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THE EFFECT OF GEOMETRY CHANGES ON SLIDING-BLOCK PREDICTIONS 

 
Constantine A. Stamatopoulos  Constantine Mavromihalis                                                  Sarada Sarma   
Instructor, Hellenic Open University Student, Hellenic Open University                                        Imperial College  
5 Isavron st, 114 71 Athens, GREECE 29 28th October st , Thessaloniki, 57500, Greece                 London, UK 
 
 
 
ABSTRACT 
 
The sliding-block model is often used for the prediction of permanent co-seismic displacements of slopes and earth structures. This 
model assumes motion in an inclined plane but does not consider the decrease in inclination of the sliding soil mass as a result of its 
downward motion, which is the usual state in the field.  The paper studies the above effect and proposes an empirical equation 
correcting the predictions of the sliding-block model. The investigation is performed using the recently-developed multi-block model.  
 
 
INTRODUCTION 
 
Permanent seismic movement of slopes can be separated into 
at least two stages (Ambraseys and  Srbulov, 1995). In the first 
stage, which is co-seismic, gravity in combination with 
transient seismic forces may bring about temporary instability 
and permanent displacements on a failure surface. The second 
stage, which is post-seismic, follows immediately after the 
earthquake and causes large movement if, as a result of the 
first stage, the strength on the slip surface is reduced to a  
residual value which is less than that required to maintain 
static equilibrium.  
 
The sliding-block method, that was initially proposed by 
Newmark  (1965) forms the basis of simple models predicting 
permanent co-seismic displacements of slopes. As shown in 
Fig. 1, a block with resistance simulated by the Mohr-
Coulomb law rests on an inclined plane. Critical acceleration 
is defined as the minimum horizontal acceleration that causes 
movement of the block. During each time that the applied 
horizontal acceleration is larger than the critical acceleration, 
the block slides. The total displacement of the block is 
obtained by the addition of the partial slips. This model has 
been used for the estimation of permanent seismic 
deformations of natural slopes without considerable 
earthquake-induced loss of strength (Ambraseys and  Srbulov, 
1995), of earth dams (Sarma ,1975, Makdisi and Seed, 1978),  
of rockfill dams (Gazetas and Dakoulas, 1992) and of gravity 
walls retaining dry soil (Richards and Elms, 1979).  The 
solutions giving the distance moved by the sliding-block are 
used for the prediction of permanent seismic movement of 
these problems by replacing the maximum applied 
acceleration and critical acceleration of the block with those of 
the potential sliding mass under consideration. The critical 

acceleration of the sliding mass is estimated by stability or 
limit-plasticity analyses and the maximum applied 
acceleration is often obtained by dynamic analyses. 
 
The sliding-block model is generally successful in estimating 
small ground deformations without earthquake-induced loss of 
strength (Whitman, 1993). However, when the ground 
displacement is large, it is  not accurate, primarily because of 
(a) earthquake-induced loss of strength in saturated soils and 
(b) changes of geometry of the soil mass towards a gentler 
inclination. Various efforts have been made to incorporate the 
first effect in the estimation of co-seismic displacements 
taking into account loss of shear strength (Makdisi and Seed, 
1978, Tika-Vassilikos et al., 1993) and/or pore-pressure build-
up (Sarma, 1975, Modaressi et al., 1995). 
 
The second effect is the usual state in slides in the field, and is 
caused by the law of physical equilibrium where masses move 
towards a more stable configuration. It reduces seismic 
displacement and is considerable when displacements are 
large. It has been studied by Stamatopoulos (1996). The study 
considered a perfectly flexible chain sliding along planes with 
gradually gentler inclinations. The cases of ground slips where 
the permanent displacement of the new model differs 
considerably from that of the sliding-block model were 
detected and an improved method predicting permanent 
seismic displacement was proposed. Yet, in this work the 
governing equation of motion of the new model was  
approximately derived and solved and rigorous factors 
correcting the predictions of the sliding-block model were not 
obtained. 
 
