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AN EFFECTIVE LOCAL ABSORBING BOUNDARY FOR 3D FEM TIME DOMAIN 
ANALYSES 

Lindita Kellezi Hirokazu Takemiya 
Denmark Technical University Okayama University 
ICC, 2800 Lyngby, Denmark 700 Okayamashi, Japan 

ABSTRACT 

The aim of this paper is to investigate and develop alternative methods for analyzing transient problems in dynamic soil-structure- 
interaction, (SSI) within the FEM context. Development of a simple and efficient FEM procedure for the solution directly in the time 
domain of SSI problems is the main issue. Considering Direct Method of analysis, a new formulation of local transmitting boundaries 
for transient three-dimensional (3D) FEM analysis is presented based on the radiation criterion and strength-of-materials theory. These 
numerical devices can be considered as doubly asymptotic, (DA) approximations and are given in terms of first order differential 
operators. Different formulations for volume and surface waves are considered. A computer code employing an implicit FEM for 
solving 3D elastic wave propagation problems is developed to investigate the effectiveness of the proposed boundary conditions, 
(BC’s). Numerical examples for homogeneous hafspace in full 3D are presented in comparison to extended mesh and fundamental 
solutions, a classical approach. As the effort for implementing them is the same as for the impedance BC, standard assembly procedure 
can be used. Due to the local nature they also preserve the overall structure of the global equations of motions. 

INTRODUCTION 

The well-known numerical problem in dynamic SSI analysis is 
how to simulate computationally the far field medium at infinity. 
The radiation condition in this case leads to a boundary-value 
problem with a unique solution. To analyze the semi-infinite 
domain of the soil numerically, a surface or zone is chosen 
called ‘interaction horizon’, (Sandler, 1981). In the Direct 
Method of analysis the interaction horizon is identical to an 
artificial boundary up to which the soil is modeled with e.g. FE’s 
The constitutive at the nodes on this horizon represents the 
significant features of the far field. The rigorous BC is global in 
space and time and is described through integro-differential 
operators. As this is computationally expensive and in the Direct 
Method artificial boundaries are placed far from the energy 
source, approximate or local BC’s can be formulated using only 
differential operators with respect to space and time. Numerical 
procedures for the dynamic SSI analysis may be classified as 
either time harmonic or transient. However a direct time 
integration approach is necessary whenever nonlinearities occur 
and may be advantageous for some classes of linear problems. 
A detailed analysis of these techniques including different areas 
of application is given by (Wolf, 1988) (Givoli, 1991) etc. 
The simplest local absorbing BC is the classical normal 
impedance (Lysmer and Kuhlemeyer, 1969). Its performance is 
known to deteriorate when approaching the source of 
perturbation and it fails for static loads. In (White et al, 1977) 
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the dashpot coefficients are given as functions of Poisson’s ratio. 
(Akiyoshi, 1978) proposed a viscous boundary for shear waves 
involving convolution integral in its formulation losing the local 
character. (Smith 1974) and (Kumar and Marti, 1981) proposed 
superposition boundary based on the principle of the virtual 
image. (Engquist and Majda, 1977) and (Clayton and Engquist, 
1980) derived a sequence of BC’s of increasing order using 
rational approximations to pseudo-differential operators. 
(Reynolds 1978) derived the paraxial boundary equations 
making another factorization of the scalar wave differential 
operator. These schemes are usually applied by finite differences 
and cannot readily be implemented in the FE calculations. 
(Cohen and Jennings, 1983) tried to extend the paraxial 
boundary applicable for FE calculations, however their 
formulation was not very clear. (Bayliss and Turkel, 1980) have 
introduced another sequence of boundary operators based on the 
asymptotic expansion of the solution for the acoustic problem. 
(Liao and Wong, 1984) and (Cheng and Cheng, 1995) 
formulated an explicit-time-integration scheme in connection 
with extrapolation algorithm. (Underwood and Geers, 1981) 
developed DA approximation using boundary element method to 
define the static stiffness coefficients. (Keys, 1985) derived BC’s 
for the acoustic wave equation based on a vectorial 
representation of incoming and outgoing waves. In another way 
(Higdon, 1990, 1991) constructed multi-directional (MD) 
boundary by concatenating several of these operators applicable 
for acoustic and elastic media. When the number of operators 

