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1\ Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soli Dynamics, 
ddo\ March 11-15, 1991, St. Louis, Missouri, Paper No. 11.12 

Simple Design Methods for Vibration Isolation by Wave Barriers 
fahmeed M. AI-Hussaini 
~esearch Assistant, Department of Civil Engineering, State 
Jniversity of New York at Buffalo, Buffalo, New York 

Shahid Ahmad 
Assistant Professor, Department of Civil Engineering, State 
University of New York at Buffalo, Buffalo, New York 

SYNOPSIS: Rectangular wave barriers (open or infilled trenches) are frequently used in engineering practice to reduce 
the ground vibrations caused by propagating surface (Rayleigh) waves of relatively small wave lengths. This paper 
presents models involving simple algegraic formulas for the design of rectangular wave barriers in homogeneous soil 
deposits. Both vertical and horizontal ground vibrations are considered. An extensive parametric investigation was 
conducted using a direct boundary element method algorithm. Simple models based on the key dimensionless parameters 
that controls the vibration screening effectiveness were then developed. The utility of such models is established 
.hrough comparisons with rigorous numerical solutions and available experimental data. Vibration screening by open 
trenches in layered soils was also studied to identify the effects of layering on vibration screening. 

INTRODUCTION 

Surface waves generated by vibratory machinery or 
traffic may produce distress to nearby structures. It 
is possible to reduce this effect significantly by 
placing suitable wave barriers in the ground before 
the structure. The wave barrier reduces the ground 
vibration by interception, scattering and diffraction 
o• the surface waves. Properly designed open or 
infilled trenches can be used for an effective 
vibration isolation (or screening) system. 

Published literature reveals a good deal of 
research effort, both numerical and experimental for 
the study of isolation of the vertical ground motion. 
For a good literature review, readers may refer to 
Beskos et al (1986), Al-Hussaini and Ahmad (1991). 
Woods (1968) reported results on a series of field 
testing for vibration isolation installing open 
trenches near to the vibratory source (active 
isolation) as well as in the far-field (passive 
isolation). Haupt (1978) utilizing his influence 
matrix boundary condition concept for computational 
efficiency, employed the Finite Element Method (FEM) 
in investigating the use of solid obstacles (trenches) 
of different shapes and sizes for passive as well as 
active isolation. He also did some model experiments 
to verify his analytical results. Fuyuki and 
Matsumoto (1980) using a Finite Difference scheme with 
an improved treatment of corners and absorbing 
boundary conditions investigated Rayleigh wave 
scattering by rectangular open trenches. 

More recently the Boundary Element method (BEM) 
has been used to study problems of vibration 
isolation. BEM is very well suited for wave 
propagation problems in soils involving semi-infinite 
domain because the radiation condition at the boundary 
is automatically satisfied and for linear problems, 
the dimensionality reduces by one. Hence only the 
boundary of the domain needs to be discretized. 
Beskos et al (1985, 1986), Emad and Manolis (1985) 
appear to be the first group of people to utilize BEM 
for studying this problem. They used a constant 
element based BEM algorithm and presented some results 
for vibration screening using open and infilled 
trenches. 
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In order to develop design methods for vibration 
isolation by open or infilled trenches, a systematic 
detailed parametric investigation was undertaken. 
Details of this investigation have been reported by 
Ahmad and Al-Hussaini (1991), Al-Hussaini and Ahmad 
(1991). Isolation of vertical ground vibration by 
rectangular open and infilled (Stiffer than soil) 
trenches in a homogeneous isotropic viscoelastic half­
space were studied. Reduction of the horizontal 
ground motion was investigated for the case of 

infilled trenches. In addition, layering effects have 
been examined by considering open trenches in a double 
layered soil profile. 

A rigorous 2-D Direct Boundary Element method 
based on the infinite-plane fundamental solution (in 
frequency domain) is used for this study. The BEM 
algorithm incorporates quadratic (or higher order) 
elements, is capable of handling multiple regions and 
has a self-adaptive numerical integration scheme. 

