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A New Method for Determining the Anisotropic Parameters of Materials 
Under True Triaxial Cyclic Loading Paper No. 1.33 

Q.J. Yang 
Research Engineer, Coffey Partners Inti. Party Ltd .• 12 
Waterloo Road, North Ryde, NSW, Australia 

B. Shackel 
Professor, School of Civil Engineering, University of New 
South Wales, P.O. Box 1, Kensington, NSW. Australia 

ABSTRACT In this paper a new approach to solving the basic equations of elastic cross-anisotropic stress and strain relationships 
is presented. The uniqueness of the equations is demonstrated and the conditions for their use are easily controlled in the true 
triaxial test equipment available in the laboratory. By this approximate solution the four anisotropic parameters of cross­
anisotropic materials can be obtained. In addition, so-called fuzzy loagic weighting factors are introduced to assess the differences 
among the observed principal deformations of samples tested. A computer program ANISOLV has been written to calculate the 
formulated parameters. Some typical examples are given to demonstrate the reliability and validity of the method and the 
program. 

INTRODUCTION 

The constitutive laws of idealised cross-anisotropic elastic 
materials can be easily found in the text books such as those 
by Love (1927), Lekhnitsikii (1977) and Hearman (1961). 
However when they are adopted to solve engineering 
problems such as the calculation of the stresses and strains of 
pavement materials there are limitations in the 
characterisation of the material parameters. Moreover, to 
date, it seems impossible to determine all the parameters of 
cross-anisotropic elastic materials by any single device 
(Shackel, 1991). That is because the available tests cannot 
completely simulate in the laboratory the stresses generated 
by the movement of a wheel along a pavement. Even though 
several new devices reported by Sousa (1987) and Arthur 
(1988) have been developed to evaluate the elastic constants 
necessary to characterise fully a cross-anisotropic elastic 
material in which the elastic parameters are independent of 
one another, they all have limttations in the interpretation of 
the data and their assumptions are not always completely 
rational. Therefore, it is desirable to fmd some way to 
simulate anisotropic problems. In this respect the cyclic 
loading cubic triaxial apparatus available at the University of 
New South Wales, Australia, may be used to estimate four of 
the five parameters needed to characterise a cross-anisotropic 
elastic material. 

In this paper, a new method is presented to solve the 
equations describing true cubical triaxial cyclic stress-strain 
relationships. The reliability and validity of the approach is 
assessed. So-called fuzzy logic weighting factors are 
introduced to evaluate the differences among the measured 
principal strains of the tested samples. A computer program 
for analysing the test results is described. This is followed 
by examples to demonstrate the application and limitations of 
this new methodology of testing. 

BASIC THEORY 

Pavement materials under traffic loading may demonstrate 
cross-anisotropic elastic properties in the small strain domain. 
The model reflecting the elastic properties to obtain the 
relations between the strain and stress is taken to be a 

77 

continuous medium following the generalised Hooke's law. 
With the co-ordinate axes I, 2 and 3 coinciding with the 
principal axes, and the vertical axis being axis-3, as shown in 
Fig. I, the generalised Hooke's law can be expressed as 
follows: 

El 
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Fig. I Orientation of cross-anisotropic specimen relative to a 
Cartesian co-ordinate system 

In eq. (la-t) there are five independent parameters A, B, C, 
D and F to be determined in the elastic compliance matrix. 
No single apparatus currently available can be used to 
provide the five parameters. Theoretically, based on the 
assumption that the elasticity of the materials is kept 



unchanged during the loading and unloading process, the 
principle of superposition may be used to analyse cross­
anisotropic problems. That. is. to s~y, the element. stress state 
shown m Fig. 1 may be dtvtded mto the four stmple stress 
states illustrated in Fig. 2. 
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Fig. 2 Superposition of element stress states 
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The principal stress state in Fig. 2(a) may be simulated by 
cubical true triaxial testing equipment and the pure shearing 
stress states in Fig. 2 (b), (c) and (d) may be simulated by 
pure shearing testing apparatus. It is easily shown that the 
parameters describing stress states in Fig. 2 (b) and (c) are 
equivalent and either of them can provide the elastic constant 
F. The parameters A, B, C and D in eqs (la-c) cannot be 
obtained through solving the three normal simultaneous 
equations unless parameter, A-B, in eq. (If) can be solved by 
pure shearing stress testing facility, because there are only 
three independent equations for four unknown variables. 
Normally, the cross-anisotropic elastic constants are 
determined through convention triaxial testing apparatus by 
performing tests with specimens having vertical and 
horizontal orientations and monitoring the relevant 
deformations. Ideally, the three-dimensional principal stress 
and strain states are simulated by true triaxial testing 
equipment. In this specific apparatus the three mutually 
perpendicular principal stresses can be applied on a cubical 
sample and the corresponding stresses and strains can be 
monitored simultaneously by the relevant computer system. 
On the other hand, the parameter F in eq. (ld) or (le) 
requires a test in which pure shear stresses are applied 
externally to horizontal and vertical surfaces of the specimen. 
Thus the determination of the five elastic constants requires 
additional equipment. 