I 



goes to infinity a global formulation results. In practice only the 

product of two or three operators is taken. (Wolf and Song, 

1996) formulated doubly asymptotic multi-directional (DAMD) 

boundary that combines the advantages of DA approximation 

and MD formulation. It is investigated that the accuracy is 

governed by the static behavior and to increase it the boundary 

should be situated rather far from the energy source. Lastly 

(Kellezi, 2000) formulated simple BC’s for 2D plane strain and 

axisymetric analysis based on the strength of materials theory. 

This formulation is further extended here for full 3D dynamic 

SSI analysis. 

3D FEM TIME DOMAIN ANALYSIS 

From the investigated literature, boundary operators of order two 

or more give nonsymmetrical matrices when implemented in the 

FEM On the other hand it is noted that the accuracy of the 

boundary is governed by the static behavior. So the need for 

local transmitting boundaries accurate for low and high 

frequencies using first order differential operators, arises. 

When OiJ and u, denote the stress and displacement components 

respectively, p soil density and p(t) the applied time function 

stress, the equations of motion for elasto-dynamic can be given 

as 

30, a224 -- 
ax, p at2 

I+ p(t) = 0 (1) 

FEM formulations are based on the weak form of the field Eq. I. 
The equations of motion are multiplied by a weight function in 

the form of a virtual displacement field U, followed by 

integration over the volume and reformulation using the 

divergence theorem. 

I- n / 
A dot denotes differentiation with respect to time. The integral 

identity, Eq. 2, reduces to a set of linear equations when the 

spatial variation of the actual and virtual displacement fields is 
represented by shape functions of the form 

U,(x,,t)= N,(x,)&) 

The stress olj at the boundary integral in Eq. 2 should represent 

the stiffness of the far field and geometrical damping. In vector 

form it can be written 

(4) 

[Dk] and [DC] represent the constitutive relation between near 

and the far field. Taking the same shape functions for actual and 

virtual displacement fields, substitution of Eq. 3 and Eq. 4 into 

Eq. 2 gives the equations of motions in matrix form 

(u), (u,,) and (u,,} are the system vectors for displacement, 

velocity and acceleration respectively. [M] is the well known 

mass matrix given by a part of volume integral in Eq. 2. The 

system stiffness consists of the volume contribution [K] and the 

stiffness arising from the integral over artificial or transmitting 

boundary [K],. The FE consistent stiffness at the boundary 

surface derives as 

The damping of the system consists of [C] which models 

material damping for the near and the far field and the boundary 

integral, which model radiation damping [Cl,. Material damping 

matrix modeled as Raleigh damping is given in the form 

[cl = 44+ ml+ [a 1 (7) 

a and p are the so-called Rayleigh damping coefficients related 

to the modal damping ratio 7 of the i-th mode by the relation 

Y, = 
a++4n2&2 

4475 
(8) 

The FE consistent damping at the boundary surface derives as 

(9) 

rL J 

The load vector {P(t)] is the usual weighted integral of the 

surface traction. The matrices in Eq. 6 and Eq. 9 are 

formulated in terms of the element shape function matrix, 

constitutive matrix for the far field stiffness [DK] and 
constitutive matrix for the far field geometrical or radiation 

damping [DC]. 

Local Transmitting Boundary Conditions 

The outline of the new transmitting boundaries stands on how 

the constitutive matrices [DK] and [DC] are formulated. The 
attention is focused on the ID or physical modeling of the 
unbounded soil domain and construction of a numerical device 
at the boundary, which can approximate far field behavior in a 

3D FEM analysis. 

