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SYNOPSIS: A computational model of soil-pile interaction behavior in pile and pile group was developed in this paper. Particular 
attension was paid to making the model simple and capable of taking into account nonlinear soil behavior, such as gapping and slippage 
between soil and pile, and cyclic behavior of soil. The model was developed within the frame work of the Winkler model defined in plane 
strain conditions. In order to analyze transient dynamic response in a rigorous manner, the model was formulated in the time domain using a 
step-by-step method. A transfer matrix approach was also adopted in the response computation. The proposed nonlinear model was verified 
with rigorous solutions and the nonlinear behavior with gapping and slippage were discussed based on the computational results. 

INTRODUCTION 

The behavior of pile foundations subjected to dynamic loading, such 
as earthquakes, machine vibration, blasting and ocean waves, is very 
complicated because of the complexity of soil behavior and of the 
interaction phenomenon between soil and pile. The complexity is 
increased further by grouping effects in pile groups. 

Several analytical methods have been used for the dynamic re
sponse analysis of pile foundation and are discussed by Ot.ani(1990). 
Those are listed as follows: 

• structural approach, 

• elastic continuum model, 

• Winkler model, and 

• finite element model 

The main objectives of the paper is to present a computational 
model for pile foundations. fn the model development, particular 
attension is paid in making it simple and capable of taking into ac
count nonlinear soil behavior, and the cyclic behavior of soil within 
a frame work of the Winkler model defined in the plane strain con
ditions. The model is formulated in the time domain using step-by
step method, so that the nonlinear behavior of soils and disconti
nuity conditions such as gapping and slippage between soil and pile 
can be considered in a logical manner. A transfer matrix approach 
is adopted in the response computations. The proposed nonlinear 
model is verified with rigorous solutions and is discussed on the be
havior of pile foundations. 

TIME DOMAIN SOIL-PILE INTERACTION MODEL 

1. Summary of the proposed model 

The nonlinear soil model developed herein can account for the non-
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linear soil behavior and gapping and slippage between the soil and 
pile. It is assumed that piles are vertical circular piles in nonlinear 
horizontally layered ground and the pile tip is either free(floating 
pile) or fixed at the bedrock(end bearing pile). Additional condi
tions are summarized as follows : 

• The soil is divided into a number of layers a.<> shown in Fig.l. In 
each layer, the soil model is divided into t.wo part.s as shown in 

pile pile 
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----~~---4~----5 
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Fig. I Discretization of the soil-pile system 
pile 

~ 
plan view 
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~ 
inner field model 
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Fig.2 Proposed soil model in plane strain condition 



Fig.2. One is an inner field model which accounts for the non

linear characteristic, and the other is a far field model formu

lated in the time domain by taking the inverse Fourier trance

form offrequencey domain solutions(Nogami et al.; 1986,1988). 

Based on the Winkler hypothesis, the subgrade reaction in that 

layer is governed by the displacements of the layer only at the 

depth where the reaction is considered. 

• Formulations of the model are in the time domain so that re

sponse can be computed by the step-by-step method in the 

time domain. 

• Soil displacements are in either vertical or horizontal direction 

depending on the direction of pile shaft motion. 

• The range of nondimensional frequency, ao, is basically 0.02 :S 
ao :S 0.5, where ao = r0 w / v, with ro = a pile radius, w = a 

circular frequency and v, = a shear wave velocity. 

• Applied force varies with time linearly within a time step 6 t 

to form a trapezoidal force time history. 

2.1 Far field model 

An infinitly long rigid massless vertical circular cylinder is surrounded 

by an infinite elastic medium. For vertical and horizontal displace

ments of the cylinder, the displacements of the medium do not vary 

in the vertical direction. Therefore, plane strain conditions exist for 

those displacements. Solutions for vibration of this cylinder have al

ready been developed by Novak et al.(1978). However, these are ob

tained in the frequency domain and cannot be applied to the analysis 

in the time domain directly. Approximate time domain explicit solu

tions for this were developed by Nogami and his colleagues(1986,1988 

and 1991) and are used herein to describe the far field behavior. 

