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SYBOPSIS: GalerKin's procedure and the modified ener8Y expression of Banerjee are used to obtain the central deflection of circular plates with linearly varyin8 thicKnesses, restin8 on a linear as well as a nonlinear elastic foundation. A new series formula for the deflection has been considered. The accuracy of the method has been tested for clamped plates with movable and immovable ends under uniform static patch loadin8. Graphlcal results are drawn for the central deflection for different end conditions, different plate thicKnesses and different foundation properties. Comparison of the results are made with other Known results and shows a good a1reement in most tested cases. 

1. JBTRODUCTlOB 

Plates under flexure have found a wlde spread 
appllcation as structural elements in 
mechanical, civil, marine, aeronautical, and 
other flelds of en11neer1ng. When the 
deflectlon 1s qu1te lar~e. that 1t 1s of the 
same order of ma1n1tude as the thlcKn ~s of the 
plat,·, it be co .... .;; necessary to apply .vnllnear 
p! ::.<.., l:i•tvJ·.i..:.:o, W'"llcn tah.e ~nto account t.he 
int.eraction betweet. the bending and membrane 
stresses. 

TlmosnenKo and WoinowsKy IS959) have solved 
different plates with various boundary 
conditions us1n8 the small deflection theory. 
They alsQ included problems of plates 
resting on elastic supports.Wang 11934), 
St.lppes (1952), schmidt (1968), Gordon, Hah 
(1969) and others have discussed various plat.es 
of uniform and nonlinear thicKness of analysis. 

Berger (S955) suggested an approximate method 
for solving t.he problem of plates in larie 
deflection by negl~ting the strain energy due 
t.o the second invariant of the middle surface 
stra1ns. Sinha (S9ti3) used the technique of 
Berger to solve the problem of the large statlc 
deflectlon of unlformly loaded c1rcu1ar as well 
as rectangular plates, resting on 11near 
elastlc foundatlon and with immovable edges. 

How1nsK1 and Ohnabe (1958) concluded that 
Berger's 11ne of thouiht leads to meanlngless 
results for movable edge condltions. Thls is 
due t.o the fact that the neglect. of 
second invariant for movable edges falls to 
imply freedom of rotation ln the meridian 
planes. 

B. Banerjee (S98Sl has included a new approach 
to the analysls of larie deflectlons of thln 
elast.ic plates. This approach make 1t possible 
to decouple the nonllnear 10vern1ng equations 
of the problem. 
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In this paper the new approach of BanerJee has 
been considered to solve the equations 
representlng the plates of linear varying 
thlckness. The load distribution 1s taken 
axlsymmetric, uniform, static patch loadlng, 
and the var1at1onal pr1nc1ple is employed to 
drlve th equatlor., of equ111br. um. J.le 
approxlma_f!" C1alerW1r"'!.t p~~==-::~•'!""e !::» Of.;.! . .i..c~ Al .. ~ 
the non.lnear algebraic equat.~ons obta~ned has 
been solved using the modified Newton 
Raphson•s iteratlve technique. Qraphlcal 
results for the central deflections are 
represented for dlfferent boundary condltions. 

2. BASIC BQUATIOHS 

The total potential energy of thln lsotroplc 
clrcular plates ln large deflect.ion resting on 
a nonlinear elastic foundation ls given by 

fa D d2w 2 211 <lw o2w 1 <lw 2 
11= t-[ (--) +-----+--(--) + o 2 ~ r <21"~ r2<2r 

wn•s -
n+S 

q(r)w 1 r<2r (1) 

Where 
a 
D(rl 

h 
a 
w 
u 

_II 

= radius of the plate 
= D0 (1- ar/al3 : flexural r181d1ty of 
the plat.e , 
where D0 = Eh0 3 1 12(1-112) 

= h 0 (1- ar/al = thickness of the plate 
taper ratlo 
transverse displacement 
enplane displacement 
polsson's ratio 

1 - y2 



Nr = membrane forces in the radial 
direction. 

