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Proceedings: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering 
and soil Dynamics and Symposium in Honor of Professor W.D. Liam Finn 
San Diego, California, March 2631,200l 

A FIELD STUDY AND DYNAMIC FINITE ELEMENT ANALYSIS OF RAILWAY 
RETAINING STRUCTURES DAMAGED BY THE HYOGOKEN-NAMBU 

EARTHQUAKE (1995) 

Yoshioori Nagayama Tamotsu Matsui Ikuo Yasukawa Hiroshi Kasai 
JR West Japan Consultants Co. Osaka University Kinki Geoengineering Center Co., Ltd. Konoike Cunstruction Co.,Ltd 
4-20 Nishinakajima 5, Suita, Osaka 5650871 33-3 Satonouchi, Yoko’ohji- Shimomisu, 6-1,3-Chome, Kitakyuhoji-Machi, 
Osaka 532-0011 Japan Japan Fushimi-ku, Kyoto 612-8 136 Japan Chuo-ku,Osaka,54 I-0057, Japan 

ABSTR4CT 

The seismic damage to embankments and retaining walls caused by the Hyogoken-nambu Earthquake (1995) was reviewed, rather 
focusing on railway structures. Nearly eight kilometers of damaged retaining structures were divided into five structural types, such as 
gravity-type walIs, leaning-type walls, embankments, geo-textile-reinforced earth walls, and reinforced concrete walls, and into three 
categories of the damage, such as collapse, tilt, and crack. It was observed that the damage to gravity-type and leaning-type walls was 
greater than that to embankments, geo-textile-reinforced earth waIh, and reinforced concrete walk, when they are lower than five 
meters. But some leaning-type walls higher than seven meters remained un-collapsed. In a smaller limited section, damage analyses of 
stone maxxuy walls of gravity type were carried out including undamaged ones. The percentage of hea\-y damage to stone masomy 
walls with slopes was nearly t&e larger than that without slopes. Moreover, hvo-dimensional dynamic non-linear finite element 
analyses were performed on a gravity-type wall, a leaning-type wall, and a geo-textile-reiind earth wall. As the results, it was 
pointed out that the gravity-tjrpe and leaning-type walls developed slide or gap against the backfill. But the gee-textile-reinforced e&h 
wall developed tension in the reinforced material and it prevented the wall from leaning or sliding. 

INTRODUCTION 

Immediately after the Hyogoken-nambu Earthquake, a 
research committee on the Great Hanshin-Awaji Earthquake 
Disaster was established in the Kansai Chapter of Japan 
Society of Civil Engineers. This committee consists of eight 
sub-committees and the Sub-committee No. 2 c.oncerned about 
Soils and Foundations. It was established under chairmanship 
of Professor T. Matsui of Osaka University to investigate 
seismic damage, to study the mechanism of the damage, and 
to make suggestions on the aseismic design method, 
concerning on ground, earth structures, and foundations. The 
sub-committee made 286 pages of report in Japanese. In this 
sub-committee, a group for highway and raiLway retaining 
structures reviewed the seismic damage on embankments and 
retaining walls. 

This paper is a summary of s0me fmdings in &is group rather 
focusing on railway retaining structures, with some additional 
infmmation. It was obsenred that the damage to these 
structures on alluvial fans tended to be smaller than that cm 
other deposits, but geometrical and geological conditions of 
the ground surface could not be related to the degree of 
damage. This paper first describes damage and restoration 
works on these retaining structures, followed by statistically 
analyzing damaged ones in relation to the height and with-or- 

without slopes. FinalLy, dynamic finite element analyses are 
conducted in order to elucidate seismic response difference 
due to the types of retaining stnrctures. 

CLASSIFICATION OF RETAINING STRUCTURES AND 
THE DAMAGE 

Damaged retaining structures were divided into five structural 
types, such as gravity-type tvalls, leaning-type walls, 
embankments, geo-textile-reinforced earth walls (GRW), and 
reinforced concrete walls (RCW). Gravity-type walls 
withstand earth pressure with their own weight and bearing 
capacity. Leaning-type walls cannot stand by themselves, and 
therefore they need backGIl in order to keep “Ieaning.” 
Embankments have no retaining walls. GRWs consist of soils 
reinforced by layered geo-textiles and wall with bending 
rigidity. RCWs support backfill earth pressure with their wall 
rigidity snd bzaring capa&y. Therefore, the concrete wall 
should have bending rigidity usually reinforced by re-bars. L- 
shaped retaining vv;alis %I! into this Qpe. 

The degree of damage was divided into three categories, such 
as collapse, tilt, and crack. Cracks in a retaining wall are 
internal damage, while tilting of a wall is external damage. 
But it should be noted that collapse of retaining structures 
would happen both internally and extemaIly. Fig.1 shows 

Paper No. 7.11 1 



Fig.1. Collapse of RCW (above) ami tilt of GRW (below) 

I 

Fig.2. Restoratiorr of a highway embankment: 
before (above) and after (below) 

some examples of combination of structural type and 
degree of damage. That is, the above figure shows an example 
of collapse of RCW, and the below an example of tilting of 
GRW. 