PROBLEM DEFINITION 

The problem of passive isolation under plane-strain 
condition using rectangular open and infilled trenches 
is considered. As shown in Fig. 1, a trench of depth 
d and width w is located at a distance ~ from a rigid 
surface footing which is subjected to a vertical or 
horizontal time harmonic load. Since vibration 
isolation by a trench is primarily achieved by 
screening of surface (Rayleigh) waves, the depth, 
width and the distance of the trench are normalized 
with respect to the Rayleigh wavelength (D : d/Lr, W ~ 

w/Lr, L = ~/Lr; where Lr =Rayleigh wavelength). The 

presence of a trench causes reduction in the vibration 
amplitude in an area after the trench. The screening 
effect may be expressed by the two parameters Arv 

(vertical amplitude reduct:on ratio) and Arh 

(~orizontal amplitv1e reduction ratio); 



Arv 
Vert. Dis~l. AmJ2l. of Ground Surf. with trench 
Vert. Displ. Ampl. of Ground Surf. without trench 

A _Horztl. Dis~l. Am~l. of Ground Surf. with trench 
rh Horztl . Di spl. Ampl. of 

iwt 
P=P0 e 

SOURCE+ 

t = L.Lr 

Ground Surf. without trench 

---..; t+- w=W.Lr 

Fig. 1: Schematic diagram of the problem studied: 
Passive vibration isolation by rectangular 
trenches in a viscoelastic half-space. 

In order to represent the amplitude reduction over 
an area of extent nlr after the trench, the average 

amplitude reduction ratio in that area is computed: 

nl nl 
1 J 

r 
J 

r 
i\ 1 

nL A dxt and Arh nL Arh dxt rv rv r 0 r 0 
where xt is the distance after the trench. 

COMPARISON WITH PlJBLI SHED RESULT 

Result obt~ined using the present methodology is 
compared w1th that of Haupt (1978) in Fig. 2. Haupt 
(1978) used the FEM employing his influence matrix 
concept and boundary conditions developed by Lysmer and 
Kuhlemeyer ~1968). In this problem, an in-plane steady 
state Rayle1gh wave is considered incident upon a 
r7ctan~ular concrete infilled trench having normalized 
d1mens1ons of W = 0.2 and D = 1.5. The vertical 
amplitude reduction after the trench obtained by the 
two different methods agree reasonably well. 

1.0 

0.8 

0.6 

~ 
0.4 

0.2 

o.o 
0.0 

Fig. 2: 

;t: 
;t: ;t: % 

Present Study 
% Houpt(l 978) 

1.0 2.0 3.0 4.0 5.0 

Xt/Lr (Distance after trench edge/Rayleigh wove length) 

Comparative study for Rayleigh wave screening 
by a concrete trench (W=0.2, 0=1.5). 
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SCREENING OF VERTICAL VIBRATION 

A vertical harmonic load is considered in the problem 
of Fig. 1 and the influence of various parameters on 
the amplitude reduction due to an open or toncrete 

(stiffer than soil) infilled trench is studied. Here 
only the key parameters that govern the screening 
process will be presented, followed by the simple 
models developed. Unless otherwise stated, ~ = 5Lr' 

width of the footing wf = 0.5Lr, frequency of vibratior 

f = 50 Hz and soil properties were those corresponding 
to medium dense sand: Rayleigh wave velocity Vr 

250m/sec, unit weight ~s = 17.5 KN/m3 , Poisson's ratio 

vs = 0.3, and material damping ~s = 5%. For the case 

of concrete-infilled trenches, the properties of 
concrete were chosen as: Young's Modulus Ec = 11316 

MN/m2 , Poisson's ratio vc = 0.25, unit weight ~c = 24 

KN/m3 and material damping ~c = 5%. The average 

amplitude reduction ratio is computed over an area 
extending to a distance of 10Lr after the trench. 

The functional difference between an open trench 
and an infilled trench is mainly due to the ability of 
the trench material of an infilled trench to act as a 
transmission path for the incident wave energy to the 
zone of screening. As a result, for the same trench 
dimensions an infil1ed trench is always less effective 
than an open trench. 

OPEN TRENCH 

The normalized depth Dis varied from 0.4 to 2.0 and 
the normalized width W is varied from 0.1 to 1.0. As 
shown in Fig. 3, the normalized depth D appears to 
govern the screening efficiency of an open trench. W 
is of very little importance except for shallow depths 
(D<0.8). For shallow depths, increase in width, in 
general, results in better performance of the trench. 
This could be due to more mode conversion (to body 
waves) from the wider base of the trench. For shallow 
trenches, significant amount of Rayleigh wave energy is 
allowed to pass below the trench and the relative 
contribution of this width effect is large. 