~ non-linearity coefficient 
n index of non-linearity ( n=1 for 

linear elastic foundation,n=3 for 
nonlinear elastic foundation) 

q(r} = arbitrary lateral load 

Banerjee (2981} suggested a modified energy 
expression in place of the expression given in 
equation (1). This comes true when the term 
(t-v2) (u2Jr2) is l'eplaced by ()./~) (dW/dr)4, 

where A is a factor depending on poisson's 
ratio. This replacement maKes the decoupling 
of the govern1ng equilibriums equation becomes 
possible. 

Thus tll.e total potential energy of the plate 
bece>mes , 

a 
d2w o.2w clW2 

I I 
D 2 2v <1w 1 

• (m-2 J + ------ + -- (--) + 
0 2 r <2r m-2 r2 <2r 

12 
e12 

). clW 4 ~ ytll+1 -
h2 

+ -- (-J l ) + 
~ <2r n+1 

q(r)w 1 r<2r (2) 

APPlYlM1 tll.e d:!Jile~lonles.s quantities, 

r w 11 "' r--~ 

;- y \; -. "[. - . p : 

a a a a D 

"\ = (I; G) ail (3) 

and minimizing equation (2), the governing 
equilibrium equation of the plate becomes, 

o3y 2+v d~y 
(1- o:Pl3v4¥ • 3o: (1- o:p)2 [ 2 -- + -- -- -

dP3 p dP2 

1 dy 
-

2 
- 1 + 5<:J! (1-<XP) 

p C1P 

dY d2y 6). 
(-)2 (V2y •2 An2 l ~ o: 

C1P ..,... to 

v dy d2y 
(-- + --) + ortyll- P(P) 
PdP~ 

: 0 (~) 

determined from, 

dlJ 
--+ 

dy U pV -1 
(-)2 + v - : B ---- (5) 

dP 2 dP P (1- o:Pl 

3. SOLUTIOH OF TR4 FBOBLKH 

The deflection of the plate is assumed as a 
series function of the central distance, as 

y (P) 
i 

1 
I: 

where the coordinate function ~ 1 must satisfy 
all of the essential boundary conditions. 
These boundary conditions may be stated as: 

1- Clamped with immovable edge 

oy 
y(1) ( 1) U(1) 0 

dP 

2- Clamped with movable edge 

dy 
y(1) ( 1) N(1) 0 orB 

dP 

This coordinate functions 
represented in the form 

( 1 - 2p2i + p~i l 
~i 

0 

(6) 

(7) 

may be 

(8) 

SUbstituting equation (8) into equation (~) we 
obtain the non-vanishing error function as 
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E(P) : a 1 [ 16 - 9o:P(11+V) + 2~p2(7+V) - 5o:3p3 

(17+31') + (1+V) ( 
3o: 

p 

l 
12oF + ~p l 1 + I: 

i:2 

ai -81(i-1)2 p21-4 + 161(21-1)2p~1-~] - 3o: 

l 
I: a.._ [ (21-1) (-.,12+2i+1-v) p21-3 + (~1-1) 

'"":~ 

1-V) p21-2 + 8i(812-1+V} ~1-2 

( p21+2j+2S-~ _ p21+2J+~S-4 _ p21+~j+2S-~ + 

p21+4j+4S-~ ) + (121-2) (p~1+2J+2S-4 -

~1+2J+4.S-~ _ p41+~J+2S-4 + ~1+4j+4S-4 ) ] + 

6). o: ~ a1ajas [ (-6i+1) (p21+2J+2s-3 -
t 0 2 1,J,s=1 

p21+4J+2s-3 _ p21+2J+4s-3 + p21+4J+4s-3 ) + 

11 21-11 ( p4i+2J+2s-3 _ p~l+~J+2s-3 _ 

12 
~1+2J+~s-3 + p~1+~J+~S-3) J - --B pV-1 

to2 

1 
I: a 1 [ (-21+1-v)p21-2 + (~l-1+V)P~1-2 1 + 

1:1 

l 
"\ [ I: 

1:1 
(9) 



The Galerkin procedure 
function E(Pl ShOUld 
c oordillat e funct..l on.s 
t.he plate, i.e 

requires that the error 
~e orthogonal to the 
~k(PJ over t.he domain o£ 

I = b E(Pl ~(PJ <2Q = 0, (k = .t, 2, 3,,,, 1) (10) 

This integral can ~e diVided into three parts, 
i.e 

I : ID + IW + Ip : 0 (11) 

Where 

I D : Zk a 1 [ A1 - 3a A2 + 6QC A3 - cx3 ~ + 3a A!) 