Vertical response 

The vertical displacement amplitude of the medium under plane 

strain conditions, as shown in Fig.3, is expressed as 

_ Ko(~r) 
27rG,w(w,r)= K( )Pv(w) 

~ 1 a(i 

where Pv(ao) = exciting force applied to the rigid disk, 

w(ao, r) = displacement amplitude at distance r = r/ro 

from center of the disk, 

K0 (), K1() =modified Bessel functions of the first kind of 

order zero and one, respectively, and 

~ = (rowfv,)i with i = J=T. 

(1) 

Nogami et a1.(1986) proposed the approximate solution of Eq.(1) 

for the case of the frequency range, 0.02 :S a0 :S 1.0, as 

( -) ~-.!-- 1 -iao(r-1) ( ) 
27rG, w w, r = -:- L..., k . e Pv w 

r n=l n + !Cn<lo 
(2) 

where kn and Cn are frequency independent parameters. It is realized 

that the medium response expressed in Eq.(2) can be reproduced by 

a series of three Voigt model as shown in Fig.4. Then, using an 

inverse Fourier transform, the impulse response function in the time 

domain is obtained as 
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Fig.3 Massless rigid disk in a 
plane strain medium 
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Fig.4 Rheological presentation of 
far field model for vertical 
excitation case 

= { nothn( t, r) (t :S t,) 

( t ~ t,) 

(3) 

Loading time history is discretized at equal time interval 6t and is 

assumed to be piecewize linear. Such a history can be considered as 

trapezoidal loadings and a.re successively applied. Thus, the response 

to the time history can be computed by superimposing the response 

computed for each trapezoidal loading. The response computed in 

this way is written as 

i' 3 

w( ti, r) = 2::: 2::: {Hn( ti - ti'-1, r)p(tj•-d +In( ti - ti'-1, r)p(ti')} 
j'=ln=l 

3 3 

= 2::: wn(ti-J,r)e-"•""' + 2::: Hn(ti- ti'-1> r)p(ti•-d 
n=l n=l 

3 

+ 2::: In(ti-1- ti•-J,r)p(ti•) (4) 
n=l 

where the disturbance applied at ti' arrives at the distance r at ti, 

and Hn and In are results of convolution integrals( Otani, 1990), "-n 

= kn/Cn and wn(ti-J, r) =n-th displacement computed at. ti-l· 

N group piles are assumed to be equally spaced and 6 t. is taken so 

that the S-wave generated from one pile does not arrive at others 

during 6t. When the distance r,1 is defined as the distance between 

the s-th and 1-th piles, the response of the s-th pile at time ti is 

formulated as follows, 

3 3 

w'(ti) = 2::: In(6t, O)p'(ti•) + 2::: Hn(6t, O)p'(ti•-d 
n=l 

N 3 

+ 2::: l::w~(ti-J,r,J)e-"•""' (5) 
i=!,l;olsn=l 

Eq.(5) can be rewritten as 

(6) 



where p~ = p'(ti) and wf = w'(ti), and 

3 

kv = cz:..: In(6t, O)p~(i-1))-l 
n=l 

. 3 N 3 

d~i = -kv(l:.: In(6t, O)p~(i-l) + 2:..: 2:..: wf_1e-"• 61
) 

n=l 1=1,1,., n=l 

Horizontal response 

An explicit form of the response of a massless cylinder subjected 
to horizontal vibration and in plane strain conditions is obtained 
by Novak et al.(1978). When harmonic excitation is applied to the 
cylinder in x direction, the x and y direction displacements of the 
medium at the location(r, B) are approximately expressed as 

1 
27rG,ux(w, r, B) ~ [ { !P f2(b0, r) - f2( ao,f) }( cos2B - sin2B) 