~~ 

0.30 

0.15 

0 
% 

" + 
0 
0 

w 0.1 
w 0.3 
w 0.4 
w 0.6 
w 0.8 
w 1.0 

0.00 '----'~~~--'-~~~--'-~~~ .......... ~~~~-'-~~~-' 
0.0 0.5 1.0 1.5 2.0 2.5 

D = d/Lr (Trench depth/Rayleigh wave length) 

Fig. 3: Influence of normalized trench depth and width 
for an open trench. 



Simple Model 

For open trenches, the normalized depth Dis the 
primary parameter, except for shallow depths (D<0.8) 
when the width has significant influence. The latter 
effect is somewhat irregular and cannot be incorporated 
in a simple model. However, considering narrow 
trenches (W=0.1 to 0.3), the simple expression 

Ar~i(D)- 1 · 07 ... (1) maybe used to represent the 

screening effectiveness of open trenches in the entire 
depth range of 0=0.4 to 2.0. Utility of the simple 
model is established by comparison with results 
obtained by the rigorous BEM method as shown below: 

G Ys "s f w 0 Ar(BEM) Ar(Model) 
s 

(MN/m2 ) (kN/m3 ) (Hz) 

60.0 15.0 0.33 25 0.5 1.2 0.18 0.14 
200.0 18.0 0.4 150 0.3 1.5 0.07 0.11 

TNFILLED TRENC!-1 

For an infilled trench, more parameters need to be 
considered. 

0.8 

0.6 

1-i 
0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 

0 
:0: 

"' + 
0 
D 

2.0 

W=0.3 
W= 0.4 
W=0.5 
W=0.6 
W= 0.8 
W= 1.0 

D = d/Lc (Trench depth/Rayleigh wove length) 

2.5 

Fig. 4: Influence of normalized trench depth and width 
for concrete (infilled) trench. 

From Fig. 4, Both D and W appear to be equally 
important. For efficient design D should not be more 

than 1.2. The amplitude reduction ratio Arv is not 

just a simple function of the normalized cross­

sectional area (A=DW=dw/L 2) as was thought by earlier 
r 

researchers. Another parameter, the 0/W ratio exerts a 
controlling influence as demonstrated in Fig. 5. The 
shape factor, Is is defined as the ratio between the 

A value at a particular 0/W ratio to the lowest Ar 
rv v 

value obtainable for the same cross-sectional area. 
The influence of D/W is probably due to a complex 
combination of several factors. Wave energy is 
reflected back and diffracted from the incident face of 
the concrete trench. The presence of the barrier 
results in partial mode conversion of the incident 
Rayleigh wave to body (P&S) waves which travel in all 
directions from the barrier. Also the waves that are 
transmitted through the trench and under the trench due 
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to different passage velocity are out of phase by some 
amount and this can result in partial destructive 
interference after the trench. The influence of D/W 
ratio is greater for larger trench cross-sections, 
because greater amount of wave reflection and mode 
conversion is associated with larger cross-sections. 

2.4 

2.2 

2.0 
-;::-
.s 1.8 

" 2 
1.6 " 0.. 

" .c 1.4 !!:-
...!' 

1.2 

1.0 

0.8 
0.0 

Fig. 5: 

~ A=1.2 ~ 
) ?' ~ --<>- -o- -

.... ~ I~ / _A_:o_: ____ -·-+ 

~\ j /.¥ A=0.6 

;,;, I / .--"'"- _,_--- -~> 
~ * ~ \\ I / ./ A= 0.4-
~-- / ./tr __ ,. ____ ,.-------% 

~-4>o-:.~.-:..~.~---·<>··::_::-__ o,} ..................... . 

0.5 1 .0 1 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

D/W ratio (Trench depth/Trench width) 

Influence of D/W ratio on the vibration 
screening by a concrete trench. 