- ~ + D~l + (12i-1) CDs - ~ - D7 +Del ] 

A1 : 6/(2+2k)/(2+~) A2 : (11+V)/(3+2k)/(3~) 

A3 : (7+V)/(~+Zk)/(~~) ~ : (17+3V)/(5+Zk)/(5~) 

A!): (1+V)/(1+2k)/(1~) , A5 : (1+V)/(2+2k)/(2+~) 

A7 (1+V)/(3+2k)/(3~) 

B1 : -2i(2i-2)/(2i-2+2k)/(2i-2~) 

B2 : ~i(~i-2)/(~i-2+2k)/(~i-2+~) 

B3: (-4i2+2i+1-V)/(2i-1+2k)/(2i-1~) 

~: (16i2-4i-1+V)/(~i-1+2k)/(~i-1+~) 

Bs: (-2i2+1-V)/(2i+2k)/(2i+~) 

Bo : (ei2-1+V)/(~.1+2k)/(~i~) 

E7 = (-~i2-2i+3-3vJ/(2i+1+2kl/(2i+1~l 
Be : (16i2~i-3+3v)/(~.1+1+2k)/(~i+1~l 

c1 = 1/(2i+2J+2s-2)/(2.1+2J+2s-2+2k)/(2i+2j+2s-2~) 
c 2 = 1/(2i+2J+4S-2l/(2i+2J~s-2+2kl/(2i+2J+~s-2~l 

c 3 = 1/(2i~J+2s-2J/(2i~J+2s-2+2kl/(2i~J+2s-2~) 
c~ = 1/(2i+~J+~s-2l/(2i~J~s-2+2kl/(2i+~J~s-2~) 

Cs : 1/(~i+2j+2S-2)/(~i+2J+2S-2+2k)/(~i+2j+2s-2+~) 

c 6 = 1/(~i+2J+~s-2J/(~i+2J+~s-2+2kl/(~i+2J~s-2+~l 

C7 = 1/(~i+~J+2S-2)/(~i+~J+2s-2+2kl/(~i~j+2s-2+~l 

Ce = 1/(~i+~j~s-2)/(~i~J+~s-2+2kl/(~i~j~s-2~) 

D1 = 1/(2i+2J+2S-2)/(2i+2J+2s-2+2kl/(2i+2J+2s-2+~) 

D2 : 1/(2i+2J~S-1)/(2i+2J~S-1+2k)/(2.1+2J~s-1+~) 

DJ : 1/(2i~J+2S-1)/(2i~J+2S-1+2k)/(2i~J+2S-1~) 

D~ = 1/(2i~J~S-1)/(2i~J~s-1+2kl/(2i~J~s-1~l 
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Ds: 1/(~i+2J+2S-1)/(~i+2J+2S-1+Zk)/(~i+2J+2S-1~) 
Ds : 1/(~i+2J~S-1)/(~i+2J+~S-1+Zk)/(~i+2J~s-1~) 
D7 : 1/(~i~J+2S-1)/(~i~J+2S-1+Zk)/(~i~J+2S-1+~) 
De = 1/(~i~J~s-1J/(~i+~J+~s-1+2kl/(~i~J~s-1+~J 

E1 = 1/(2i+V-1+2k)/(2i+V-1~) 
E2 : 1/(~i+V-1+2k)/(~i+V-1~) 

The constant B is determined for each end 
condition as: 

B=O for clamped mov~le edge, and 

1 1 
B =- :C aiaJ 

2 1, J: 1 (2i+2J-1+V) (2i~J-1+V) 

1 1 (I) ah-1 

(~1+2J-1+V) 
----- l I ( :c 
(~1~J-1+vJ b:1 2v -1+h 

for claaped i.JDooVable edge 

1 a1 
IW : "' :C -- 2k ( F1- F2+ F3 ) 