1 
+ /3}1 (bo, r)cos2B + f1 (ao, r)sin2B]p(w) 

(7) 

where 

(8) 

f ( _) Ko(r<\j) ·'· •• 
::)!,.. r - e'Y'• 0 

I ""' - "K ( *) , ao I <!v 
f ( _) K1(r<\j) ·'· •• 

"~ r - e"'' o 2 ..,, - •2K ( *) rao 1 ao 

and e =angle measured from the x- axis, 1/J, =- (/3-1)/4/3 and 1/Jp = 
(/3-1)/4. 

As described for the case of vertical response, Voigt type of mod
eling is substituted with following approximations for the functions 
in Eq.(7). 

f ( ) ~ 1 e-iao(r-x,,) 1ao,r ~L.... 
n=l kin + iclnao 

where Xsl = 1 - 1/J, and Xs2 = ~ - 1/J,. 
Similarly, others are 

( ) { -1 . 1 ~ 1 "b (- ) f2 bo, r ~ -=2 + 1-_ - L.. . }e-• 0 r-x., 
(bar) bar n=l k2n + IC2nbo 

(9) 

(10) 
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where Xpl = 1 - 1/Jp and Xp2 = ~ - 1/Jp, and k1n, k2n, c1n and c2n 
are the parameters and are determined by the regression analysis. 
These approximate expressions can produce sufficient accuracy for 
the frequency range of 0.02 ~ ao ~ 1.0. Finally, the expression of 
impulse response function in time domain due to a trapezoidal load 
are 

21rG, ux(ti, r) ~ { ; 2 F2b(ti, r) - F 2.(ti, r) }( cos2B- sin2B) 

+ ; 2Fih(ti, r)cos2B + F1.(ti, r)sin2B 

where 

3 3 

(11) 

F1(ti,r) = 2:..: Fln(ti-l,r)e-"• 6
' + 2:..: Hn(ti- ti'-l,r)p(ti'-1) 

n=l n=l 

3 

+ 2:..: In(ti- ti'-l,r)p(ti•), 
n=l 

i' 

F 3(ti, r) = F 3( ti-l, r) + A6 t2 2:..: p(ti') 
j'=l 

A6t2 5A6t.2 
--6-p(ti'-1)- -6-p(ti') ' and 

A is a coefficients in terms of the wave velocity, shear modulus and 
the distance between two piles, and the precise forms are shown in 
the reference(Otani, 1990). 

Therefore, the response a.t pile s due to the excitations applied 
at other piles in group of N piles is formulated as 

N 

ui = 2:..: u(ti, r,I). (12) 
1=1,1"'• 

For the response of the soil at the loaded disk(i.e. r = r.,), the stiff
ness of a single disk is necessary to be determined. This is because 
the approximation expressed above is not accurate for small value 
of the distance r. The force-displacement relationship of a disc sub
jected to horizontal excitation is expressed for a Poisson's rato (v) 
= 0.5 as 

where 

S (~~) = 2{27rG ~K1 (a~)} + 1rG ~~2 
" -u ' Ko(~) •-u 

(13) 



and p = mass density of soils. 

It is noted that Sv(a~) is the stiffness for the vertical vibration. 

Eq.(13) is modified for various values of Poisson's ratio as 

(14) 

where the functions 6(v) and 1;2 (v) are obtained by a regression 

analysis for various Poisson's ratios. It is realized that the soil re

action in the horizontal direction is reproduced by the system as 

shown in Fig.S in which a spring, dash pot and a mass are dependent 

on Poisson's ratio but independent of frequency. Therefore, Eq.(14) 

results in the force in time domain as 

( 15) 