Vibration screening effectiveness of an infilled 
trench directly depends on the contrast (physical 
anomaly) in the material properties of the trench 
material and the soil. Fig. 6 shows the effect of the 
shear wave velocity ratio (Vst/Vss) of the trench 

material to the soil for various cross-sections. 
Increase in V /V ratio results in better vibration 

st ss 
screening. This means that a material of higher shear 

modulus provides greater resistance to the incoming 

wave. At a Vst/Vss value approaching one, the Arv 

value is seen to be close to unity. This very fact 
highlights the importance of this parameter. Based on 
this figure, it is recommended that the Vst/Vss ratio 

should at least be 2.5. 

0.8 

0.6 

I.E 
0.4 

0.2 

\~-~···0··········~·-···~-······0····~~0~-~:-~~~-:2.0 
't' ...,._ - ~ A=Q.30. D/W=3.33 

-).; ~--- ~- ~ 

''~'*'-- A=0.48, D/W=1.33 :. 6.. -~--:E----.::----~-----}$:;. 

\"_. ...._ A=0.72, D/W=2.0 
'\.o...__ -o-_b-_:6---6------n 

'-+.._ .· .. -o. ·- 0 . _ A=0.96, D/W=1 .5 

~ ·-+-- +--...:.~-.:..:.~:.:-:.:..:.~ 
A=1.20, D/W=1 .2 

6.0 7.0 

Vst/Vss (Shear wave velocity ratio of trench materiel to soil) 

8.0 

Fig. 6: Influence of the ratio of shear wave velocity 
of the trench material to that of the soil. 

Fig. 7 represents the influence of the density ratio 
pt/Ps· In practice, densities of soils and concrete 



are not expected to vary much, so the density ratio was 
varied from 0.75 to 1.5 only. In order to remove the 
effect of Vst/Vss ratio which in turn is a function of 
the density ratio, the Vst/Vss ratio was kept constant. 
Increased density of the trench material contributes to 
its screening efficiency. 

1.0 

0.8 

0.6 

I~ 
0.4 

0.2 

0.0 
0.6 

Fig. 7: 

0·······················0··············· 
A=0.18, D/W=2.0 

:ti--------- -~ ············0···········"0 
------ ___ A=0.30, D/W=3.33 

----~----~ 

!-~ - - - b - ____ A-0.48, D/W=1 .33 
-·-. ---n---"'6 

-+- -·-·- A=0.72, D/W=2.0 
o-- - ·-·-·-+··-·-r 
G-···- .. .::: ~- -- ~=0.96,D/W=1.5 

s -···-···-·· -=:-.. ~::-:-__-:-g 
A=1.20, D/W=1.2 

0.8 1.0 1.2 1.4 

WP• (Density ratio of trench material to soil) 

Influence of the ratio of density of the 
trench material to that of the soil. 

Simple Model 

The model developed describes the average amplitude 

reduction ratio Arv due to an infilled trench, for 
0<1. 2, as: 

where Is = shape factor, Iv = velocity factor, Id = 
density factor, and Ia = area factor. 

1.6 

The shape factor Is (Fig 5) is a function of both 
D/W and A. 

v 
The velocity factor Iv' for -21 > 2.5, is 

vss 

= [~::r where n = 0. 54 A. 

is, indeed, logical. 

approximated as Iv 

1.0, which 

When A 

m 

The density factor Id is represented as Id =[~:] 

where m=0.94A. 

The model implies that the density and wave 
velocity effect increases with larger trench cross­
sections, as should be expected. 

The area factor Ia is given as Ia 0.57{A)-0.25. 
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Predictions with the simple model are compared 
first with results obtained by the BEM method. 

G f 
vst 

Ys v 
vss s s 

(MN/m2) (Kn/m3) (Hz) 

60.0 15.0 0.33 25 3.5 
200.0 18.0 0.4 150 3.0 

Pt w D A (BEM) Arv(Model) Ps rv 
1.5 0.5 1.2 0.39 0.41 
1.2 1.2 1.0 0.3 0.32 

Comparisons are also done with the 1 aboratory test 
results of Haupt {1978): 
vst Pt 

A D/W (assumed) Arv{Haupt)Arv(Model) v Ps ss 
8.0 1.34 0.23 2.57 0.51-0.57 0.60 
8.0 1.34 0.33 2.05 0.41 0.48 

OPEN TRENCHES IN LAYERED SOIL 

Effects of layering are studied by considering in the 
problem of Fig. 1, a two-layer soil profile (single 
layer over half-space) replacing the half-space. 
Isolation of vertical vibration by various depths of 
open trenches (w =0.5) is studied. A layered soil 
problem differs from the corresponding half-space 
problem principally in two aspects. First, 
significant wave energy can be reflected from the 
layer interface back to the upper layer (which cannot 
occur in the case of half-space). Secondly, if the 
bottom layer is close to the ground surface, a 
dispersive type (frequency dependent) Rayleigh wave 
exists, a significant part of which travels in the 
bottom layer. The influence of parameters H {Top 
layer depth/Rayleigh wave length) and vs 11Vs2 (shear 
wave velocity ratio of top to bottom layer), which are 
expected to have a controlling role, are investigated. 