1=1 ~1 

for n=1 (linear elasUc foundat.icn), and 

for n=3 (ncnl1near elastic :foundat.1cn) 
Where 

F1 1/2/(2+2k)/(2+~) 

F2 : 2/(21+2)/(21+2+Zk)/(21+2~) 

F3 : 1/(~1+2)/(~1+2+Zk)/(~1+2~) 

G1 = 1/2/(2+Zk)/(2~) 
G2 = 2/(21+2)/(21+2+Zk)/(21+2+~) 

G3 : 2/(21+2)/(21+2+2k)/(21+2~) 

~ : 2/(2S+2)/(2S+2+2k)/(2S+2~) 

Gs : 1/(~i+2)/(~1+2+Zk)/(~i+2~) 

06 = 1/(~J+2)/(~J+2+Zk)/(~J+2+~) 
~ : 1/(~S+2)/(~S+2+Zk)/(~S+2~) 

Ge = ~/(21+2J+2J/(21+2J+2+Zkl/(21+2J+2~J 
G9 = ~/(21+2s+2J/(21+2s+2+2kl/(21+2s+2~l 

G1o= ~/(2s+21+2J/(2s+21+2+Zkl/(2s+2s+2+~l 

G11= 2/(21~J+2)/(21~J+2+2kl/(21~J+2~) 

G12= 2/(21+~S+2)/(21~s+2+2k)/(21~S+2~) 

G13: 2/(~1+2J+2)/(~i+2J+2+Zk)/(~i+2J+2~) 

a1~= 2/(~1+2s+2J/(~i+2s+2+Zk)/(~1+2s+2+~) 

G15= 2/(21~s+2l/(21~s+2+2k)/(2i~s+2~l 

G1s= 2/(~J+2S+2)/(~J+2S+2+2k)/(~J+2s+2+~) 

G17= 1/(~.1+~J+2)/(~1~J+2+2k)/(~1~J+2+~) 

G1e: 1/(~j~S+2)/(~j~S+2+2k)/(~j~S+2~) 

G19= 1/(~s~1+2)/(~s+~1+2+Zk)/(~s~1+2~) 

(13) 

(1~) 

(15) 



G2o: 6/(~~+2J+2s+~J/(2i+2J+2s+2+2K)/(2i+2J+2s+
2~l 

G21: 4/(2i+2J~+2)/(2i+2j+4S+2+2K)/(2i+2j+4S+
2~) 

G22: 4/(2i+4J+2s+2)/(2i+4J+2s+2+2Kl/(2i+4J+2s+
2~l 

G23: 4/(4i+2J+2s+2)/(4i+2J+2s+2+2Kl/(4i+2J+2s+2+4Kl 

G24: 2/(2i+4J+4s+2)/(2i+4J+4s+2+2K)/(2i+4J+4s+
2~l 

G25: 2/(4i+2J+4s+2)/(4i+2J+4s+2+2K)/(4i+2J+4s+
2~l 

o26: 2/(4i+4J+2s+2l/(4i+4J+2s+2+2Kl/(4i+4J+2s+
2~l 

G27: 1/(4i+4j+4S+2)/(4i+4j+4S+2+2K)/(4i+4j+4
S+2~) 

If the applied load is distributed over a 

central area of radius b, with uniform 

intensity PQ• then tlle 1 oad can be represented. 

as (1966) 1 

P(Pl : P m J 
0 0 

[
Po 

~ (SID) J
0 

(sP) <1S : ~o/2 
t><m 
p:m 
P>m 

ccnsequent.l y, 

rP : 
rtF­

(--
2 

\tilrlere m : b/a 

2+2K 
(16) 

The L nonlinear algebraic equations obtained. 

fJ'om equations (10) tlll•ough (16) are solved 

using the iterative Newton - Raphson technique. 

The nonlinear tel'rns in equation ( 12) depends on 

the factol' ).. Thi.s factor equals 2v2 for 

clamped edges (1981). The applied load is 

considered as uniform patch loading at central 

ratlo m o. 6. Numerical results are 

calculated assuming linear elastic S~?ports in 

S1..>n1.:: case~ ."\~·.~·t no1"'\J 1Y't!">. ... ""' 

vtut:l' cases. 
. -- ... -r ... , • ..,._. 