using a time marching scheme developed by Nogami et al.( 1986), 

3 

dhi = -kh l::(In(~t)Ph(i-1) +ui-1e-"• 6 '),and 
n=l 

m = 6(v)p1rr~ 

k,., 

Cn2 ~ CnJ 
dash pot 

Fig.5 Rheological presentation of far field model 

for horizontal excitation case 

Since the response of the s-th pile due to the load applied at 

the piles other than the s-th pile (i.e. Eq.(12)) is known at t;, the 

force-displacement relationship at the s-th pile in N group piles can 

be expressed after combining Eqs. (12) and (15) as 

(16) 

where 

3 

d~i = -kh{L(In(~t)p~(i-1) + ui-le-"• 6
') 

n=l 

N 

+ L u(t;, r,t)} (17) 
1=1,1,<. 

Although the formulation implemented for the horizontal response 

is discussed only for the x-direction, the same formulations are con

ducted using values in they-direction. Eqs.(7) and (18) are the soil 

reactions for the far field model and can be coupled with the inner 

field model. It is noted that the solutions described here are for the 

far field model so that the radius r0 in those equations corresponds 

to the results of the inner field model r,. 

3. Inner field model 

When the pile foundations a.re excited by vibrational forces, some ar

eas relatively close to the pile shaft show highly nonlinear behavior. 

884 

It is considered, therefore, that this plastic behavior mobilized the 

discontinuity conditions such as gapping and slippage. Here in the 

model, this plastic area is defined as an inner field model. The in

ner field model consists of one nonlinear spring and consistent mass 

as shown in Figs.6 ami 7 for each vertical and horizontal excitation 

case. The model can also reproduce the discontinuity such as gap

ping and slippage. 

~umod•l~~ C,q__jy ;,_, 
l::d slip model 

Fig.6 Inner field model in vertical excitation case 

ga.p model 

expansion 
joint 

u, = u•( 1-a,) 

Ua. = u' +uP 

k, Q1 
consistent mass 

fa.r field 

Fig.7 Inner field model in horizontal excitation case 

Continuum condition 

Parallel Jenkin's model, which is shown in Fig.8, is used to simulate 

the nonlinear behavior in the soil medium. This model does not in

clude the effects of slippage and gap between pile and soil, so that 

the condition of soil nonlinearity only is called continuum condition 

herein. The formulation of continuum condition is ex.,ct.ly the same 

Q,.r--- Q, + Q, + Q3 -- - - - -- -

k, Q, +Q, -----

k,, = k, + k3 

kil = k, + k, + k3 

Fig.8 Behavior of inner field model based on multi-linear model 



between the vertical and horizontal excitations, and therefore only 
the horizontal excitation case is presented. The equation of motion 
for this condition is simultaneously formulated as 

( 18) 

where m 11 , m 1z, m21 and m 22 = component of consistent mass. k,. 
= stiffness of inner field model. 
Finally, coupling this inner field model behavior with the far field 
model behavior, the time domain soil behavior for the lateral re
sponse is derived as 

k, -k, 

+ (19) 

Similarly, that for the vertical response is obtained as Eq.( 19) with 
replacing kh and u; respectively with kv and w;. 

Discontinuity conditions 

The discontinuity condition for vertical response is caused by a Coulomb 
damper which starts to slip when the shear forces in the slider reaches 
the maximum friction force allowed at. t.he soil-pile interface as shown 
in Fig.6. When the gap is not formed during the lateral pile dis
placement, the normal stress acting on the pile shaft increases at the 
front side of the pile but decreases at the back side. This leaves the 
summation of the normal stress acting on the pile shaft unchanged, 
and thus the maximum friction forces are also considered to be un
changed. On the other ha.nd, when gap is formed, no vertical friction 
forces is induced at the back side, and thus the maximum vertical 
friction force is considered to be linearly proportional to the normal 
stress acting on the front. side of the pile. During the slippa.ge be
tween the soil and pile, the soil model behaves independently of the 
pile response. The stick conditon resumes when the soil response 
velocity relative to the pile response velocity becomes zero. 

