom platen to the top platen through the 
soil sample by design. This can be achieved with minor 
modifications to accommodate measurement of the rotational 
motion of the platens using transducers of sufficient 
sensitivity.  In this study, a 6-inch diameter free-free Drnevich 
type RC device was modified by attaching four 
instrumentation blocks with stud-mounted PCB model 
352C67 accelerometers to opposite sides of the top and bottom 
platens.  The traditional RC system’s signal generator, 
frequency counter, and oscilloscope were replaced with two 
Spectral Dynamics SigLab spectrum analyzers with 20 kHz 
bandwidth random excitation and measurement capabilities.  
A random voltage signal of selected rms amplitude was 
generated by the SigLab unit, then amplified by a Techron 
5515 power amplifier and sent to the drive coils of the 
resonant column device.  The resulting time-histories of the 
tangential accelerations from the bottom (active) and top 
(passive) platens were digitized and recorded using a 2 kHz 
analysis bandwidth with 4096 samples in the time-domain, a 
sampling rate of 5.12 kHz, and a frequency resolution of 1.25 
Hz. Analog low-pass filters and Hanning windowing were 
used to minimize the effects of aliasing and spectral leakage.  
Experimental noise was further minimized by using 30 
ensemble averages of spectral quantities in each test. From the 
digitized signals, the auto-spectral densities ( )xxG f  and 

( )yyG f  and cross-spectral densities ( )yxG f were calculated, 

in which  ( )x t  and ( )y t  denote stimulus and response signals 

and f is the frequency in Hz. The transfer functions (also 
referred to as frequency-response functions or FRF), 
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were calculated along with coherence functions, defined by  
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in which bars denote spectral averages (Bendat and Piersol, 
1986).  The symmetric arrangement of the four accelerometers 
allowed spurious transfer function peaks caused by lateral 
bending modes of the sample to be averaged out. To minimize 
the influence of particle-size effects, a large sample of dry 
silica sand (Gs = 2.65) was used, having a radius r =76.6 mm, 

height h =315.1 mm, density ρ = 1707 kg/m3, void ratio e = 
0.55 and relative density DR = 79.6%.   Effects of large shear 
strains were minimized by testing under small-strain random 
vibration at confining pressures of 10, 15, 20, 30, 40 and 50 
psi (68.9, 103.4, 137.9, 206.8, 275.8 and 344.7 kPa).   More 
details about the tests can be found in Ashlock and Pak 
(2010). 
 
With the above described test procedure and modifications to 
the RC device, the transfer functions of the soil column can be 
measured directly and evaluated against analytical transfer 
functions without requiring the consideration of electro-
mechanical interaction, torque-current calibration factors or 
the effects of base radiation or back-emf.   
 
 
THEORETICAL TRANSFER FUNCTIONS FOR LINEAR 
SHEAR MODULUS PROFILE 
 
Although various resonant column sample preparation 
techniques are used in an effort to achieve homogeneity, it is 
difficult to completely avoid some variations in density and 
confining stress throughout the sample volume. Additionally, 
the increase in mean principal stress with depth due to the 
soil’s self-weight will cause a depth-wise increase in shear 
modulus (e.g. Hardin and Richart, 1963, Hardin and Drnevich 
1972).  While the effects of such heterogeneities may be 
negligible for typical small-scale resonant column samples on 
the order of a few inches in height, they may be of interest for 
larger samples on the order of 1 ft (30 mm) in height in 
combination with low confining pressures.  To investigate the 
effects of a vertical heterogeneity in shear modulus on the 
transfer functions of the soil sample, a linear variation in shear 
modulus of the form  
 

0 1       1
z

G( z ) G m , m -
h

 = + ≥    (3) 

 
is considered analytically, with h being the height of the soil 
sample.  In Equation (3), the  axial coordinate z is directed 
upward with the origin at the bottom of the soil sample, and 
m  is a dimensionless heterogeneity parameter.  For torsion of 
a viscoelastic soil sample having a Kelvin-Voigt viscous 
damping coefficient η, the shear stress zθτ  may be expressed 

as 
 

z ( r, z,t ) G( z ) ( r ,z,t ) ( r , z,t )θτ γ ηγ= + �  (4) 

 
where R( r, z,t ) r ( z,t ) / z r ( z,t ) / zγ θ θ= ∂ ∂ = ∂ ∂  is the shear 

strain, R ( z,t )θ is the angular displacement relative to the 

base, and ( z,t )θ is the absolute angular displacement relative 

to a fixed reference frame.  The equation of motion in terms of 
the total angular displacement may then be formulated as 
 