The l'elationship between the central deflection 

of the plate and the applied load is 

illustrated in Fla. 1, 2 -for <11-f-ferent values 

for the tape ratio a and -for different end 

c ondi t 1 ons, The nWilber of terms of tlle series 

function of the deflection is tested so that 

the error in the central deflection for 

successive nWilber of terms does not exceed. 

o. 5/.. This number is found to be 4 for movable 

ends and 3 for immovable ends. 

Flu 1 Y(O) 

LmNr Et•5ot•t FounO.t•on 

Nonhn••' Et•'''' fo\olnO.lton t---+-+++-+--+-t--J-t-1 0 Ol" 

fj J. 100 m .. 0 8 1 • Q.Ql 

7 
0 

.. ().) 

10 lO J.O 4.0 s.o 6.0 70 

p 

1-- -l~;-+- ;-.-~­-t-+-,-
e o 5 o 10 o 

0 005 

950 

4. 

Flu 2 
Lme-e~r Elul!c F OYndrlit•on 

•• --- _ ... Nonhn•.ar El.,5tiC. Found•tto 

~ • 100 m • 0 8 T • 0.01 
~a. OJ 

p 

""-= 
- Movablr-

·_-I _, . . 
. 1 •• .·y· 
)' -----~\ 

•·.·~ 
~ 

o.s 1.0 

.. 

1 s 

-~ 

----v 
v 

2 0 

p 

-~ 
.....-
~ 
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Comparison of the results 

Y(O) 

0·045 

0 040 

--
~35 

0030 

0·025 

0·020 

0015 

0010 

0 005 

45 

The central deflection 1s calculated using the 

new proposed deflection formula. This 

deflection is compared with the different 

existina formulas. 
FlU l Y(O) 

-- £,.,.t.ng foriTU~MlJ).(6} 

.............. PfpPOIIrd Formuta 
~- 0Ql7~ 

~ a•O •• Q.l y.Q.Ql .1--- ,..~ p::" ~ ::;;:;;o; f--

• --- • l.-- ..,.,..,.. .. ~ 00100 
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/: ..... ~ 0 0100 

7 ~ ~ .. . 
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0·001~ 

.I' / 

~ VJ71 r i-1-
~ 

I 
f-+-

··-·--·--
' 

bti I I i 
I 

Figure 3 
obtained 
toeet.her 
by the 
immovable 
1s a aood 

O·• , .. 
shows the 

by Way (19"341 

wit.h t.he central 
proposed formula 
clamped edges. It 
agreement for all 

central deflections 
and Sinha (196"31 

deflect.lon ODta~ned 
for the case of 

is clear that there 
tested cases. 

Figures 4 and 5 show t11e proposed central 

deflection as well as the central deflection 

obtained by Krayterman (1985) and RoarK 11975) 

for the case o-f movable and immovable edges. 
YIOI 

~F~Iu~4~----------------~--r-.--r--.-.--r--r-ll-, 
___ By Er.1~ng Fcrm~o~l.u. ( ll) 1--+---1--1-+-1--+-+-f-l 
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By l<roi(IOmon •• ( 10) 0035 

By Pfop~•d .. f--l--+--1---l-+-t-t--+-1 
0030 

.,~ Q.) ;.;.:: 

1--1---l--l-+-+-+-f~~--~--f~::,;-.tr.:::--_··+--t--i 0.025 
.-~-

I --+--l--1---f---+-:-Jti·""· ·r~:_---~·· -t-+-t--+-t-T--t--t---1--J 0·015 
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l---1---1--+-~~~(:-+-+-+-i-t-+-t--+-t-+--t--t--1--J 0 010 
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--- B:r E~o1iol1ng Fcwm~o~lu (13 ) 
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( 10) 

·-------- By Pro~d " 
r ~ O·l 

p ----.p=c=j. v-:-: .;..;-· 
lmmo.ut.lt- ,_::.:: 

002> v ~--

' : v.....r 0020 
~ ..... I 

// 
} 

// !>010 

J 
I 

lL 
0 

a 10 
p 

IIIII ~1 A•O ,:0 laOOl 

It can be noticed that there are some 
dlscrepancies between the results obtained in 
th~s paper ana the results obtained by 
Kl'ayterman and Roark. The discrepancy With 
Xrayterman is attributed to the violation of 
lHs deflection function to some of the 
boundary conditions. Beside, the first term of 
his series function does not belong to the 
domain of the operator of the governini 
equilibrium equation. 

cvmp<:.rlson J.S made with the cteflections given 
by Roark IJ975). Tlle.se discrepancies are due to 
the assumption of using the deflection 
function obtained by the small deflection 
theory. 