To simulate slope movement when displacement is large, two-
block (Stamatopoulos, 1992, Ambraseys and Srbulov, 1995, 
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Stamatopoulos et al., 2000) and multi-block (Sarma and 
Chlimintzas, 2001) sliding models have been proposed and 
solved. The multi-block model is the most general. It is 
described below.  
 
The paper studies the effect of the change of geometry during 
the slide on the seismic displacement predicted by the sliding-
block model and proposes factors that correct the seismic 
displacement predicted by the sliding-block model. The 
investigation is performed using the recently-developed multi-
block model. The methodogy used is the following: (a) obtain 
a factor describing the effect of the change in geometry of the 
slope with displacement by formulating the equation of motion 
of the multi-block model for a simplified geometry, (b) by 
applying the multi-block model in a parametric manner, 
investigate quantitavely the effect that the above factor has in 
the ratio uf/uf-o, where uf and uf-o is the final displacement 
predicted when geometry changes are and are not considered 
respectively and  (c) formulate an empirical equation 
describing the effect computed in (b).  
 

β

 
Fig. 1. Newmark's sliding-block model 

 
THE MULTI-BLOCK SLIDING SYSTEM AND THE 
ASSOCIATED COMPUTER PROGRAM 
 
Similarly to the Sarma (1979) stability method, shown in Fig. 
2, a general  mass sliding on a slip surface that consists of n 
linear segments is considered. In order the mass to move, at 
the nodes between the linear segments, interfaces where 
resisting forces are exerted must be formed. Thus, the mass is 
divided into n blocks sliding in different inclinations. When 
the slide moves, at the interface between two consecutive 
blocks, the velocity must be continuous. This principle gives 
that the relative displacement of the n blocks is related to each 
other as: 
 
ui/ui+1 = dui/dui+1= cos(βi+1+δi) / cos(βi +δ i)   (1) 
 
where the subscripts i and i+1 refer to blocks i and i+1 
counting uphill, d refers to increment, βi is the acute angle of 
the slip surface segment at slice i, positive anti-clockwise 
when measured from the horizontal to the slip surface and δi is 
the acute angle between the vertical and the interslice surface 
of blocks i and i+1, measured from the vertical, positive 
clockwise, shown in Fig.  2.  
 
The forces that are exerted in block “i” are given in Fig. 2. 
Soil is assumed to behave as a Mohr-Coulomb material. As 
the body moves, the Mohr Coulomb failure criterion applies at 

both the slip surface and the interfaces. Thus, the equation of 
motion of each body can  be derived. To eliminate the 
interslice forces, Ni, the equations are multiplied by a factor. 
Summing all equations and expressing displacement of all 
blocks in terms of the displacement of the upper block, the  
equation of motion is obtained. In the present study (a) a 
horizontal acceleration (k(t)g is applied, where g is the 
acceleration of gravity and k(t) is the horizontal seismic 
coefficient in terms of time, (b) motion is assumed to take 
place only in the downward  direction and (c) separation of 
blocks does not occur. In this case, as given by Sarma and 
Chlimitzas (2001), the governing equation of motion is 
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(2) 
where 

 

( )11sin ++ ′−′+−= iiiiis φφββ  

( )iiiiif δβϕφ −−′+′= cos  

( )11cos −− −−′+′= iiiiid δβϕφ 
 

( )iiix βφ −′= cos  

( )iiiv βφ −′= sin  
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where u is the relative shear displacement of the uppermost 
slice (block n), down-hill displacements being considered 
positive, βi and δi were defined previously  ϕi′ is the angle of 
friction on the slip surface at slice i, ci′li is the force per unit 
length (normal to the paper) due to cohesion along the slip 
surface at block i, iϕ′


is the angle of friction on the interslice 

surface between blocks i and i+1, ic ′ bi is the force per unit 
length due to cohesion along the interslice surface between 
blocks i and i+1, Qi is the vertical external load on slice i, 
positive downwards, Hi is horizontal external load on slice i, 
positive facing downhill, mi is the mass of  block (slice) i per 
unit length, Ui is the force acting on slice i, normal to its base 
due to pore water pressures along the slip surface, positive 
when normal component is compressive and  iU


is the pore 

water force along the interface between slices i and i+1 that 
acts in a direction normal to it, positive when normal 
component is compressive. 
 