When an impulse is acting on an elastic halfspace medium, 

radiation of energy occurs when the displacement amplitude 
decays in inverse proportion to the square root of the surface 
area at infinity. This is radiation criterion. In 3D analysis, the 

surface at infinity for body waves is a large hemisphere with 
radius r+=. For R-waves the surface at infinity is a flat cylinder 
with radius r and height approximately one R-wave length ha. 
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So the amplitude of the body waves can be approximated to 

decreases in proportion to the ratio I/r where r is the distance 

from the input source and the amplitude of the R-waves in 

proportion to l/vr where r is the radius of the cylindrical 

surface 

Linear 
Cone Boundary 

Cone Boundary Cone Boundary 

Fig. 1. Transmitting boundaries for 30 FEM analysis. Plane 
view. 

Bodv Waves. From the soil mechanics point of view a load 

applied at the free surface of a halfspace leads to stresses acting 

on an area that increases with depth. The semi-infinite rod with 

variable cross section, specifically with its area changing with 

depth as a cone and truncated could be an approximate model 

for the soil. From this theory hemispherical P- or S wave fronts 

travelling in the positive z-direction could be closely 

approximated by 

For the conical horn, taking the equilibrium of the infinitesimal 

element, (Graff, 1975), the differential equation of motion for a 

P or S wave reduces to 

1 2 
-‘i,tt 

--U_ 1 .E -ui *z =o (11) 
cP6) Z 

The equation of motion Eq. 11 could be given also as a product 

of two complementary operators as 

The residual term l/z’, which grows smaller as z,+== is 

neglected. Considering only outgoing waves given as in Eq. IO 

the boundary differential equation reduces to 

I a cPw a - 
;jt+~+cP(s) az 1 ui =o (1% 

The boundary stress at location z derives as 

[ 

2 

altXYt)‘- ~“i(z,t)+pcP,,iUi,,(Z,t) (14) 
Z 1 

So the missing part of the cones from the boundary location z to 

infinity is modeled by a mechanical system which contains a 

spring and a damper with frequency independent coefficients. 

The stiffness terms are in inverse proportion to the apex heights 

of the cones. It is known, (Meek and Wolf, 1993) that these 

models called translational cone models can sufficiently 

represent body waves in a dynamic analysis. 

In the 3D case the power of P and S-waves is maximum under 

the source in the dilatational and shear windows resp. The rest of 

the halfspace transmits a small part of the radiated power in the 

far field except for R-waves, which propagate horizontally along 

the surface. From this investigation cone models could be used 

as transmitting boundary for body waves in a 3D FEM dynamic 

analysis of the halfspace medium, Fig. I. They should be 

employed for all degrees of freedoms (DOF’s) at the boundary 

defining the distance r of each Gauss integration point from the 

energy source, and knowing the coordinates of wave direction 

vectors r and vectors n normal to the boundary. So [DK] in Eq. 4 

and Eq. 6 derives as 

[D,l=P~n*~)(,:[Nl+c~([Il-[NI)} 
r 

and [DC] in Eq. 4 and Eq. 9 derives as 

(13 

considering a general boundary surface. In Fig. I two cases are 

shown, a spherical boundary for which (Wolf, 1994) gave this 

idea too, and a flat (box model) boundary. The last one is used in 

the numerical computations carried out later using Cartesian 

coordinates. [I] is the identity matrix and [N] is a 3x3 matrix. Its 

elements are products of coordinates of vectors n (n,,n,,n,). 

So transmitting boundary for body waves in a 3D analysis can be 

modeled by a bunch of cones simulated from springs and 

dashpots attached to the boundary nodes and connected to a 

rigid base. Apexes of the cones derive from the geometry of the 

model and source location. The cones will have the same 

dimensions for all nodal DOF’s different from vertical and 

horizontal cone models used in foundation vibration analysis. 