3 2

2 2
G( z ) ,

z z t z t

θ θ θη ρ∂ ∂ ∂ ∂  + = ∂ ∂ ∂ ∂ ∂   (5) 
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in which ρ  is the mass density of the soil.  Assuming a time-
harmonic steady-state solution of the form 

i t( z,t ) ( z )e ωθ θ= � where 2 fω π= is the circular frequency 

and 1i = − , Equations (3) and (5) give 
 

2 2

2 2
0 0

1 0
s

z d m d
m i

h G h dzdz C

ωη θ θ ω θ   + + + + =     
� �

�  (6) 

 

in the frequency domain, where 20 0sC G / ρ= is a reference 

shear wave speed.  For a more general treatment of damping, 
the term 0/ Gωη in Equation (6) may be replaced with the 

general frequency-dependent form 2 ( )ξ ω , where ( )ξ ω is a 

generalized damping ratio.  One may take 02( ) / ( G )ξ ω ωη=  

for constant viscous Kelvin-Voigt type damping, or use a 
constant 0( )ξ ω ξ=  for hysteretic damping behavior.  

Imposing the inertial boundary condition for the top platen 

having a polar mass moment of inertia tI  results in  

 

 

2

 

1 2

d ( z ) I
( h ),

dz z
h m i ( )

h
z h

θ ω θ
ξ ω

=  + +  
=

�
�  

(7) 

 
where tI I / ( hJ )ρ=  is the platen-to-soil inertia ratio, J is the 

polar second moment of area of the sample, and  
 

0s

h

C

ω
ω =  (8) 

 
is a dimensionless frequency parameter.  To facilitate 
calibration of 0sC via comparison with measured transfer 

functions, it is more convenient to express Equation (6) as 
 

2 2

2 2
1 2 0

z d m d
m i ( ) .

h h dzdz h

θ θ ωξ ω θ   + + + + =      
� �

�  (9) 

 
The general solution to the above equation is 
 

1 0 2 0
2 2

( z ) C I i ( z, ) C K i ( z, ) ,
m m

ω ωθ µ ω µ ω   = +         
�  (10) 

 
where 1C and 2C  are arbitrary constants, nI  and nK are the 

modified Bessel functions of order n of the 1st and 2nd kinds, 
respectively, and 
 

1 2
mz

( z, ) i ( ).
h

µ ω ξ ω= + +  (11) 

 
Prescribing the top boundary condition of Equation (7) along 
with the base excitation as 

 

0 0 i t i t
b( ,t ) ( )e e ,ω ωθ θ θ= =� �  (12) 

 
while expressing the rotation at the top of the sample as  
 

i t i t
t( h,t ) ( h )e e ,ω ωθ θ θ= =� �  (13) 

 
the transfer function of rotational displacement (or 
equivalently, tangential acceleration) may be obtained as  
 

( ) ( ) ( ) ( )( )
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�
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(14) 

 
where nI and nK are the modified Bessel functions as described 

above, t ( h, )µ µ ω= , 0b ( , )µ µ ω= , 2t ti / mω ω µ=  and 

2b bi / m .ω ω µ=   The transfer function for the 

homogeneous case may be found by setting 0m =  in 
Equations (7) and (9) and solving the resulting boundary value 
problem, yielding 
 

1t
* * *

b

,
cos( ) I sin( )

θ
θ ω ω ω

=

−

�

�
 (15) 

 
where 

1+ 2 ( )
* .

i

ωω ξ ω=  (16) 

  
Note that the foregoing transfer functions (14) and (15) for the 
proposed measurement approach correspond to the free-free or 
“spring base model” (Hardin, 1965), and are independent of 
the bottom platen’s polar mass moment of inertia.  
Additionally, they are free of device-dependent torque-current 
calibration factors or a “system resonant frequency” as the 
first peak (ASTM D 4015; Hardin, 1965).  If transducers are 
used to measure the motion of the top and bottom platens, the 
corresponding experimental transfer functions will also be free 
from extraneous damping effects from back-emf when drive-
circuit voltages are used as a means to calculate the applied 
torque. Hardin (1965) also pointed out that due to the 
independence of the resonance ratio (the transfer function 
above) on the value of the forcing function and the base platen 
inertia, that the “best procedure studying soil properties would 
be to measure the resonance ratio.” 
 