It should be noted that equation (2) can be written in the form 
 

)k - k(t) ( g   Z c11 =u                                                     (3)                                                                                                                                                 
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where kc is the critical acceleration factor, defined as the 
horizontal acceleration coefficient needed to initiate motion.  
 
To solve equation (3) for large displacement, the masses and 
lengths of each block i must be updated in terms of the 
distance moved. The transformation rule, that states that when 
each block is displaced by dũ i, each point of the block 
including the ground surface (corresponds to the top of the 
block) is also displaced by dũ i, is applied. In the general case, 
incremental application of the rule is needed because a point 
may move from one block to the previous, and thus its 
incremental displacement for given dũ n will change from dũ i to 
dũi-1. When mass is transferred from block i to block i-1 
equation (1) applies.  
 
In mathematical terms, to solve equation (2) for large 
displacement it is needed to express the li, bi and mi in terms of 
the distance moved, u. Assuming that u is less than the initial 
length of ln, the change of lengths li in each increment Δu 
equals 
 
Δl1 =  Δu q1 , Δln= - Δu  (4)   
Δl2=Δl3= ..... =Δln-1=0. 
 
Furthermore, the change in the internal lengths bi is 

ii
iii

i
i uqb ∆⋅
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and the change in cross-sectional areas of the blocks is : 
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The change of masses can be estimated from ΔAi as: 
 
Δmi= ΔΑi*ρi+1                                                 (7) 
 

where ρi+1 is the total unit weight of the soil of block i+1. The 
deformation that this rule predicts in a two-block system is 
illustrated in Fig. 3. 
 
For very small displacement, equation (3) can be 
approximated as   
 

)k - k(t) ( g   Z o-co-11 =u                                         (8)                                                              
 
where Z1-o and kc-o are the factors Z1 and kc given by equation 
(3) when li, bi and  mi are equal to their initial values, li-o, bi-o 
and mi-o respectively. 
  
At the point is should be noted that the general equation of 
motion of Newmark's sliding-block model (Stamatopoulos, 
2003) is given by equation (8) with  
 

Ζ1-ο= 
φ

ββφ
cos

cos)cos( −
 

kc-o=
)cos(

cos)sin(**
βφ

φβφ
−
+−

mg
clgm

  (9) 

 
where β is the inclination of the block, φ' and c' is the friction 
and cohesion along the slip surface and l is the length of the 
block. It is observed that the multi-block model for small 
displacement has the form of the conventional sliding-block 
model. Thus, for small displacement, and given strength and 
geometry characteristics, an inclination, friction angle and 
cohesion can be found for the sliding-block model for 
equivalent response to the multi-block model.  
 
A computer program that solves equations (3) to (7) has been 
developed by Stamatopoulos. Equation (3) is a second order 
differential equation. It is solved numerically by the Euler 
method (e.g. Dahliquis and Bjorck, 1974). The program has 
the option to consider and not to consider geometry changes. 
The input geometry is specified as the nodes of the linear 
segments defining the slip, ground and water table surfaces. 
The inclinations of the internal slip surfaces are  also 
specified. The unit density and the cohesional and frictional 
components of resistance are specified for each block. The 
computer program includes graphics that illustrate (a) the 
initial and final deformed configurations of the slope and (b) 
the applied acceleration, the critical acceleration and the mass, 
acceleration, velocity and displacement of each block, all 
versus time. 

 
Fig. 2. The multi-block stability method proposed by Sarma 
(1979).  



 

Paper No. 4.04b 4 

                                                                

0

10

20

30

-20 -10 0 10 20 30 40 50 60

Initial Final

 
Fig. 3. Deformation assumed in the multi-block model. A case 
of two blocks is given. 
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Fig. 4. The simplified multi-block geometry assumed to 
derive the analytical solution. 
 