RESTORATION EXAMPLES OF DAMAGED 
RETAINING STRUCTURES 

Restoration of damaged retaining walls of a municipal 
highway was conducted, using a geo-textile-reinforced earth 
wall and a large-size block wall, as shown in Fig.2. 

Collapsed retaining walls of Hankyu Railways are shown in 
Fig. 3. As for the restoration, the damaged walls were 
removed, the railway tracks were temporarily supported by 
staging, then a U-shaped concrete wall was constructed, and 
finally air-mortar was poured into the space inside the U- 
shaped wall. 

Staging Air-mortar 

I 

-. 
Fig.3. Restoration of a Hankyu Railways-ieanirrg-type wall: 

before (above) and after (below) 

ANALYSIS OF DAMAGED RAILWAY RETAINING 
STRUCTURES 

In a severely damaged area of seven in the seismic intensity 
scale of the Japan Meteorological Agency, three railway lines 
run east-to-west connecting Osaka and Kobe. About 8.5 
kilometer section was chosen for damage analysis, and the 
damaged retaining structures investigated amounted to be 
7984.7 meters in length (Nagayama et al 1998). The structural 
type had been judged by staffs in charge of the rapid 
reconstruction, so some gravity-type walls seemed to be miss- 
classified as leaning-type walls. Figure 4 shows the variation 
of damaged length with their height for the five types of 
retaining walls. From this figure, the followings are observed; 
- Damage to embankments, GRWs, and RCWs was 

smaller-than that to gravity-type or leaning-type walls, 
- RCWs suffered internal damage but had no external 

damage, and 
- Gravity-type walls of higher than 5 meters tend to 

collapse but leaning-type walls of higher than 7 meters 
remained tilted without collapse. 

In a smaller limited section, all stone masonry retaining 
structures including non-damaged ones were analyzed, and 
the damage ratio was calculated. The retaining structures in 
this section were composed from stone masonry wall, stone 
masonry wall with protruded crown, and stone masonry wall 
with slope as shown in Fig.5. Figure 6 shows that the damage 
ratio of stone masonry wall with slope is twice greater than 
that without slope. The ratio of collapse in stone masonry wall 
with protruded crown is nearly twice greater than stone 
masonry wall. But even if tilted structures are included to the 
collapsed, the damage ratio with protruded crown does not 
change so much. From this figure, it is suggested that in the 
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applied aseismic design of retaining walls with slope, seismic 
active earth pressure can be estimated to be too small. Figure 
7 shows the assumed slope for calculating seismic earth 
pressure in the applied seismic design. The shaded triangular 
soil mass over the assumed slope is considered to slide during 
earthquake, and neglected in the calculation of seismic earth 
pressure. This underestimation of seismic earth pressure may 
contribute to the large ratio of collapse. Moreover, some other 
factors such as slope protection works might accelerate the 
damage. 

Fig.5. Three structures compared: stone masonry wall 
(above ieft), stone masonry wall with protruded crown (above 

right), and stone masonry wall with slope (below) 

Stone masonry wall with 
slope 

Stone masonry wall with 
protruded crown 

Stone masonry wall 

1:;;. tOrls~ 0% 20% ,zagezio 80% 100% 

Fig.6. Damage ratio of stone masonry walls 

Fig.4. Degree of damage according to the height H (m) and 
type of retaining structures 
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6 =Angle of internal friction, 0 =tan-‘&, 
Kr,= Horizontal seismic coefficient for design 

Fig. 7. Assumption of slope for applied asekmic design of 
retaking wall wdh slope 
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ANALYSIS OF DAMAGED HIGHWAY STRUCTURES 

Damage to embankments of national highways was analyzed. 
Figure 8 shows the relationship between height of 
embankment and damaged length or damage ratio. The 
damage ratio is found to become greater as increasing the 
height of structures (Kunitomi et al 1998). 
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Fig.8. Damage to highway embankment 

As I 
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Fig.9. Modeled sections of retaining wails: gravity-type wall 
(top), leaning-type wall (middle), geo-textile reinforced earth 

wall (bottom) 

DYNAMIC FINITE ELEMENT ANALYSIS OF 
DAMAGED RAILWAY RETAINING STRUCTURES 

Time history response analyses were conducted for a gravity- 
type wall, a leaning-type wall, and a GRW, each of which has 
five meters in height, as shown in Fig.9 (Kasai et al 1998). 

