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Nonlinear Analysis of Circular Plates on Nonlinear Foundation

Adel A. Mahmoud Mohamed A. Nassar

Egypt Egypt

Hazem M. Gheith

Egypt

SYHOPSIS: Galerkin’s Procedure and the modified energy expression of BanerJee are used to obtain

the central deflection of circular plates with linearly varying thicKnesses, resting on a 1linear
as well as a nonlinear elastic foundation. A new series formula for the deflection has been
considered. The accuracy of the method has been tested for clamped plates with movable and
immovable ends under uniform static patch loading. Graphical results are drawn for the central
deflection for different end conditions, daifferent plate thicknesses and different foundation

properties. Comparison of the results are made with other Known results and shows a good agreement
in most tested cases.

i. INTRODUCTIOH
In this paper the new approach of Banerjee has

Plates under flexure have found a wide spread been considered to solve the equations
application as structural elements in representing the plates of 1linear varying
mechanical, civil, marine, aeronautical, and thicKness. The load distridbution 1s taken
other fields of engineering. when the axisymmetric, uniform, static patch loading,
deflection is quite large, that it is of the and the varlational principle is employed to
same order of magnitude as the thickn +s of the arive th equation. of equilibr.um ne
plat., it beco. .5 necessary to apply .onllinear arproxima .e GalerkKir's procodure 15 applitd ana
Blzale llieul'ics, wnich take 1nto account the the non.inear algebraic equations odbtained has
interaction betwee:i. the Dbending and membrane been solved using the modified Newton -~
stresses. Raphson’s iterative technique. Graphical

results for the central deflections are
Timoshenko and WoinowskKy (1959) have solvead represented for different boundary conditions.
different Plates with various boundary
conditions using the small deflection theory.
They alsg includeaq Problems of plates 2. BASIC EQUATIONS
resting on elastic supports. wang (1934),
Stippes (1952), schmidt (1968), Gordon, Man The total potential energy of thin 1isotropic
(1969) and others have discussed various pPlates circular plates in large deflection resting on
of uniform and nonlinear thicKness of analysis. a nonlinear elastic foundation 1s given by
Berger (3955%5) suggested an approximate method a
for solving the problem of plates in large S [(d?w)a L2y~ Eﬁ!’ 2o,
deflection DY neglecting the strain energy due o) 2 are r a a2 e ar
to the second invariant of the middle surface 2
strains. Sinha (1963) used the technique of 12 (B2 ey 9 B et

1€ + (1-vF) y 1 o+ wi
Berger to solve the problem of the large static ne re n+4
deflection of uniformly loaded circular as well
as rectangular plates, resting on .l1inear qriv | rar )
elastic foundation and with immovable edges.
Nowinski and Ohnabe (1958) concluded that wWhere
Berger’s line of thought leads to meaningless a = radius of the plate
results for movable edge conditions. This 1is D(r) = Dg(i- arsa)3 = flexural rigidity of
due to the fact that the neglect of the plate ,
second 1invariant for movable edges fails to where Dg = Eh°3 / 12 (1-v2)
imply freedom of rotation in the meridian nh = hgo(1- ar/a) = thickness of the plate
planes. a = taper ratio
w : transverse displacement

B. Banerjee (1981) has included a new approach u : enplane displacement
t0o the analysis of large deflections of thin Y = poisson’s ratio
elastic plates. This approach makKe it possible -
to decouple the nonlinear governing equations By 2 ————— Np
of the problem En
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HNj. = membrane forces in the radial
direction.

g = non-linearity coefficient
n = index of non-linearity ( n=it for
linear elastic foundation,n:=3 for
nonlinear elastic foundation)
q(r) = arbitrary lateral load
Banerjee (1981%) suggestea a modified energy
axpression in place of the expression given 1in

equation (1). This comes true when the term

(1-v2) (u8/r2) 1s replaced by (i/4) (aw/dr)%,
where A 1s a factor depending on poisson’s
ratio. This replacement makes the decoupling

of the governing equilibriums equation becomes
possible.

Thus the total potential energy of the plate
becomes ,
, D 0 aaw)a 2y aw oew 1 (awa .
LI —_— [ —) + —_——g t —
o 2 ar2 r ar r2 ‘ar
12 A av 4 g
(B2 ¢ — (—1 ) )+ — with -
ne & ar n+i
q(riv j rar (2)
Applylng the dimensionless qQantities,
w 1 n ~3
D the U o&o—, Tz —, Pz =,
- a ' a a D
n: (5 G)ank (3)
and minimizing equation (2), the governing

equilibrium equation of the plate becomes,

ady 2+v @8y

(1- ap)3vhy - 3a (1-ap)® [ 2 + -

ap3 p ae?