FACTOR GOVERNING THE SOLUTION OF A 
SIMPLIFIED CASE 
 
Simplified case 
 
The governing equation of motion greatly simplifies if (a) φ' 
i = 0, (b) δi= -(βi + βi-1)/2, (c)  θ1=θ2=...=0, (d) the side of the 
slope of the first body (line AB of Fig. 4) is parallel to the side 
of the last body (line CD of Fig. 4), (e) the density of the 
sliding mass is uniform (f) pore water pressures are not present 
and (g) external forces do not exist.  Fig. 4 illustrates the 
geometry of this simplified case. 
 
Provision (a) indicates that resistance is only cohesional. 
Provision (b) means that the interface angle bisects the angles 
formed by the slip surface and the distance moved by all 
bodies is the same (u1=u2=...un=u). Provision (c) indicates that 
the ground surface is parallel  to the slip surface and ensures a 
linear change of the geometric lengths with the distance 
moved.  
 
As a result of provisions (a) and (b):   

qi=1,   cos(φ'i)=1,      ∏
−

=

+
1

1
n

ij j

j

f
d

=1,            (10) 

( )iiv βsin−= ,   ( )iix βcos= ,   

( )iiis ββ −= +1sin  , ( )iiif δβ −−= cos  
 
As a result of provisions (c), (d) and (e)  

 
l1=l1-o +  u  
ln=ln-o -  u  
 
where l1-o and  ln-o are the initial values of l1 and ln. In addition, 
the lenghts l2, l3,  .., ln-1, as well as the internal lengths bi do not 
change. In addition, the masses of the blocks equal: 
 
m1= m1-o  + u ρ b2o cos (β2+δ2) = m1o  +u mtot / l    (12) 
mn= mn-o  -  u mtot / l 
 
where l is the slip length and m1-o  and mn-o  are the initial 
values of m1 and mn. In addition, the areas m2, m3,.......mn-1 do 
not change. 
 
As a result of provision (f) 
 0== ii UU

                                             (13) 
Furthermore, provision (g) gives that  
 
Hi=Pi=0       (14) 
 
Thus, the equation of motion becomes  
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Where mtot is the total mass of the slide. Replacing the mass 
and lengths with its initial value and their change with the 
distance moved, the governing equation of motion becomes  
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where mi-o is the initial value of the mass mi. 
 
At this point it should be noted that if mass change is not 
considered, equation (16) is reduced to  
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Discussion 
 
It was noted previously that the equation of motion of the 
multi-block model for small displacement has the form of the 
conventional sliding-block model. Furthermore, for the case of 
large displacement and the simplified geometry of Fig. 4, 
equations (16) and (17) illustrate that the equation of motion 
changes (as a result of geometry changes during motion) by 
the factor  
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F1= ltkgu nn /}sinsin)cos)(cos({ 11 ββββ −+−−⋅      
                                                                                              (18) 
The effect of the change of geometry of the slope during 
motion on the seismic displacement will be described by the 
rario uf/uf-o, where uf is the final displacement moved by the 
multi-block model as a result of the applied exhitation k(t), 
while uf-o is the corresponding displacement when geometric 
changes are not considered. Equation (8) indicates that uo 
depends on the factors k(t), kc-o and Z1-o. Furthermore, 
equations (16) and (17) indicate that uf for the simplified 
geometry depends, in addition to the factors k(t), kc-o and Z1-o,  
on the factors  F1.  
 