Examples of the transfer functions derived above are shown in 
Fig. 1 for a homogeneous sample (m = 0) and a range of 
hysteretic damping ratios.  Displaying transfer functions on a 
linear scale as shown in part (a) has been found useful in least-
squares optimization procedures of the back-calculation of 
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Fig. 2. Effect of linear shear modulus heterogeneity of 
Equation (3) on first  peak of  free-free resonant column 
transfer function.  (a) magnitude, (b) real component, (c) 
imaginary component.  Hysteretic damping, 0 0 5. %ξ = . 

Fig. 1. Magnitude of transfer function for homogeneous  
(m = 0) free-free resonant column sample with hysteretic 
damping. (a) linear scale typically used in least-squares 

modulus/damping optimization procedure, (b) logarithmic 
scale for examining damping characteristics at high 

frequencies.  

modulus and damping values.  To observe the effect of 
damping on the higher modes in more detail, a semi-log plot 
of the transfer function is also useful (see Fig. 1b). To 
facilitate their comparison to the experimentally measured 
resonant column transfer functions, all theoretical curves in 
this paper will be presented for the sample dimensions and 
properties given above, with a top-platen inertia ratio of I = 
1.224. 
 
The effects of a linear height-wise variation in the shear 
modulus on the first peak of the transfer function are 
illustrated via comparison of Equations (14) and (15) in Fig. 2 
for a hysteretic damping ratio 0 0 5( ) . %.ξ ω ξ= =  The 

magnitude of the transfer function, as shown in Fig. 2a, is 
commonly used to convey information about resonant 
frequencies and damping behavior.  In this study, the real and 
imaginary components shown in Fig. 2b and Fig. 2c are 
preferred over magnitude and phase for use in least-squares-
type error optimization algorithms to calibrate dynamic 
material properties, as the real and imaginary components 
share common units.  As shown in Fig. 2, both the frequency 
and amplitude of the fundamental peak increase for positive 
values of m (modulus increasing towards the sample top), and 
decrease for negative values of m.  Traditional resonant 
column testing techniques involve the application of 
sinusoidal loading at a number of excitation frequencies in 
order to measure the fundamental peaks of the type shown in 
Fig. 2.  Random vibration techniques, on the other hand, 
permit measurement of the system response at many closely 

spaced frequencies over a wide bandwidth in a matter of a few 
seconds, allowing one to efficiently measure not only the 
fundamental peak, but also those of higher modes with 
suitable instrumentation.  The increased amount of 
information afforded by measuring the system response over a 
greater bandwidth than just the neighborhood of the 
fundamental peak naturally provides the possibility of a more 
detailed validation and calibration of numerical models, as 
well as the study of frequency dependence of modulus and 
damping characteristics.  For example, the transfer function of 
Fig. 2 is shown for an enlarged frequency range 0 15ω≤ ≤  in 
Fig. 3, illustrating the characteristics of the first five resonant 
peaks in relation to the heterogeneity parameter m.  As shown 
in this figure, m can affect greatly the distribution of the modal 
resonant frequencies whose measurements can be achieved by 
the proposed test method. 
 
While the analysis presented above enables a comparison of 
response functions for shear modulus profiles which share a 
common value 0G  at the bottom of the sample, further insight 

can be gained by having modulus profiles that share a 
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Fig. 4. Effect of linear shear modulus heterogeneity of 
Equation (17)  on first 4 peaks of  free-free resonant column 

transfer function.  (a) first peak frequency 1ω ,  

(b) 2nd (c) 3rd (d) 4th peak frequency ratios 1/nω ω . 

 
Fig. 3. Effect of linear shear modulus heterogeneity of 

Equation (3)  on first  5 peaks of  free-free resonant column 
transfer function.  (a) magnitude, (b) real component, (c) 
imaginary component.  Hysteretic damping, 0 0 5. %ξ = . 

common value at mid-height.  Although this could be 
achieved by scaling 0G  in Equation (3) and adjusting 

Equation (8) to achieve a common frequency normalization, a 
direct formulation is equally convenient.  For this purpose, the 
shear modulus profile may be taken as  
 

0
1

1       2
2

z
G( z ) G m , m -

h

  = + − ≥      (17) 

 
for which the average modulus has the value 0G  for all m.  