Surface Waves. As it was mentioned before, in a 3D dynamic 

analysis these waves propagate with a cylindrical wave front and 

decay more slowly with distance than the body waves 

In the context of ID wave theory a cylindrical wave travelling in 

the positive x-direction can be closely approximated by 

u,(x,t)+f(x-ct) (17) 
X 

where c is the wave velocity. In case of soil halspace model c=cR 

for example for the horizontal component of the in-plane 

motion. From the strength of materials theory the differential 
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equation satisfied from a cylindrical wave front could be 

1 1 
-Lli ,, --u. 
c . x’.x 

-uixx =o 
’ 

(18) 

which is the equation of motion of a cone with linear area 
variation, (Gaff, 1975). Similarly to the cone models this 
equation can be written as product of two complementary 
operators as 

[~~+[~+~]][~-[~+~)lu, =o (19) 

disregarding the term l/4x2 which grows smaller as x increases. 
Considering only outgoing waves the boundary differential 
equations equals 

[ 

“+r+, A u_ =o 
at 2x 1 ax ’ 

(20) 

from where the boundary stress derives as 

q(x,t)=- I $‘i(n,t)tpc Ui,t(XVt) 1 (21) 
L J 

So the missing part of the linear cones from the boundary 
location x to infinity is modeled also by a mechanical system 
The stiffness terms are in inverse proportion to double apex axis 
of the models. These models can be used as transmitting 
boundary for surface waves in similar way as for the body 
waves. For the box geometry for example the constitutive 
stiffness matrix [Dk] is given as 

[JJ,]=ql *r) 
{ 

1 
- sc;n; +c2 
2 

( 
r 

R (I- ni))+clnt} (22) 

and constitutive damping matrix [DC] as 

[Dcl=p(n*r) sc,nf 1 +c, (I-nz)+c,n:} (23) 

The matrices in Eq. 22 and Eq. 23 should be used in Eq. 6 and 
Eq. 9 resp. when building lateral boundary matrices till a depth 

equal to one hR based on the radiation criterion. hR is constant 
and known for a harmonic pulse but varies for a transient one. In 

this case the predominant frequency of the pulse should be 
considered to determine the length of the lateral boundary where 
surface waves will be absorbed. It looks as if the boundary 
becomes frequency dependent, however this dependence exists 
already in the FE discretization where a certain number of 
elements should be used to cover the predominant wavelength. 
In Eq. 22 and Eq. 23 s is the ratio of P- to S wave velocities. 

COMPUTATIONAL RESULTS 

To see the effectiveness of the proposed BC’s, numerical 

experiments are performed first in time domain within the FE 
models, comparing the results of the small mesh with those of 
the extended mesh which is taken big enough to prevent 
reflections from the boundary to the interesting location. As 
the error due to FE discretization is also present in the 
extended mesh, the differences are caused by the inherent error 
from the transmitting boundary. A quarter of the problem is 
modeled using symmetry conditions when vertical loads is 
considered. A Hammer pulse with predominant period T,=O. Is 
is chosen as transient source of vibration. The linear 
homogeneous, isotropic soil halfspace model has c,=l8Om/s, 
p= I8OOkg/m’ and Poisson’s ratio v=O.4 to test the stability of the 
boundary. A small 3D FE box model in Cartesian coordinates is 
built, which contains 1000 8-node cubic FE’s, BC’s are 
implemented at the bottom and the lateral sides of the model. 
The point load hammer pulse is applied at (O,O,O). Based on the 
time history of the pulse and shear wave velocity of the soil, 
element discretization is carried out taking dx=dy=dz=hs/9=2m. 
So the boundaries of the model are placed at a distance 
1. I h=20m from the source. The behavior at a lateral boundary 
node, at the free surface of the model is given in Fig. 2. 
Different BC’s like stress free or Dirichlet, normal impedance, 
tensor impedance BC developed by (Krenk et al, 1999), and 
the new transmitting boundary based on cone and linear cone 
models are considered. Comparison is made with the extended 
mesh solution 