Fig 5 studies the correlation between the factors  (sinβn- sinβ1) 
and (cosβn -  cosβ1) with the factor (βn - β1). The angle β1 is 
taken to vary between 0 and 40ο and the angle βn between 0 
and 45ο at 5 degree increments (under the condition βn>β1).  It 
is observed that there is strong correlation between the factors 
(i)  (sinβn -  sinβ1) and ((ii) cosβn -  cosβ1) with the factor (βn-
β1). Furthermore, it is observed that  (sinβn -  sinβ1) > 2 (cosβn 
-  cosβ1). In addition, the factor k usually varies between the 
values +/-0.5. It is inferred that the first factor affects the 
factor F1 much more than the second factor. Based on the 
above, it is inferred that the factor F1 is approximately 
proportional to the factor 
 
F2= u (βn - β1) / l    (19) 
 
The displacement u of the factor F2 increases with time and 
finally gets the value uf. It is inferred that an average value of 
u is the uf/2. Furthermore, the displacement uf can be 
approximated by uf-o, that can be obtained from the previously 
commonly-used  sliding-block model. Thus, the factor F2 is 
approximately proportional to 
 
F= uf-o  (βn - β1) / l    (20) 
 
The factor F will be used below to describe the effect of the  
geometry and strength of the slope, as well as of the applied 
exhitation on the ratio uf/uf-o, defined above. The geometry 
affects F by the length of the slip surface and the difference in 
inclination of the last (upper) and first (lower) linear segments 
of the slip surface. The applied exhitation affects F indirectly, 
by the seismic displacement, uf-o.  It is observed that the factor 
F tends to zero when (1) the seismic displacement is very 
small, (2) the length of the slip surface is very large and (3) the 
difference in inclination of the last (upper) and first (lower) 
blocks of the  slip sub-planes of the slope is very small. 
Indeed, in all these three cases the effect of the change of 
geometry of the slide during motion at the seismic 
displacement diminishes, and thus. uf/uf-o equals to one. 
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Fig. 5 The correlation between the factors  (sinβn -  sinβ1) and 
(cosβn -  cosβ1) with the factor (βn - β1). 
 
PARAMETRIC ANALYSES 
 
The manner that the factor F derived above affects the actual 
results of the ratio uf/uf-o defined above is investigated by 
applying the computer program assosiated with the multi-
block model (section 2). The two-block geometry of Fig. 6 is 
considered.  From Fig.6, it is observed that this geometry is 
defined by the parameters β1, β2 (=βn), δ, θ, l (=l1+l2) and wte 
(water table elevation). All these parameters were varied in a 
parametric manner. The initial and main case considered in the 
parametric analyses had the following characteristics: δ=-10ο, 
β1=5ο, β2=40ο, θ=30ο, l=20m, wte=0. For each other case 
considered in the parametric analysis only one parameter was 
varied. In all cases the El-Centro accelerogram was applied.  
Table 1 gives the cases that were considered in the parametric 
analysis of the geometry of fig. 6    
 
The methodology of solution for each case solved when 
varying β1, β2, δ, θ, l, was the following: The friction is taken 
zero and the cohesion is taken the same along both the two 
sub-planes of the slip surface and the interface. We prepare an 
input file that describes the geometry considered and we 
estimate by trial-and-error the limit minimum value of 
cohesion (c') that gives positive critical acceleration, and lies 
necessarily between 0 and 0.01g. Then, we increase the value 
of cohesion c' with small increments multiplying by 1.05 each 
time. When the critical acceleration  exceeds the maximum 
acceleration of the applied accelerogram, the analysis stops, as 
the seismic displacement is zero. For each case of c the final 
displacement (uf),, the corresponding displacement if mass 
transfer is not considered (uf-o) and the factor F are recorded.  
 
As changes in wte do not affect the cohesional resistance 
force, the methodology of solution when varying the wte  was 
the following: The cohesion is taken zero and the friction is 
taken the same along both the two sub-planes of the slip 
surface and the interface. We prepare an input file that 
describes the geometry considered and we estimate by trial-
and-error the limit minimum value of φ' that gives positive 
critical acceleration, and lies necessarily between 0 and 0.01g. 
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Then, we increase the value of φ' with small increments 
multiplying by 1.1 each time. When the critical acceleration  
exceeds the maximum acceleration of the applied 
accelerogram, the analysis stops, as the seismic displacement 
is zero. For each case of φ',  the final displacements uf and uf-o 
and the factor F are recorded.  
 