Modeling and waveform 

The two-dimensional finite element model has depth of 61.2 
meters and extends 56 meters from the wall location to both 
boundaries as shown in Fig. 10. The lower boundary faces 
bedrock. Non-linearity of ground stiffness, de-lamination or 
sliding at the contact face between backfill and wall is 
considered in the calculation. Soil properties were obtained at 
the damaged site of the gravity-type wall. As the aim of the 
analyses is to find some difference in seismic response among 
these three retaining structures, the same soil properties are 
used for analyses. The shear wave velocity is 150 meters per 
second in the backfill, and loo-540 meters per second in 
bearing layer increasing from surface to bedrock. Backfill soil 
and the top five-meters layer of the ground follow the elasto- 
plastic Mohr-Coulomb’s criterion. The angle of internal 
friction for the cohesionless backfill and the top layer are 42.0 
and 35.8 degrees respectively. The soils below this layer and 
concrete walls are modeled as linear materials. Geo-textile 
material is modeled as non-symmetrical bi-linear spring that 
resists tension force only. 

In order to obtain an input waveform, a pre-calculation was 
performed. The waveform of earthquake ground motion 
detected at the location of Kobe University on bedrock 
surface during the 1995 Hyogoken-Nambu earthquake was 
applied on the bottom viscous boundary with half space, and a 
quasi-linear analysis was conducted. The resulting waveform 
at the upper side of the boundary is used for the present finite 
element analysis. Figure 11 is the waveform thus obtained. 

130.0 m 

Fig. 10. White elemint model (gravity-t&e wall) 
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Calculation is conducted applying this waveform for twenty 
seconds, and free vibration follows afterwards for ten seconds 
in order to get the residual displacement. 

Results of analysis 

Figure ‘12 shows response of the gravity-type wall and the 
backfill. The gravity-type walls and the backfill horizontally 
oscillate in the same phase as shown in the upper figure of 
Fig.12. But, as shown in the lower figure of Fig.12, the 
settlement of backfill accumulates from the earlier stage, and 
the surface of embankment can not hold the original level. 

The gravity-type walls develop de-lamination at the contact 
plane to backtill as shown in Fig.13. This soil-wall slippage 
displays non-reversible character. This type of relative 
displacement is also developed in the leaning-type walls. 

4oo , - - - - -  ------1---- -_- --___-_____--- 7 

-300 
t -400 l_--------- ----------------A 

Duration (s) .- ~- 
Fig.1 1. Waveform tit acceleration 

.g +) L _______..________.._................................................................ ! 
EC. 

Duration(s) _.__ - .~ ~_ ..- - 
5 ----------------.-------- 

__,_______..__ - _..-.--. .” ___..._____..: 

g t Ri@ side wall / 

5 t 5 _____._____...______.................. > ___......................................~ 
Duration (s) 

_ - - -- 
F&.12. Response of the gravity-type wall and the backfill: Fig.14. Stress distribution at the contact face between gravity- 

horizontal (above) and vertical (below) type wall and backfill 

Figure 14 shows stress distribution at the contact face 
between gravity-type wall and backfill. The gravity-type wall 
develops earth pressure when the whole structure is moving 
from backfill side to wall side as shown in Fig. 14, but has no 
earth pressure when moving the other way around. This 
means that the gravity-type wall suppresses the movement of 
the backtill. 

Figure 15 shows displacement of leaning-type wall at 9.7 
seconds. The leaning-type wall does not develop any earth 
pressure at the contact face with the backfill whether it is 
moving right or left. It moves as if it was on the side slope of 
the embankment and toppled after as shown in Fig.15. 

Figure 16 shows tension force in the geo-textile and 
settlement of reinforced embankment. The geo-textile 
material develops tension force in accordance with the 
settlement of backfill as shown in Fig.16. The distribution of 
the tension force in geo-textile does not change so much 

-Sliding displacement 
-Laminated distance 

2 4 6 a 
Duration (s) 

Fig.13. Relative dkplacenrent between the gravity-type wall 
and the backfill 

Normal stress (MN/m*) 

0.6 0.4 0.2 0 -0.2 
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Fig.15. Displacement of leaniq-type wall at 9.7 seconds 
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13 
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Duration (s) -~-- --_ -- --. ~ 
Fig.16. Tension force in the geo-textile and settlenzettt of 

rehforced embankment 

whether the wail is moving right or left. Therefore, the tension 
force is not directly caused by the horizontal movement of the 
wall, but by the settlement of backfill. This tension force 
suppresses sliding of the wall. Figure 17 shows the 
distribution of tension force when the whole structure is 
moving from the left to the right. 

bs 
z 15 ---_--__ 
8 .-..‘. ----=--..s ..‘.. ---J 
.5 0 . . I I 
f! ,$ ,5 r”-.“l~ _1-.1. -__.- .__.I. --.---- 

K-J Distance from the wall (m) 
._ _-.~-- 

Fig.1 7. Distribution of tension force in the geo-textile 

Although this study is incomplete even after six years from 
the earthquake, the authors believe that the result of this study 
can make some contributions to readers. The authors owe so 
much to the persons who took notes of the damage on the site. 
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