1.25e-05 , I 
I ,:’ .., 

: ‘. 
Dirichlet BC ; \ 

-- - - Normal Imp. BC : “.., ;i i 
- - - Tensor Imp. BC 

7.509-06 - 
- Extended mesh : ., :\ 
~~~ New Transm. BC i’ 

.’ I. 
.>. i 

-2.50e-06 L 
0 

‘... / 

0.1 0.2 
Time (s) 

_1 
0.3 

Fig. 2 Time history at x-20m. y=Om, z=Om for d#erent BC’s 

It is obvious that the new BC’s approach the extended mesh 
solution better than previous numerical absorption devices. 

Very little material damping with ~12% was included in those 
computations to see clear the effect of the new boundary. 
A 3D representation of the free surface of the model is given in 
Fig. 3 and Fig. 4 for Dirichlet and the new transmitting BC at 
different instants of time following the wave propagation in the 
soil model. Vertical displacement is chosen, as the point source 
is a vertical load. Implicit time integration is performed with 
At=O.OOss. From these results, the necessity of absorbing BC’s is 
obvious and the great power of the new boundary in absorbing 
the energy is clear. From Fig. 4 at t=0.3s, which is the case when 
the waves have left the model and are propagating in the far field 
we see that the response for stress free BC is unacceptable and 
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the behavior for new BC is very realistic. 

Fig. 3 Vertical displacement at z=O when the waves are inside 
the model 

Another application is carried out in cylindrical coordinates 

for horizontal loading. A Heaviside impulse load at t=Os is 

considered acting on a circular surface of r=lm in such a way 

that the total load P=lkN. The FE model is built with 

dx=dz<4m and the boundary is placed at xb=zb=t 16m from the 

axis of symmetry to include nodes placed at a circle of radius 

R=lOOm from the origin where the closed form solutions are 

calculated. This type of load with constant time history is a test 

for the new boundary, which models approximately also the 

stiffness of the unbounded soil domain. The material data for 

the model are taken cs=224mls, p=2000kg/m”, v=O.25, ~2%. 

The displacement response near the boundary for vertical w, 

horizontal u and tangential v components are given in 

nondimensionalized form in Fig. 5 in comparison to closed 
form solutions, (Takemiya and Steinfeld, 1993). These 

solutions are derived by use of the integral transform technique 

introducing the displacement potentials, which are expanded 
into the Fourier series along the azimuth direction. The 

Laplace transform is taken with respect to time. The Hankel 

transform for the radial direction decouples the wave field into 

the in-and the out-of-plane motion. In Fig. 5 Psincp should be 

understood at the ordinate for displacement v. Values of cp=O 

and (p=x/2 are excluded. The results seem to be quite 

acceptable considering FE approximation from the mesh 

discretization. LJ is used to symbolize all components of 

displacements. 

t = 0.35 With Dinchlet EIC 

Fig. 4 Vertical displacement at z=O for waves at the boundary 
and outside the model 

CONCLUSIONS 

BC’s formulated here can be considered as DA 

approximations. MD boundary or viscous boundary satisfies 

Kreiss criterion, which determines well possedness of initial 
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Fig. 5 Response at near boundary location 

boundary value problem for first order linear hyperbolic 
systems. However this criterion is not satisfied for zero 
frequency that means static case. The reason for this exception is 
the fact that any differential operator is zeroing at frequency zero 
if this operator has not a constant term. When boundary 
differential equations are formulated based on linear cone or 
cone models then Kreiss criterion is satisfied also for static case, 
which makes the operator DA. So the formulated boundaries for 
3D analysis represent an attempt to construct a local stiffness 
matrix for the unbounded soil domain. They are accurate for 
homogeneous halfspace conditions and localized source of 
vibration. The accuracy is sufficient when the boundary is placed 
at least (I+1 .S)hs from the source of vibration. 
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