The effect of varying the cohesion (and also the friction angle) 
was also studied. The procedure used was the following: The 
friction and the cohesion is taken the same along both the two 
sub-planes of the slip surface and the interface. First we 
prepare an input file that describes the geometry considered 
and for c a given value we estimate by trial-and-error the limit 
minimum value of φ' that gives positive critical acceleration, 
and lies necessarily between 0 and 0.01g. Then, we increase 
the value of friction with small increments multiplying by 1.1 
each time. When the critical acceleration  exceeds the 
maximum acceleration of the applied accelerogram, the 
analysis stops, as the seismic displacement is zero. For each 
case of φ' the final displacement (uf), as well as the 
corresponding displacement if mass transfer is not considered 
(uf-o) are recorded 
 
As stated above, for each case considered in the parametric 
analysis only one parameter was varied from the initial run. 
This means that, for example for the case of analysis in terms 
of the parameter δ, the other parameters remain unchanged, 
i.e. β1=5ο, β2=40ο, θ=30ο, l=20m, wte=0 and only the angle δ 
varies. In this manner, the results of the parametric analyses 
for δ=-40ο, -30ο, -20ο, -10ο, 0ο, 10ο, 20ο, 30ο are derived. The 
results of the analyses, i.e. the  relationship between the ratio 
(uf/uf-o) and the factor F in terms of the parameter that was 
varied, are given in Figs. 7 and 8  for all cases considered. 
 
PROPOSED EMPIRICAL EXPRESSION 
 
Proposed form of the expression 
 
In all results of Figs. 7 and 8, it is observed that (a) if the 
factor F is smaller than a particular value, Fo, the ratio (uf/uf-o)  
equals to unity and (b) when F is larger than Fo, as F increases 
further, the ratio (uf/uf-o) gradually decreases from unity 
towards zero, forming an S-shape curve in the logarithmic (in 
terms of F) scale.  
 
The shape of this relation is similar to the well-known relation 
of soil dynamics between G/Gmax and γ, where G is the shear 
modulus at the curent shear strain level, Gmax is the elastic 
shear modulus at very small shear strain and γ is the shear 
strain. The G/Gmax versus γ curve has been modeled with 
analytical equations of the form 
 
G/Gmax= 0.5 tanh [ 1+ (ln (A'/γ)B' ]  (21) 
 
where Α', Β' are parameters (Ishibishi and Zhang , 1993). 
Similarly, the results of the present study will be described 
with the relationship  
 
(uf/uf-o) = 0.5  tanh [1+ (ln (A/F)B ]   (22) 

where  F is the factor given by equation (20) and Α, Β are 
best-fit parameters.  
 
From Figs. 7 and 8 it can be observed that the relationship 
between ratio (uf/uf-o) and the factor F does not vary 
considerably as the parameters of the geometry of Fig. 6 vary, 
except from the parameter l. In all other cases the curves of 
(uf/uf-o) versus the factor F are almost identical. It is inferred 
that the parameters A and B may vary only with the slip length 
l. 
  
Best-Fit values of the parameters A and B 
Fig. 9a gives the results of all analyses except from those with 
the slip length l. In particular, the parameters β1, β2, θ, δ, wte, 
φ' and c' vary, while l=20m. Trial and error gave that the 
parameters that best fit the results are  
 
Α=1.5 and Β=0.56   (23) 
 
Fig. 9a gives the prediction of equation (22) with Α=1.5 and 
Β=0.56. It can be observed that the proposed equation with the 
proposed parameters fits well all results of the numerical 
analysis of all parametric analyses, except of those of varying 
l.  
 
In addition, the predicted values (P) are given in terms of the 
real (X) values computed by the numerical analyses assuming 
linear relation  
 
P = C X     (24) 
 
where C is a parameter. The parameter C, but also the 
coefficient of correlation (R2) must be close to unity for 
satisfactory prediction. Fig. 9b gives that C=0.9957 and 
R2=0.9969. The two parameters are very close to unity and 
this indicates that the correlation is very good. In addition, 
table 1 gives gives the values of  C and R2 for all curves of 
Figs 7 and 8 separately. It can be observed, consistently to the 
above, that C and R2 are very close to unity for all cases, 
except from some cases where the factor l was varied. 
 