Proceeding as above, the term ( / )mz h  will be replaced with 

( )/ 1/2m z h −   in Equations (7) and  (9).  It can be shown that 

the solution to the resulting differential equation will be the 
same as Equation (10) and the transfer function can again be 
represented by Equation (14), provided one sets 
 

1
1 2

2

z
( z, ) m i ( ).

h
µ ω ξ ω = + − +    (18) 

 

As shown in Fig. 4a, the effect of the heterogeneity parameter 
m in Equation (17) on the amplitude and shape of the first 
peak of the transfer function is relatively minor for the range  
considered.  The fundamental frequency 1ω  decreases for 

positive m and does not exhibit a systematic shift in relation to 
the value of m.  Both of these characteristics are in contrast to 
the behavior for the modulus profile of Equation (3) (see Fig. 
1).  Similarly, the higher-order peaks can also be shown to 
exhibit non-systematic variations with changing m.  However, 
a systematic trend is revealed by examining the frequency 
ratios   1   ( 2 3 )n / , n , ,...ω ω = , obtained by normalization of 

each curve’s ω  by its fundamental peak frequency  1ω  (see 

Fig. 4b, c and d for the 2nd through 4th peaks).  Such higher-
order peak frequency ratios can be useful measures for the 
evaluation or calibration of stiffness and damping properties 
of various theoretical models against those of measured data.  
For example, Fig. 5 and Fig. 6 show the theoretical transfer 
functions for the shear modulus profiles of Equation (17), 
calibrated to the fundamental peak frequency 1 102 f Hz= of 

the soil column at a confining pressure of 10 psi (68.9 kPa).  
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Fig. 5. Theoretical transfer function for homogeneous 

sample fit to first peak of measured response at f1 = 102 Hz.  
Calibrated homogeneous shear modulus G= 109.5MPa, 

hysteretic damping ratio 0ξ  = 0.6%.  Specimen confining 

pressure 10 psi (68.9 kPa).  

 
Fig. 6. Theoretical transfer function for vertically 

heterogeneous sample with shear modulus 

0(1  ( / 1/2) )G( z ) G m z h= + − , hysteretic damping 

ratio 0 0 6. %ξ = . Specimen confining pressure 10 psi (68.9 

kPa). (a) first peak calibrated to measured f1 = 102 Hz, (b), 
(c), and (d) frequencies of 2nd – 4th peaks. Calibrated 

0( )G MPa =109.5, 108.6 and 108.5 for m=0, -0.2 and -0.4.    The theoretical resonant frequencies of the higher modes 
appear to be in very good agreement with the measured values 
when plotted over the full measurement bandwidth of 2 kHz  
as can be seen in Fig. 5.  Closer examination of the 2nd through 
4th peaks as shown in Fig. 6 reveals that the homogeneous-
modulus solution predicts peak frequencies that are 
approximately 1-2% higher than measured.  Based on the 
results shown in Fig. 4, one possible explanation for the 
measured peak frequencies being slightly lower than those of 
the homogeneous case is a modulus increases with depth, 
which is not uncommon due to gravity  and self-weight 
effects.  To examine the possible effects of a linear height-
wise shear modulus variation on the higher-mode’s resonant 
frequencies, transfer functions for the modulus profile of 
Equation (17) with m = −0.2 and −0.4 are also included in Fig. 
6.  Although a good match of the higher-order peaks is 
obtained with m = −0.4, calculations based on the relations of 
Hardin and Drnevich (1972) indicate that such a variation in 
shear modulus (i.e. −/+20% of G0 at the sample top and 
bottom) is perhaps too large to be the sole explanation for the 

discrepancy.  Other physical conditions of the test such as 
imperfect platen contacts and higher-order heterogeneity can 
also contribute to the cause and might warrant further 
investigation. 
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Fig. 7. Determination of optimum damping ratios to match 
first 4 measured peak amplitudes.  Transfer function for 

homogeneous sample fit to first measured peak f1 = 102 Hz.  
Calibrated shear modulus G= 109.5MPa.   

Specimen confining pressure 10 psi (68.9 kPa).  