To date, it seems too expensive to perform such complicated 
experiments to obtain the five parameters. Therefore, what 
concerns us most is first to fmd approximate solutions to eqs. 
(la-f) to meet the requirements of engineering practice. 

SOLUTION TO TRUE TRIAXIAL TESTS 

As mentioned above, the four parameterS in eqs. (la-c) 
cannot be directly determined. Graham and Houlsby (1983) 
proposed that there exist simple interrelationships among the 

four elastic constants such that just three independent 
parameters remain. These may be determined by static 
triaxial testing. Diverging from the assumptions made by 
Graham and Houlsby (1983), an approach based on least 
squares method is now presented to evaluate the four 
independent parameters of the pavement materials which are 
undergoing repeated loadings by means of a set of results of 
true triaxial cyclic testing. In addition, so-called fuzzy logic 
weighting factors (FLWF) are introduced in the following 
section to assess the differences among the observed principal 
deformations of samples tested. In the true triaxial tests the 
incremental stresses and strains are recorded simultaneously 
by a computer system. Thus the data to be used to calculate 
the elastic parameters in eqs. (la-c) may be expressed in the 
incremental form. 
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(2a-c) 

From the data represented in eqs. (2a-c), it seetns impossible 
to directly solve the three equations of four unknowns A, B, 
C and D. Rather at least two sets of tests have to be carried 
out to obtain the four parameters. However, if two sets of 
tests are available, there are then six equations with four 
variables. Thus they produce a considerable amount of 
mathematically redundant information about the cross­
anisotropic elasticity of compacted soils. Furthermore, the 
intrinsic differences which may arise from in presumably 
similar samples and because of the presence of small 
experimental errors resulting from the measuring system, the 
two grOUJ?S of equations derived from the test results will be 
mutually mconsistent to some extent. Such a problem may be 
solved by the least squares method to minimise the random 
errors. 

By using stress and strain increments as independent variables 
in eqs. (2a-c), a least squares solution of the four parameters 
can be readily obtained. If the measured values of three 
principal stress increments 8a. , i = I ,2,3 are obtained and 
input to the three relevant equations, then the principal 
incremental strains (&:;)c, i= l ,2,3 can be calculated from 

(3a-c) 

The errors of the principal strain increments (8E;\, i= I ,2,3 
are then obtained by the difference between the calculated and 
measured values. 

(4a-c) 

where 8E. , i = 1, 2, 3 are the corresponding measured 
principal slrain increments in the true triaxial tests. 

The sum of the square of errors in the strain increments for 
all available tests is given by 



Tests 

A= :E (A8a1 +B8a2 +C8a3 -8E1)2 

+(B8a1 +A8a2+C8a3 -8E~2 (5) 

+(C8a1 +C8a2 +D8a3 -8E3)2 

The least squares solution for pa~ameters A, B, C_ and 0 
from the redundant equations 1s found_ by settmg the 
differentials of the error measurement wtth respect to each 
of the parameters A, B, C and 0 in tum to zero. 

a A ac =I:2(A8a1 +B8a2 +C8a3 -8E1)8a3 

+2(B8a1 +A8a2 +C8a3 -8E~8a3 

+2(C8a1 +C8a2 +D8a3 -8E3)(8a1 +8a~ =0 

Equations (6)-(9) may be expressed in matrix form 

mll m1z m13 0 

mzt mzz m23 0 

m31 m32 m33 

0 0 m43 

where 

m 13 =m31 =I:(8a1 +8a~8a3 

m23 =m32 =I: ( 8a 1 +8a ~8a 3 

m33 =I:[(8a1 +8a~2 +28aiJ 

m 34 =m43 =I:(8a1 +8a~8a3 

(6) 

(7) 

(8) 

(9) 

(lOa-d) 

(lOe-o) 
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d12 =I: (8E18a2 +8E28a1) 

d 13 =I:[(8E1 +8E2)8a3 +(8a 1 +8a2)E3] 

d 14 = I:8a38E3 

It should be pointed out that in any two sets of true triaxial 
tests the applied principal stress increments must meet the 
following condition 

(i=j=l,2,3) (11) 

in which k is a constant. 