The discontinuity condition for horizontal response is caused by a 
rigid frame with an expansion joint as shown in Fig.7. The expa.nsion 
joint controls the opening space of the frame and thus creates the 
gap. It is assumed that the two vertical walls of the frame move in 
the identical direction in the following manner: 

front side 

(20) 

back side 

where u• and uP = elastic and plastic components of the lateral 
displacement, respectively; ag = gap factor in the range of 0 ::; O'g 

::; 1. Thus, the expansion joint produces the gap when the plastic 
deformation develops and the size of the gap is 

(21) 
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It is noted that the gap cannot be formed when O'g = 1. 

Cyclic conditions 

Here in the model, Idriss et al.(1978) type of degradation factor is 
substituted for the resistance and the stiffness in each half cycle, 
which is defined as 

(22) 

where N is the number of cycles and t is a parameter related to the 
cyclic displacement level. 

FORMULATION OF DYNAMIC RESPONSE OF PILE HEADS 

1. Governing equation for a soil-pile system 

A pile in a subsoil is divided into a number of horizontal layers 
containing pile segments. The governing equations of motion of those 
segments are described for both vertical and horizontal responses. 

Vertical response 

The response of a pile segment in each layer at time t; due t.o vertical 
excitation is governed by the following differential equation, 

d2W. .. 
-EPA--' + mPW. = -p · dz2 I VI (23) 

where W; and W; are vertical displacement. and acceleration of the 
pile segment at timet;. EP, A and mP are Young's modulus, cross
sectional area and mass density of piles, respectively. Pvi is a soil-pile 
interaction force. 

Horizontal response 

The motion of the piles is assumed as a transverse vibration on the 
Winkler type of ground. Then, the horizontal response of each pile 
segment at time t; is calculated from the equation, 

d4U· .. 
EPI--' + mPU. = -ph· dz4 I I 

(24) 

where U; and U; are the horizontal displacement and acceleration 
of piles at time t;, EPI and mP are the bending stiffness and mass 
density of piles, respectively. Phi is the horizontal interaction force 
in the horizontal direction. 

2. Force-displacement relationship at pile heads 

A transfer matrix approach is used to obtained the force-displacement 
relationships at the pile heads. The basic idea of the transfer ma
trix approach is t.o correlate the force and displacement at one end 
of the beam with those at the other end by knowing the relation
ships for the small segments and successive matrix productions using 
those relationships. Detailed formulations have been described by 
Otani(1990) and Nogami et al.(I986, 1988). 

VERIFICATIONS OF THE PROPOSED MODEL 

A plot of complex stiffness vs. nondimensional frequency i1Q up to the 
value of 0.5 is presented. Fig.9 shows the vertical stiffness of single 
piles under the linear condition. Three different cases are considered 
as shown in the figure. Those computed by a more rigorous approach 
developed by Nogami(1980) are also shown in the figure. The size 



of inner field model is fixed at r1/r0 = 2.0. The figure shows that 
the model can simulate the linear elastic behavior well. For vertical 

vibration of two-pile group, Fig.lO shows the results computed by 
the present model together with that computed by a more rigorous 
solution. It can be seen that satisfactory agreement between the two 

are obtained for a linear elastic case. 

..... : _!_~~~;I .---... --easel} 
, -----case 2 rigorous solutions 

_ .. _ case 3 

e A • proposed model 

frequency 0\o 

Fig.9 Model behavior of complex stiffness variation 
for a single pile( vertical case) 

pln&:llei .. t 

··!'"' :::::w. n 75r 
0.5 e A proposed model 

~ rigorous solutions 

,. 
;: = '2.65 , = 0.4 

E' £, ::::~ L244zlo-J 

real 

0o~--~o~.~~--~o~.2----~0.-3----0~.4----~o.~5--

frequency a.o 

Fig.lO Model behavior of complex stiffness for an end bearing 
two-pile group( vertical case) 
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Fig.ll Model behavior of complex stiffness for a single pile 
(horizontal case) 
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Fig.l2 Model behavior of complex stiffness for two-pile group 
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Fig.l3 Model behavior of complex stiffness for two-pile group 
(horizontal case 8=90 ) 