Up to now, the proposed values of the fitting parameters A and 
B of equation (22) do not consider the effect of the slip length, 
l, that is considerable. This effect is studied separately. It is 
observed that to fit the results, it is sufficient to vary only the 
parameter A in terms of l. First, for each l the value of the 
parameter A that predicts the results better was found. It is   
given in table 2. The predicted values are compared with the 
computed values for each value of l using the optimum value 
of A again with equation (24). Table 2 gives the number of 
cases (Ν) and correlation (the factor C and the coefficient of 
correlation R2) for the optimum A for each l value. It can be 
observed that  C and R2 are very close to unity for each case 
of l and this indicates that the correlation is very good. Then, 
the relationship between the optimum A value and the 
parameter l is established. As illustrated in Fig. 10,  
 
Α= -0.3ln(l)+2.33.     (25) 
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The coefficient of correlation of equation (25), R2, is 0.96. The 
fact that R2 is close to unity verifies the accuracy of equation 
(25) to predict the effect of l on A. 
 
Based on the above, finally the following expressions are 
proposed for the factors A and B of equation (22)  
 
A= -0.3ln(l)+2.33      (26) 
B=0.56 
 

-δ l 2

θ

wte

β1

1l

βn=β2

 
Fig. 6 The simplified geometry that is considered in the 
parametric analyses 
 
VERIFICATION 

Equation (22) with A and B given by equation (26) are first 
verified using all the analyses of figs. 7 and 8. Table 1 gives 
the validation in terms of the parameters β1, β2, θ, δ, l, wte, 
and c' (and φ'). The number of cases (Ν) and correlation  (the 
factor C and the coefficient of correlation R2 of equation (24))  
for each case is given. It can be observed that in all cases the 
factor C and the coefficient of correlation R2 are very close to 
unity, something the verifies the correctness of equation (22) 
with A and B given by equation (26) 
 
DISCUSSION 
 
Equation (22) with A and B given by equation (26) was 
obtained from only one applied excitation (the El-Centro 
earthquake) and one geometry type (Fig. 6). It is needed to 
study the ability of equation (22) with model parameters given 
by equation (26) to predict the effect of geometry changes on 
the seismic displacement under (1) different earthquakes and 
(2) complex geometries simulating actual slopes that have slid.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Cases that were considered in the parametric analysis 
of the geometry of fig. 6 and the number of cases (Ν) and 
correlation (the factor C and the coefficient of correlation R2) 
of the analytical solution for each case  
 
Para
meter 

Value
s 

N Eqs. (22),  
(23) 

Eqs. (22),  (26) 

C R2 N C R2 

β1 (ο)  
 

-30 10 0.99 1.00 81 1.00 1.00 
-20 10 0.99 1.00 
-10 10 1.00 1.00 
  0 10 1.00 1.00 
  5 11 0.99 1.00 
 10 10 1.00 1.00 
 20 10 1.00 0.99 
 29 10 1.00 0.99 

β2(ο)  
 

31 9 1.00 0.99 50 1.00 1.00 
40 11 0.99 1.00 
50 10 1.00 1.00 
60 10 1.00 1.00 
70 10 1.00 1.00 

δ(ο)  
 
 

-40  11 0.99 0.99 88 1.00 1.00 
-30 11 0.99 1.00 
-20 11 0.99 1.00 
-10 11 0.99 1.00 
0 11 0.99 1.00 
10 11 1.00 1.00 
20 11 1.01 0.99 
30 11 1.01 0.98 

θ(ο)  10 20 0.99 1.00 72 1.00 1.00 
15 17 0.99 1.00 
20 14 0.99 1.00 
25 12 1.00 1.00 
35 9 1.00 1.00 

l (m)   10 10 0.99 1.00 61 1.00 1.00 
20 11 0.99 1.00 
60 10 0.99 1.00 
100 10 0.99 0.97 
300 10 0.99 0.97 
1000 10 0.98 0.93 