As is well-known, the necessary and sufficient condition that 
eqs. (lOa-d) have unique solution is that the ~eterminant of 
the coefficient matrix is not equal to zero. That 1s, 

mn ml2 m13 0 

mz1 IDzz m2.1 0 
D= ;eO 4 

m32 m33 m34 m3t 

(12) 

0 0 m43 m44 

From eq.(lOe-o) and (12) we have 

0 4 =I: ( 8a 1 -8a~1 I: (8a1 +8aY + 2I:8ai] 
(13) 

*[ I:(8a1 +8a2) 2 I:8a;-[I:(8a1 +8a2)8a3y] 

It can be seen that 0 4 are all dependent on the increments of 
applied principal stresses. 

Only if 

8a1;eO, 8a2;C0, 8a1;C8a2 and I:(8a1 +8a~;ei:8a3 
then 

I:(8a1 -8a2) 2 >0 

{ I:(8a1 +8az)2 I:8a; -[I:(8a1 +8a~8a3f} >0 

thus 0 4 > 0 

(14) 

(15) 

It can be concluded, therefore, that once the conditions in eq. 
(14) are satisfied, the solution of eqs. (lOa-d) will be unique. 
All these stress incremental conditions are readily controlled 
in true triaxial cyclic testing. Therefore the approximate 
method described in detail above can be used to estimate the 
parameters A, B, C and 0 for elastic cross-anisotropic 
materials under cyclic loading. 

A FORTRAN computer program can be used to solve the 
linear simultaneous equations (lOa-d). Because of the 
symmetry of the coefficient matrix the Gauss method is used 
in the arrangement of the computer code. 



SOLUTION TO CONVENTIONAL TRIAXIAL TESTS 

For the conventional triaxial test where 
8a2=8a3 and 8e2 =8e3 , thus eqs. (2a-c) further simplifies to 

(16a-b) 

Where axis-1 is denoted as the vertical axis for engineering 
convention. This is made to keep the notation consistent with 
the conventional designation. 

Let H=A+B, then we get 

(17a-b) 

Similarly, the errors of the strain increments may be 
expressed by 

(18) 

(19) 

The sum of the square of errors in the strain increments for 
all available tests is given by 

Tests 

a= 1: [(D8a1 +2C8a3 -8e1) 2 +(C8a1 +H8a3 -8e3?J (20) 

Then let 

(21) 

(22) 

(23) 

Thus the following equations may be obtained 

(24a-c) 

where 

(24d-h) 

The determinant of the third order matrix coefficient can be 
calculated from 

(25) 

Provided 

(26) 

Then D3 > 0 

Thus it can be concluded that eqs. (24a-c) will have unique 
solution once the conditions in eq. (26) are met. These are 
easily controlled in the conventional triaxial test. 

The next step is to solve the set of simultaneous eqs. (24a-c). 
Parameters D, C and H can be readily evaluated by Cramer's 
Rule. Thus the three elastic constants of cross-anisotropic 
materials can be obtained from conventional triaxial testing. 

DETERMINATION OF ENGI'.'.TEERING PARAMETERS 

By considering the symmetry of the cross-anisotropic 
compliance matrix and the condition of isotropy in the 
horizontal plane, the generalised Hooke' law can be 
expressed as follows: 

(27a-t) 

(28) 

where 
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Ev = Young's modulus in vertical direction; 
Eh = Young's modulus in horizontal direction; 
vhv = Poisson's ratio of strain in vertical direction to applied 

strain in horizontal direction; 
vvh = Poisson's ratio of strain in horizontal direction to 

applied strain in vertical direction; 
vhh = Poisson's ratio of strain in horizontal direction to 

applied strain in orthogonal horizontal direction; 
Ghv = Shear modulus in any vertical plane, and 
Ghh = Shear modulus in any horizontal plane. 

By comparing the (la-f) and (27a-f), thus we get 

E =_!_. E =_!_. 
v n' h A' 

-B Eh (29) vhh=-; Ghh 
A 2(1+vhh 

It is worth pointing out that all the above mentioned 
calculations can be implemented by the computer program 
ANISOLV. 

FUZZY LOGIC WEIGHTING FACTORS 

It is difficult to achieve two specimen with 'same' physical, 
geological and micro-fabric properties in the la~or~to:ry 
preparation of samples because . of the presence ?f mtrmsic 
variability. Also the expenme~~:tal system Itse!f ~y 
introduce errors. Because of this, supposedly Identical 
samples and tests produce different test results. It is, 
therefore, prudent to introduce fuzzy lC!gic weighting factors 
(FLWF), fj, i= 1 ,2,3 to reflect the differences among the 
measured principal strains ~Ei , i= 1 ,2,3 of samples testt:d, 
which enable the user to properly assess the sample quality 
and similarity. However it should be emphasised that great 
effort has to be made to obtain the reasonable FLWFs. By 
introducing the FLWFs, C i=l,2,3, eqs.(lOa-d) and (lOe-o) 
yield the more general forms 