Several soil-profiles with H varying from 0.5 to 
8.0 have been studied; Figs. 8 and 9 correspond to 
H=0.5 and H=8.0 respectively. The conclusions based 
on this investigation may be summarized as follows: 

If the lower layer has a lower stiffness than 
the upper layer, the effect of layering can 
be ignored. 

If the lower layer has a higher stiffness 
then the layering effect needs to be 
considered because it reduces the screening 
effectiveness. However, at a H value of 8.0 
(or more), as can be seen from Fig. 9, the 
effect of layering is zero. In fact, the 
effect gets diminished drastically at a H 
value of around 6.0. Compared to a 
corresponding half-space problem, trenches 
need to be built deeper. Especially for 
vs 11Vs2 values smaller than around 0.7-0.75, 
trenches may have to be built deep down 
(D=H+1.0) into the lower layer to achieve a 
good isolation effect (A value of 0.25 or rv 
less). 



1.0 

0.8 

0.6 

1-f 
0.4 

0.2 

0.0 
0.0 

When the top layer is shallow (in terms of 
the Rayleigh wavelength), such as H~0.5, and 
the lower layer is much stiffer 
(Vs 1 /Vs2~0.25), one needs to consider the 

trench depth in terms of the wavelength for 
the lower layer. This can be noted from Fig. 
8. 

• 

0.3 0.6 0.9 1.2 

0 
:0: 
A 
+ 
¢ 
D 

• 

1.5 

D = 0.6 
D = 1.0 
D= 1.5 
D = 2.0 
D = 4.0 
D- 5.0 
D = 6.0 

1.8 2.1 

v51 jv52 (Shear wave velocity ratio of top to bottom layer) 

Fig. 8: 

0.4 

I.E 
0.2 

Effect of the shear wave velocity ratio of 
two soil layers for different depths of an 
open trench {W=0.5) in a two layered soil 
profile with H=0.5. 

o D = 0.6 
:o: D= 1.0 
A 0=1.5 
+ D = 2.0 

~----·--··-El-""'-&·--·~------·~ .................. ~ .......................... -€1 

:-:..=-:. '!: -=-.=:::-:.:::!-:.:::-=---=----: -:.:-=.-..:::. -_-~--=-~ 
+- ·- ·+-·-+- +- ·---+- ·- ·-. --+-·-·- ·- ·-.-+ 

V61 /Vs2 (Shear wave velocity ratio of top to bottom layer) 

Fig. 9: Effect of the shear wave velocity ratio of 
two soil layers for different depths of an 
open trench (W=0.5) in a two layered soil 
profile with H=8.0. 

SCREENING OF HORIZONTAL VIBRATION 

A horizontal harmonic load is considered in the 
problem of Fig. 1 and the effectiveness of concrete 
infilled trenches in reducing the horizontal ground 
vibration is studied. The material properties for the 
soil and the concrete is the same as stated earlier. 
However, a Poisson's ratio of 0.4 is used for the 

soil. Arh is computed over an area of 5 Lr after the 

trench. 
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In Fig. 10, the amplitude reduction achieved by a 
concrete trench (W=0.6) with respect to the horizontal 
motion is compared to that corresponding to the 
vertical motion. Wave barriers appear to be more 
effective for screening of vertical vibration than 
that of horizontal vibration. This may be explained 
as follows: in case of vertical vibration screening, 
the particle motion within the barrier in the vertical 
direction can send wave energy deep into the 
halfspace. Whereas, for horizontal vibration 
screening, the horizontal particle motion within the 
barrier tends to transfer energy to the right of the 
barrier (screening zone). 