Fig. 8. Least squares approximation of first four optimum 
damping ratios by the function 1 2( f ) c / f c fξ = + to match 

measured FRF amplitudes. (a) transfer function (FRF) 
amplitudes and frequencies, (b) optimum damping ratios. 

 
INVESTIGATION OF  
FREQUENCY-DEPENDENT  DAMPING BEHAVIOR 
 
Owing to the data it can generate for multiple resonant 
regimes efficiently, the random-vibration resonant column 
method can be naturally used to study the frequency 
dependence of the soil’s damping properties.  As noted by 
Hardin (1965), the amplitudes of the theoretical transfer 
function peaks in Fig. 6 are related to the damping ratio and 
may therefore be used to determine an experimental damping 
ratio in the neighborhood of a given peak.  With the 
frequency-independent hysteretic damping ratio 0 0 6. %ξ =  in 

Fig. 5 and Fig. 6 , the three measured higher-order peaks are 
matched reasonably well by the theory, but a larger damping 
ratio is required near the frequency of the fundamental peak.  
Flexible in allowing frequency-dependent material properties, 
the proposed formulations permit a variety of forms for the 
generalized damping ratio ( )ξ ω .  To investigate the 

frequency-dependence of the soil’s damping behavior, 

theoretical transfer functions for a range of hysteretic damping 
ratios may be calculated and the best-fit damping ratio at the 
frequency of each peak identified as that which provides the 
closest match of the measured peak amplitude.  An example of 
this procedure is illustrated in Fig. 7, from which the optimum 
damping ratios for the fundamental and higher-order peaks are 
identified as 1 1 6( f ) . %ξ ≈ , 2 0 55( f ) . %ξ ≈ , 3 0 60( f ) . %ξ ≈ , 

and 4 0 50( f ) . %ξ ≈ .  The amplitudes of these measured and 

theoretical transfer function peaks are displayed on a common 
scale in Fig. 8a and the corresponding damping ratios are 
shown in Fig. 8b.  To investigate the behavior of the 
theoretical transfer function for a frequency-dependent 
damping ratio, the values shown in Fig. 8b are fit in a least-
squares sense by the function  
 

1
2

c
( f ) c f

f
ξ = +  (19) 

 
as shown in Fig. 8b.  Using this formula for damping in 
Equation (18) results in a transfer function that matches the 
peak frequencies and magnitudes reasonably well, as shown in 
Fig. 9.   
 
 
CONCLUSIONS 
 
In this study, the experimental setup and analytical 
formulation for a free-free resonant column device are 
outlined in the application of the random-vibration method.      
The free-free boundary conditions enable the direct 
measurement of tangential accelerations at the sample’s top 
and bottom boundaries, permitting the determination of 
experimental transfer functions on the basis of only end-platen 
accelerations. This avoids the need of device-dependent 
torque-current calibration factors commonly required when 
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Fig. 9. Improved fit of measured peak amplitudes using 
frequency dependent damping ratio. Homogeneous shear 
modulus G= 109.5MPa, 159 4 0 0004( f ) . / f . f .ξ = +  

Specimen confining pressure 10 psi (68.9 kPa).  

using fixed-free RC devices.  Because the experimental free-
free transfer function measurement approach presented herein 
also does not involve the use of excitation voltages or currents 
from the coil drive-circuit, the technique also does not suffer 
from errors in damping measurements that can be caused by 
effects of back-emf.  Since the motion of the bottom platen is 
measured, knowledge of its polar mass moment of inertia is 
not necessary for the calculation of the transfer functions, even 
though it is a factor in the mode shape profiles and shear strain 
variations (Hardin, 1965).  As one more practical advantage, 
the experimental and analytical transfer functions do not 
contain a device-dependent “system resonant frequency” (see, 
e.g. ASTM D 4015) which must typically be determined when 
using free-free RC devices.   
 
To investigate the effects of a height-wise variation of shear 
modulus and the frequency-dependence of damping, 
theoretical transfer functions were presented for a linear 
variation in shear modulus with depth and a generalized 
frequency dependent damping ratio.  The ability to explore 
and characterize the material parameters of soil for general 
modal synthesis involving multiple resonant regimes is apt to 
be of fundamental relevance to understanding the intricacy 
and common approximations in site response analysis in soil 
dynamics and earthquake engineering. 
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