Similar comparison studies are described for horizontal vibra
tions. Fig.11 shows complex stiffness( multiplied by L 3 /EPI) for a 
single pile foundation. Figs.12 and 13 show those for two-pile groups 
subjected to horizontal loading in thee= 0 and 90 directions, respec
tively. Agreement between the results computed by the two different 
methods are generally good. Thus, the present model can reproduce 
the linear elastic behavior well for both single and pile groups. 

MODEL BEHAVIOR WITH GAP AND SLIPPAGE 

The behavior of the developed model is studied. The input nonlinear 
characteristics for the inner field model are defined by finite element 
results computed by Otani(1990). A harmonic displacement, which 
each amplitude of applied displacement is 0.02inch for vertical case 
and 0.03inch for horizontal case, is applied at. the pile shaft and the 
force to cause the displacement is computed in each excitation. The 
frequency of applied displacement is ao = 0.2. 

1. Vertical response 

Fig.14 shows the vertical response of the model for a single pile. 
Three different cases are shown in the figure, including the elastic 
condition (case 1 ), the inelastic condition allowing slippage (case 2) 
and inelastic condition allowing degra.dation and slippage (case 3). 

case 1 elastic 
20.0 

IO.O case 2 inelastic with slippage 

8.0 

-8.0 

-10.0 0 2 4 

case 3 inelastic with both slippa~~ne I/T 
IO.O and degradation 

-8. 
-IO.()L--'---'--~---'----'--"""'4---'--

time t/T 

Fig.l4 Time response for vertical excitation 
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The degradation factor od is defined by the number of cyclt 
N-1 and t = 0.3 is used. The effects of the slippage can be, 
in the response for case 2 and case 3 in the figure. The h) 
loops of reaction-displacement relationships during those re 
are presented in Fig.l5. The hysteresis loops for the elastic c. 
the inelastic case with slippage become steady state by the 
cycle. The hysteresis loop for the elastic case entirely results fr, 
radiation damping and thus the enclosed area increases as ir 
ing frequency. This trend is clearly observed in the hysteresi~ 
although Fig.15 shows the hysteresis loop only at one frequen-

2. Horizontal response 

In the analysis of the horizontal response, the gap factor is sel( 
to have a value of ag = 0.7. The results are shown in Fig.16 
Fig.17, in which three cases are the inelastic case (case 1), th( 
elastic case allowing ga.pping (case 2), and the inealstic case aiiO\ 
both gapping and degradation effects (case 3). As is seen in tl 
figures, the effect of gapping appears clearly in both response t 
histories and hysteresis loops. The gap becomes large until it reac 
a certin value as the number of cycles increases in case 2. The a 
plitude of the cyclic force response decreases with the number oft 
cycles when the gap is formed. According to the test results by M. 
lock(1970), similar trends have been observed in the hysteresis !a
obtained for displacement control pile load tests in soft clay. 

20_
0 

case 1 elaslic 

15.0 

--:- 10.0 

,;:_ 50 i .0 

.2 -5.0 

10.0 
B. 
6.0 
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~ 2.0 

~ 0 

.2 -2.0 
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CONCLUSIONS 

A simplified computational model is presented in the pa.per. The 

model is capable of handling not only the linear but also nonlinear 
behavior of pile-soil system, including the nonlinear soil behavior, 
gapping and slippage between pile and soil. Despite significant sim

plification involved in modeling the complex behavior, the proposed 
nonlinear pile group model can reproduce the behavior reasonably 
well compared with the behavior computed by more rigorous numer

ical methods. Therefore, the model may be conveniently used as a 

tool for the design of pile foundations. 
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