I 
I I I 0 d11 mtt mtz m13 A 
I 

mzt 
I 

mzz 
I 

m23 0 B 
I 

dtz 

I I I I c I m31 m32 m33 m34 d13 

0 0 I I D I m43 m44 d14 

m~ =m;2 = .1: (f1~a 1 +f2~a2)~a3 

m;3 =.l:[f3(~a1 +~az)2 +2f1f2~a~ 

m~ =mf3 =.l:f3(~a1 +~az)~a3 

(30a-d) 

(30e-o) 
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Similarly we can applied the FLWFs to measured strains of 
conventional tests and obtain expressions similar to those 
described above. It is interesting to note that eqs. (30a-d) 
and (30e-o) are reduced to eqs.(lOa-d) and (lOe-o) 
respectively if the fuzzy logic weighting factors are unity. 
All these factors are incorporated in the program, ANISOL V. 

ILLUSTRATIVE EXAMPLES 

The ANISOLV program needs an input file which is edited 
according to the true triaxial cyclic testing conditions. The 
input parameters are the number of simultaneous equations, 
the number of the collected data groups, the three principal 
stress increments and the corresponding three principal strain 
increments. The fuzzy logic weighting factors are optional, 
and largely depend on the sample assessment before and after 
the samples are tested. The ANI SOL V program permits the 
engineering parameters Ev, Eh, v11v, vh11 to be readily obtained. 
Ten calculation examples are given in Appendix A. These 
results show that the approximate approach to determining the 
four elastic parameters is practical and valid and that the 
program ANISOL V is effective and reliable. 

CONCLUSIONS 

A new approximate approach to solving the basic linear 
simultaneous equations of the elastic stress and strain 
relationships of cross-anisotropic materials has been 
presented. This is shown to be practical and valid. The 
uniqueness of the solution is conditional upon assumptions 
which are readily satisfied b:y true triaxial cyclic testing in the 
laboratory. Fuzzy logic wetghting factors may be introduced 
to make it possible to assess the differences among the 
principal deformations of samples tested. 

The program ANISOL V implementing the formulation of the 
approximate method appears to be reliable and useful in 
dealing with the testing data. By this method the elastic 
constants required for the calculation of the stresses in the 
elastic media and their surface settlements under cyclic 
loading are readily obtained. 
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Appendix A: Some examples for demonstration of the ANISOL V program for determining the four elastic parameters of cross­
anisotropic materials under true triaxial cyclic loading. 

No. 8a1 8a2 8a3 8€1 8€2 8€3 Ev Eh ~'hv vhh 

1-a 5.000 8.000 14.00 -.108 0.054 0.0980 

1-b 5.010 8.020 14.03 -.1082 0.053 
61.28 28.05 .283 .509 

0.0970 

2-a 5.000 8.000 14.00 -.108 0.054 0.0980 

2-b 5.010 8.020 14.03 -.1082 0.053 
50.80 25.28 .347 .360 

0.0968 

3-a 3.000 4.000 10.00 -.0760 -.022 0.1020 

3-b 3.010 4.010 10.00 -.0765 -.021 
54.52 

0.1019 
27.04 .314 .481 

4-a 10.00 14.00 20.00 -.0760 0.140 0.0640 

4-b 10.00 14.01 20.00 -.0765 0.140 
52.22 

0.0633 
25.36 .338 .337 

5-a 6.000 8.000 16.00 -.0960 0.012 0.1240 

5-b 6.000 8.010 16.00 -.9550 .01218 0.1243 
48.80 24.68 .359 .327 

6-a 6.000 9.000 18.00 -.1240 -.0160 0.1640 

6-b 6.000 9.010 18.00 -.1239 -.0160 
59.11 

0.1638 
40.75 .382 .464 

7-a 2.000 2.500 3.000 -.00365 .01116 -.002813 

7-b 2.000 2.500 3.000 
117.5 50.45 .318 .492 

-.003645 .011158 -.002813 

8-a 18.00 25.00 28.00 -.0350 .11457 .00495 

8-b 18.00 25.00 28.00 -.0350 .11457 .00510 
144.1 69.08 .304 .476 

9-a 18.00 25.00 28.00 -.0350 .11457 .00494 

9-b 18.00 25.00 28.00 -.0350 .11457 .00508 
94.48 62.42 .423 .334 

10-a 18.00 25.00 28.00 -.0350 .1145 .00494 

10-b 18.00 25.00 28.00 -.03498 .1145 .00508 
149.1 69.56 .296 .486 
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