1 ay acy v ay A
=1+ & (1-0P) (5 + — ) - 5 (1P
P2 ap ap p ar 1o

ay ay 6 ay 12
(—)2 (WBy +2—7) +— & (—)3 - — BpV7!
ap a2 ' B e to

v day &y
—— ) + ¥R - P(P) = O (CY)]

p ap  ap?

determined from,
au 1 U pv 1
+— (—)2 4V — 2 B—— (5
ap 2 ap p (1- ap)

3. SOLUTION OF Thd PROBLEM

The deflection of the plate 1is assumed as a
series function of the central distance, as

y (P) =
1

[N« 154

aj #i

1 1

where the coordinate function #; must satisfy
all of the essential boundary conditions.
Tnese boundary conditions may be stated as:
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Clamped with immovable edge

ay
y{t) = — (4) = U(1) = 0 (6)
dp
2- Clamped with movable edge
ay
y{1) = — (1) = N(4) = O a B =0 (T)
ap
This coordinate functions #3 may be
represented in the form
b )
By = —— (1 - 2p81 + pHl ) (8)
&1
Substituting equation (8) into equation (4) we

obtain the non-vanishing error function as

E(P) = a; [ 16 - 9o (114V) + 24a2p2(T+v) - 503p3
3a 1
(17+3v) + (14v)( —— - 1208 + 93P ) ] + E
P 1z2
a; [ -81(1-1)2 p2i~4 4 161(21-1)3pH14 ) - 3«
1
L a, [ (2a-1) (—r1B+2141-v) p21-3 ¢ (41-4)
1=P
1
(1612-41-1+v) pH1=3 ] + 3a21§231 [ 41 (-218+
1-y) p2Li-2 + B1(B12-14v) PHI2 ) - a® Eay [

(21+1) (~412-21+3-3v) pEL71 + (4141) (1612

1
— , F 242 [ (-61+2)
(o]

1,3, 8=

+41-3+3v) pHi-i) -
( p21+23+as-4 - 921+2J+4s—4 - pax+43+as-4 +
pRLHAIHAS-4 ) 4 (121-2) (pHL+2I+2s4 -
941+2J+43—4 - p41+4J+Es—4 + 941+4J+4s—4 ) ) o+

ajajas [ (-61+1) (p2iv2I+2s-3 -

'J’s:

pEl+4J+ZS-3 - 921+2J045-3 + p21+4J+4$-3 )+
(121-1) ( p41#2J+23-3 - p41+4J+25-3 -

12
ph1+2)+4s-3 pHl+ijeds-3 y ) - — B pv-i
tof

1
Eoagl (-21+1-v) PRL2 & (41-1+v)pHi-2 ) +
i=

1 a
0 E .ﬁ- (1-2p214p1) )0 - P(P) (9)

1=1



The GalerKin procedure requires that the error
function E(pP) should be orthogonal +to the
coordinate functions #k(P) over the domain of
the plate, 1i.e

I-= éE(P) PRiP) =0, (K= 1,83...1) (10)

This integral can be divided into three parts,
i.e

1=+ 1WsIP:o (11)
where

0 - 2k a; [A) - 3aap + 6a° a3 - o Ay + 3 Ag

1
- 6aPAg + 3a3 A7 ) +a&Ta [B+B -3 (By

6 1
- - 2K —= L
By) + 6 (BgiBg) - @ (Br+Bp) ) to2 1,9, 554

ajajag[(~61+42) (Cy - Cp - C3 + Cy)+(121-2) (C5 - Cg

6 1
—5 « L ajajag [(-61+1)(Dy -Dp

- + C + 2K
<7 8)] w2 N s

- D3 + Dy) + (121-1) (D5 - Dg - Dy + Dg) )

12 B 2K llta [ -Ey + Ep )
R gzt TR TR
dedi T
Ay = 8/(2+2K)/ (2+4K) s Ap = (11+V)/(3+42K)/ (3+4K)
Az = (T+V)/ (B+E2K) / (4+8K) , Ay = (1T7+3V)/(5+2K)/ (5+iK)

(14V)/(4+2K) /(1 +K) , Ag
= (14V)/(3+2K) / (3+4K)

= -21(21~2)/(21-2+2K) / (21-2+4K)

= 41 (41-2)/ (#1-2+2K) / (41-2+4K)

= (—412421+1-V) /(21-1+2K) / (211 +HiK)

= (1612-41-14V) / (41-1+2K) / (41-1 +4K)
(-212+1-V)/ (21+2K) /(21 +4K)

= (812-14V) / (#1+2K)/ (41+4K)

z (~418-21+43-3V)/ (21+1+2K) / (21+1+4K)