5. COHCLUSIOBS 

From the analysis and results presented herein, 
the following conclusions are arawn: 

1-The governing equations obtained 
paper are clecoupled, and hence they 
solved without difflculties. 

in this 
can be 

2-Results obtained for immovable 
conditions are in good ajreement with 
results obtalned by Slnha and Way. 

edge 
the 

3-The deflectlon formula proposed ln this paper 
is more exact and gives better accuracy than 
the formulas proposed by Krayterman and Roark. 

6. .REFERAHCES 

Banerjee,B. ana Datta,s., "A Hew Approach to An 
Analysis of Large Deflections of Thin 
Elastic Plates "• Int. J. Non-linear 
Hech.,1981, vol.16, Ho.1, pp.47-52 

Berger, H. H.," A Hew Approach to the analysls of 
Larae Deflectlon of Plates • J. Appl. 
Hech., ASHE, 1955, vo1.22, pp.465-472 

951 

Gordon B. J. Hah, • Axisymmetric Finite 
Deflection of Circular Plates " ASCE, 
Eniineering Hecn. Division, 1969, vol. 95, 
No. EH5, pp. 1125-1143 Xrayterman, B. L. ana 

Fu,c.c., "Nonlinear Analysis 
of Clamped Clrcular Plates• ASCE, J. Str. 
Enjjrg.,1985, V01.111 ,H0.11, pp.2402-2415 

Nassar,H. ana Labib,A.K., • Vibrations of 
Circular Plates With Linearly Varying 
Thickness Restini on A Non-linear Elastic 
Foundation", Proc. Indian Natn., Scl. 
Acad., 1988, 54, A, No 1, pp. 88-94 

NowinsKi,J.L. and Ohnabe,H., •on Certain 
Inconsistencies in Berier Equations for 
Large Deflections of Elastlc Plates " Int. 
J. Mech. Scl., 1958, 14, p. 165 

Redcly,J.N. ana Rasmussen,K.L. ,Advanced 
Engineering Analysis, JOhn Wiely & Sons, 
Inc. u.s. A. , 1982. 

Roark,R. J. and Young,W. C., Formulas for 
Stress~ Strain, 5th eel., McGraw Hill 
Book Company, Inc., New York, HY, 1975. 

Schmidt,R., "Larjje Deflection of A Clamped 
Clrcular Plate " ASCE, Engineering Kech. 
Division, 1968, vol. 94, No. EM6, pp. 1603-1606 

Sinha,S.H.," Larae Deflections of Plates on 
Elastic Foundations " ASCE, Enaineerini 
Kech. Division, 1963, vol. 89, No. EM1, pp. 1-
24 

Stlppes,M. ana Hausrath,A.H., "Large Deflections 
of Clrcular Plates " J. Appl. Keen., ASHE, 
1952, vol. 19, No.3, Transactlons, 
Vol. 74,Sept., pp. 267-292 

TlmosheoKo,S. and Wolnowsky,S.K. ,TI1eory ~ 
PlatP~ and Shel' 1 2nd edition I ·Gl'aw-Hil '• 
Hew )orK, 1959 . 

., .... ~.~-. !'..LJ.J.U..L.Uc. .__. vJ..J.~UJ.4.l"' ~jat.l! .. 'rllt.&l La.r&'e 
Deflections" Transactions, ASHE, 19~4, 
VOl. 56, pp.627-636 


	Nonlinear Analysis of Circular Plates on Nonlinear Foundation
	Recommended Citation

	tmp.1453410117.pdf.zPjIe