C' 
(kPa) 
(and 
φ')  

0 8 1.00 1.00 72 1.00 1.00 
2 11 1.00 1.00 
4 14 1.00 1.00 
6 19 1.00 1.00 
8 20 1.00 1.00 

water 
table 
elev. 
(m) 

0 9 1.00 1.00 90 1.00 1.00 
1 9 0.99 1.00 
2 12 0.98 0.99 
3 20 0.96 1.00 
4 20 0.94 1.00 
5 20 0.92 0.97 
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Fig. 7 The results of the parametric analyses. The effect of β1,βn=β2, δ, θ, l, water table elevation of the geometry of Fig. 
6 in the relationship between the ratio (uf/uf-o)  and the factor F. 
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Fig. 9 The values of the coefficients Α and Β for the case of 
the geometry of Fig.  6  with l=20m and the El-Centro 
earthquake. All cases of Figs 7 and 8 are given, except for the 
case of varying δ. 

 
Table 2. The parameter A best fitted the numerical results in 
terms of the slip length l of the geometry of Fig. 6 and the 
number of cases (Ν) and correlation (the factor C and the 
coefficient of correlation R2) of the analytical solution for each 
case. 

l (m) A C R2 N 
10 1.7 0.99 1.00 10 
20 1.5 0.99 1.00 11 
60 1 1.00 0.99 10 

100 0.8 0.99 0.99 10 
300 0.55 1.00 0.99 10 

1000 0.35 1.00 0.99 10 
 
 
 

y= -0,3Ln(x)+2,33
R2=0,9629
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Fig. 10. The effect of the slip length on the factor A. 
 
 
CONCLUSIONS 
 
Newmark's sliding-block model is usually used for the 
prediction of permanent co-seismic displacements of slopes 
and earth structures. This model considers the motion of a 
block on an inclined plane with Mohr-Coulomb resistance. 
Recently, a multi-block method has been developed that 
considers a body sliding in n different inclinations. The 
method, unlike Newmark's sliding-block model, simulates the 
change in geometry of the slope towards a more stable 
configuration, which is the usual state in the field and affects 
the predictions when the seismic displacement is large. The 
paper studies the effect of the change in geometry of the slope 
towards a more stable configuration in the seismic 
displacement and using the multi-block model obtains 
equation (22) with parameters A and B given by equation (26) 
that correct Newmark's sliding-block predictions. 
 
In particular, the methodology used to derive equations (22) 
and (26) is the following: (a) obtain a factor describing the 
effect of the change in geometry of the slope with 
displacement by formulating the equation of motion of the 
multi-block model for a simplified geometry, (b) by applying 
the multi-block model in the geometry of Fig. 6 in a 
parametric manner, investigate quantitavely the effect that the 
above factor has in the ratio (uf/uf-o), where uf and uf-o is the 
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Fig. 8. The results of the parametric analyses. The effect of 
cohesion and friction of the geometry of Fig. 6 in the 
relationship between the ratio (uf/uf-o)  and the factor F. 
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final displacement predicted when geometry changes are and 
are not considered respectively and  (c) formulate an empirical 
equation describing the effect computed in (b). 
 
More specifically, in (a) the factor F (equation 20)) was 
obtained. The factor F tends to zero when (1) the seismic 
displacement is very small, (2) the length of the slip surface is 
very large and (3) the difference in inclination of the last 
(upper) and first (lower) blocks of the  slip sub-planes of the 
slope is very small. In (b) the graphs of Figs 7 and 8 were 
obtained giving the effect of the parameters β1, β2=βn, δ, θ, l, 
wte (water table elevation), c' (and φ') of Fig. 6 on the 
relationship between the factor F and the ratio (uf/uf-o). In (c) 
equation (22) is proposed. From the results of (b) it is detected 
that the fitting parameters A and B of equation (22) are 
affected by the slip length l, but do not depend significantly on 
the remaining parameters of Fig. 6. Thus, the fitting 
parameters  A and B were taken to vary only with l. 
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