2 (1612441-3+3v) / (41+1+2K) / (41 +1+4K)

z 1/(21+23+25-2) / (21+423+25-2+2K) / (21 +2J+25-2+4K)
: 1/(21+42)+43-2) / (2142 +ids-2+2K) / (21 +2)+43-2+K)
: 1/(21+43+25-2)/ (21+4J+25-2+2K) / (21 +ihj+25-2+4K)
= 1/(21+4)+45-2) / (21+4 ) +ds-2+2K) / (21 +4 ) +4s5-2+4K)
Cs = 1/(4142+25-2)/ (41+23+25-2+2K) / (#1+2)+25-2+4K)
Ce = 1/ (41+23+43-2) / (41+2)+45-2+2K) / (41+2)+is-2+4K)
Cq = 1/(41+43+25-2)/ (41 +4)+28-2+2K) / (41 +i4)+23-2+4K)
Cp ¢ 4/ (41+8]J+43-2) / (H1+4]+4S-2+2K) / (4144 ) +iS-2+4K)
Dy = 1/(21+2)+23-2)/ (21+2)+29-2+2K)/(21+2]+25-2+4K)
= 1/(21+23+48-1)/ (21+2)+4S-1+2K) / (21+2) +i3~1 +4K)
z 1/(21+43+28-1)/ (21 +4])+23-1+8K) /(21 +4)+23-1 +4K)
Dy = 4/ (24+4J+438~1)/ (21 +4)+43-142K) / (21 +4) +i3-1 +4K)

(1+V) / (2+2K) / (2+4K)

"

LLRLPIFIPIFIIR

§ N
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Dg = 1/(41+423+28-1)/ (41+2)+25-1+2K) / (41 +2J+23-1 +iK)
Dg = 1/ (81 +23+48-1)/ (41 +2)+45-1+2K) / (41 +2 ) +4S~1 +4K)
D7 = 1/ (41+43+23-1)/ (41 +43+23-1+2K) / (41 +4 J+2S-1 +4K)
Dg = 1/ (41+43+43-1) / (A1 +4) +4S~1 +2K) / (41 +4] +45-1 +4K)
Ey = 1/(214V-1+2K) / (21+V~1 +dK)
Ep = 1/ (81 4V-4+2K) / (41+V-1 +4K)

The constant B s
condition as:

determined for each end

Bz=0 for clamped movable edge, and

1 1 1 1
Bz -—— ¢ alaJ ( - -
1, J=1 (21+23-1+V) (21+4J-14V)
1 1 © oh-1
)/ { B ————0)
(41+2)-1+V) (41 +4)-1+v) n=4 2v -{«n
for clamped inmovable edge (13)
™W:nE —1 4 (Fy- Fat Fy ) (14)
2 —_— - +
121 44 i 2 3

far n=1 (linear elastic foundatian), and

™ - 1 ajajag

1, 0,821 41.43. 4s
Gp +G7 +dg +Gg +Gyp -Gyy -Gyp -Gy3 —Gyy -

2K [ GI.GE_G3 -(54 065 +

2 mal s o My N0 tapy Yugp ¢

Ga3z -Gzy -Gps -Gpg +Up7 ) (1%)

far n=3 (nonlinear elastic foundation)
where

Fy = 1/2/(2+2K)/ (2+4K)

Fa = 2/(21+2)/(21+2+2K)/ (21+2+4K)

F3 = 1/(81+42)/(81+42+2K) / (41 +2+4K)

Gy = 1/2/(2+2K)/ (2+4K)

Gp = 2/(21+42)/(21+2+8K) /(21 +2+4K)

G3 = 2/(21+2)/ (21+2+2K)/ (21+2+4K)
= 2/(28+2)/(23+2+2K)/ (23+2+4K)
1/(41+2) / (41+2+2K) / (41 +2+4K)
= 1/ (43+2)/ (4)+2+2K) / (4J+2+4K)
Gy = 1/(43+2)/(45+2+2K) / (43+2+4K)
Gg = 4/(21+2)+2)/(21+23+2+2K) / (21+2)+2+iK)
Gg = 4/(21+25+2)/ (21+25+2+2K)/ (21+28+2+iK)
Gyo= 4/(25+421+42)/ (25+21+42+2K) / (25+25+2+4K)
Gyy= 2/(21+4)+2)/ (21 +43+2+2K) / (21 +4 ) +2+UK)
Gyp= 2/(21+45+2)/ (21+d45+2+2K) / (21+45+2+4K)
Gy3= 2/ (41+23+2)/ (41+2)+2+2K) / (41 +2]+2+iK)
Gyg= 2/ (41+425+42)/ (41+25+2+2R) / (41 +2S+2+4K)
Gyp= 2/(21+43+2)/(21+4s+2+2K) /(21 +4s+2+iK)
Gyg= 2/ (4J+23+2)/ (4)+23+2+2K) / (4J+28+2+4K)
Ay7:z 3/ (41+43+2) / (41+4)+2+42K) / (41 + ) +2+4K)
Qygz 1/ (BI+4s+2) / (4)+is+2+2K) / (4)+4S+2+4K)
Gyg:z 1/ (45+41+42)/ (4S+41+2+2K)/ (45 +i1+2+4K)