1.0 
'0 
:;:; 
~ Horizontal vibration 
c: O.B 
0 \ Vertical vibration 

:;:; \ 
0 \ 

" '0 \ 

1: 0.6 

"' '0 

2 a. 0.4 
E ' ---X 
0 ' "' :t'.--~----ll'-
01 

~ 0.2 
"' .s 

I<- 0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

D = d/Lr (Barrier depth/Rayleigh wave length) 

Fig. 10: Comparison of vibration screening in the 
horizontal and vertical modes by a barrier 
(W=0.6). 

Similar to the case of vertical vibration 
screening, Wand D appear to be equally important 
parameters, as shown in Fig. 11. Except for narrow 
trenches (W~0.3), increase in D beyond 1.5 produces no 
benefit. In Fig. 12 the influence of the 
dimensionless cross-sectional area A = OW is plotted. 
Considering design efficiency, depths greater than 1.5 
or smaller than 0.6 are not considered. The amplitude 
reduction ratio can, in this case, be uniquely related 
to the cross-sectional area by the following 

expression: Arh ~ 0.4 (A)- 0· 33 . 

1.0 

0.8 

0.6 

I~ 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 

w 0.3 
w 0.4 
w 0.5 
w 0.6 
w 0.8 
w 1.0 

D = d/Lr (Trench depth/Rayleigh wove length) 

2.5 

Fig. 11: Influence of the normalized trench depth and 
width on the screening effectiveness of 
concrete barriers. 



0.8 BEST-FIT: 

-0..33 
A;.= 0.4(A) 

0.6 

0.4 

0.2 

A= D•W (Dime,sionless cross-sectional area) 

Fig. 12: Influence of the normalized cross-sectional 
area on the horizontal amplitude reduction 
ratio for concrete barriers (0.6 ~ D ~ 1.5). 

v 
Fig. 13 shows the effect of the ratio Vrt of the 

rs 
Rayleigh wave velocity of the trench to that of the 
soil for different trench cross-sections. Increase in 

vrt 
---ratio results in better screening. This is the 
vrs 

vrt 
most important material parameter, since as --- ratio 

vrs 
approaches unity, the screening effectiveness reduces 

. Pt 
to almost zero. The influence of the density rat1o-­

Ps 
of the trench material and the soil is studied, while 

vrt . 
maintaining v-- rat1o constant. The amplitude 

rs 
reduction ratio appears to decrease linearly with 
density ratio, maintaining more of less similar 
slopes, 

0.8 

0.6 

IJ o.4 

0.2 

0 
X 
A 

+ 
0 
D 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Vrt!Yro (Rayleigh wove velocity ratio) 

8.0 

Fig. 13: Influence of the ratio of the Rayleigh wave 
velocities of the wave barrier and soil on 
the amplitude recuction ratio. 
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SimC~le rnoctel 

The average amplitude reduction ratio for 

where Ia area factor, Iv = velocity factor and 

Id = density factor. 

vrt 
Iv and Id are defined to be 1.0 when v-­

rs 

l. 37. 

4. 72 

Consequently, Ia is given by, Ia = 0.4(A)-0 · 33 . 

The velocity factor Iv is expressed as: 

I 
v 

1.0 

where, m = 0.006 + 0.0382(A) 

The density factor Id is approximated as: 

Results obtained using this model is compared with 
results obtained by the rigorous BEM code in the table 
below: 

G -v., v w D 
5 s 

MN/m2) (Kn/m3 ) 

61.5 14.7 0.3 0.6 1.0 
8.0 15.2 0.48 1.0 0.6 

200.0 18.0 0.4 0.8 1.5 

vrt pt 
AniModel) A ~BEM) -v-

Ps rs 
7.14 1.5 0.44 0.38 
2.62 0.9 0.69 0.68 
4.13 0.85 0.54 0.55 

CCNCLUS IOtJS 

Based on the results of a rigorous parametric 
investigation, simple design expressions have been 
developed for passive isolation systems involving 
rectangular open and infilled (stiffer material) 
trenches in homogeneous soil deposits under plane­
strain condition. Results predicted by the simple 
models compare favourably well with those obtained by 
rigorous numerical methods and available experimental 
data. Moreover, this study identifies the important 



dimensionless parameters that controls the 
effectiveness of a vibration screening system. 
Finally, some important layering effects have also 
been identified. 
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