£ &E



Gpp= B8/(21+2)+2s+z)/(21+2) +25+42+2K) /(2142 )+2s+2+4K)
Gpy= 4/ (21+2)+s+2) / (21+2J +4S+2+2K) / (21+2 J+43+2+4K)
Gpp: 4/ (21+4)+23+2)/(21+4)+25+2+3K)/ (21 +4 ] +25+2+4K)
Gp3= 4/ (81+42)+425+2)/ (41+42)+25+2+2K) / (41+2J+25+2+4K)
Gay: 2/ (21 +4J+S+2) / (21 +4 J +4S+2+2K) / (21 +4 J +iS+2+4K)
Gpg= 2/ (41+2)+4s+2)/ (41+2) +HS+2+2K) / (4142 J+43 +2+4K)
Gpe= 2/ (41+4)+25+2) / (H1+4]+25+2+2K)/ (41 +4]) +23+2+4K)
Ga7: 1/ (B1+4J+4S+2) / (41 +4J+4S+2+2K) / (41 +4 ) +iS+2+4K)

If the applied load is distributed over a
central area of 1radius b, with uniform
intensity Pg, then the load can be represented
as (1988) {
I J das go/a gqn
P =P m J (sm) (sp) = [ O, =m
# [+ [s) l( (] (o] P m
Cansequently,
1 oP alt P +4K
P —— (— - + ) Po (16)
4K 2 2+2K 2+4K

where m = b/a

The L nonlinear algebraic equations obtained
frrom equations (10) through (16) are solved
using the iterative Newton - Raphson technique.
The honlinear terms in equation (12) depends on

ithe factor A. Tnis factor equals 2av@ for
clamped eqges (31981). The applied 1oad 1is
considered as uniform patch lcading at central
ratio m = 0.8, Numerical results are
calculated assuming linear elastic supports 1in
some cases ardl non)iner~w [ TR Ll e e PO

otk cases.

The relationship between the central deflection
of the plate and the applied load is
f{llustrated in Fig. 1,2 for Aifferent values
for the tape ratio a and for dai1fferent end
conditions, The number of terms of the series
function of the deflection 1s tested so that
the error 1n the central deflection for
successive number of terms does not exceed
0. 57. This number is found to be 4 for movable
ends and 3 for immovable ends.
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4. Comparison of the results

The central deflection is calculated using the

new proposed deflection formula. T™is
deflection 1s compared with the different
existing formulas.
F16. 3 ¥(0)
P N
o Easting Formuas(3).(8) T 11 - oo
........ Ps ed Formuta = 141
«s0 o w00 ___t_.}},j‘/}—’z toso
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I AR L P o = N Sipo
7 2 L TSN 00075
1 77 7T T 1 S
| y.ap.d R T 0-0050
A
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: ; ! . S A t
[/// .M 1 i l i h v
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i P
Figure 3 sSNows the central deflections
obtained by way (1934) and Sinna (1963)
together with the central deflection obtalned
by the proposeda formula for the case of

immovable clamped edges. It 1s clear that there
1s a good agreement for all tested cases

Figures 4 anda S show the proposed central
geflection as well as the central deflection
obtained by Krayterman {(1985) and Roark (1975)
for the case of movable and immovable edges.
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It c¢an Dbe noticed that there are some
dlscrepancies Dbetitween the results obtained in
this paper and the resultis obtained by

Krayterman and Roark. The
Krayterman 18 attributed to
his deflection function
boundary conditions., Beside,
his series function does
domain of the operator
equilibrium equation.

aiscrepancy with
the violation of
to some of the
the first term of
not Delong to the
of the governing

Hiokrar

comparison is madé with the
by RoarK (197%).

e - P 2

deflections given
These discrepancies are daue to

the assumption of using the deflection
function obtained Dy the small deflection
theory.

5. COHCLUSIORS

From the analysis anda results presented herein,
the following conclusions are drawn:

obtainead
they

in this
can Dbe

1-The governing equations
paper are decoupled, and hence
solved without difficulties.

2-Results obtained for
conditions are in good agreement
results obtained by Sinha and way.

immovable
with

edge
the

3-The deflection formula proposed in this paper
13 more exact and glves better accuracy than
the formulas proposed by Krayterman and Roark.
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