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Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soil Dynamics, 
March 11-15, 1991 St. Louis, Missouri, Paper No. LP34 

Earthquake Potential Along the Hayward Fault, California 

Glenn Borchardt and J. David Rogers 
USA 

INTRODUCTION 

The Lorna Prieta event probably marks a renewed period of 

major seismic activity in the San Francisco Bay Area. 

Particularly ominous is the historic record of major 

events a few years apart on opposite sides of the Bay in 

1836 (N. Hayward fault) and 1838 {N. Peninsula, San 

Andreas fault) and 1865 (Lorna Prieta segment, San 

Andreas fault), and 1868 (S. Hayward fault) (Figure 1). 

Recent preliminary measurements of the Holocene geologic 

slip rate of the Hayward fault are as much as 9 mm/yr 

(Lienkaemper and others 1989) --about 80% greater than 

the first Holocene measurements determined as recently 

as 1987 {Borchardt and others 1987). Aseismic slip, as 

measured from monuments and offsets of cultural fea

tures, varies along the fault from 3 to 9 mm/yr and 

averages 5 mm/yr (Lienkaemper and others 1990). Al-

though the earthquake potential calculated from such 

data are greatly affected by initial assumptions, the 

extremes are instructive: Method I assumes that the 

fault is freely slipping along the entire fault plane 

and that, until aseismic slip ceases, no major events 

are possible. Method II assumes that aseismic slip oc

curs throughout the 10-km deep seismogenic zone, but 

that strain continues to build at the deficit rate about 

4 mm/yr and strain builds at slightly less than the 

geologic rate (9 mm/yr). Assuming that 1.1 to 1.2 m of 

displacement occurs at depth during M 6. 8 events 

(Slemmons and Chung, 1982), calculated recurrences range 

from 120 to 300 years. Thus, in view of the time 

elapsed since the two previous events ( 123 and 155 

years) , we have entered the "earthquake window" for the 

Hayward fault. The new geologic rate has increased the 

estimates of 30 year probabilities for major events from 

20% to 28% on the north half of the fault and from 20% 

to 23% on the southern half {compare WGCEP of 1988 and 

1990). 
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TECTONIC SETI'ING 

The Hayward fault is a right-lateral strike-slip fea

ture, ancillary to the nearby San Andreas fault, and is 

part of the transform continental margin in central 

California. The San Andreas transform accommodates move

ment along the margin of the Pacific and North American 

plates between two crustal spreading centers, the East 

Pacific Rise, off the coast of Central Mexico, and the 

Gorda Ridge, north of the Mendocino trench. North of 

Cape Mendocino, a convergent tectonic boundary exists 

with the expanding Pacific Plate being subducted 

directly beneath the North American Plate. 

The San Andreas transform is a unique link on the East 

Pacific Rim, juxtaposing the Pacific plate directly 

against the North American Plate. To the north and 

south of the San Andreas the Pacific Plate is unseen, as 

it is subducted under the over-riding North American 

Plate. Most workers believe that the ancient San 

Andreas transform began following the almost total sub

duction of the Farallon Plate, between 30 and 32 million 

years ago (Ma) (Atwater, 1970). At this time, a fore

arc basin existed west of the Sierra Nevada Mountains. 

Around Middle Miocene time {roughly 15 Ma) strike-slip 

faulting began in earnest along the California coastal 

margin. Around 13 Ma, regional uplift began in the 

region between the present position of the San Andreas 

and Hayward faults, in the proximity of what is now San 

Francisco Bay {Graham and others, 1984). Around 10 Ma, 

initial rupture of the Hayward fault zone followed the 

uplift. This early faulting likely initiated in 

response to tectonically induced regional stresses 

aligned at N55°E, to the strike of the fault (Figure 2). 

We can infer that such a field was induced by collision 

and apparent shortening of the Pacific Plate under the 

thicker North American mass. 
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Grahn and others (1984) ten ua that between 10 and 7 

Ma, there was localized. volcanism along the Hayward' 

r:ift.. Some time later, between 8 and 6 Me, a similar 

pattern of uplift rmd drainage reversal (to the eMt) 

also began along what is now the Calaveras fault. In

d:l.vidual bMins were cr.•eated between these 

younger strike-slip fault segments east of the San 

Andreas. During Pliocene ti.me (5.3 to 1.6 Ma.) uplift on 

the Hayward rift supplied Franciscan debris to nearby 

subsiding areas. !Juring Pleistocene time {last L6 lila) 

the San Fx•ancisco Bay block, which had been elevated at 

about 13 Ma, subsided, and debrts from both sides ot' the 
newly fo:rmed basin spilled into it. The first outlet 

frou~ San Francisco Bay to t.he ocean w~lS probably cut 

through a bedrock gap in the San Francisco peninsula, 

adjacent to the San Andreas fault, between 400,000 and 

500,000 years ago {Clifton, 1990). 

To gain an appreciat:i.on of the shallow, plate-boundary 

nature of the San Andreas, and i.ts subordinate Hayward 

and Calaveras branches, it is necessary to v:l.ew a 

speculative cross section through the N55°E - direct:ed 

"' Ill! 

l!! 
OJ 
\I 
9 
i2 

$-

1<1-

15-

20 -

u-

DIAGRAMMATIC CROSS SECTION 
Pfi.CIFIC OCEAN TO GREAT VAllEY 

10ubduction of the Pacific Plate under North America 

(Crane, 1.988; Figur-e 3), As the thin oceanic crust .is 

CIU'l'ied below the thi.ck continental massif', f'racture can 

be accomplished most easily where the overridi.ng plate 

is thinnest. According to Crane (1988), the Hcsg:t•i-San 

Gregorio and San Andreas faults are shallowE'r, and there

fore, presUlliably develop less fricti.on tha..., the progres

sively deeper &'1d younger Hayward and Calaveras zones to 

the east (Figure 3). 

Much geologic evidence suggests that the faults compris~ 

ing the San Andreas transfom system have alternately 

been active, elraost as if' to be "taking turns" at absorb

ing strain build-up end release through aseismic creep 

or coseismic rupture. In attempting to explain the ob

served progressive disturbance o£' Me:eced Formation sedi

ments adjace.nt to the San Andreas t'ault, CHfton (1990} 

has tentatively concluded that the San Andreas has be

come .increas:ingly active on the San Francisco Peninsula 

in the last 200,000 years. More major· structural off

sets occur. along either side of the current. Sa:'! Andreas 

trace, along the Sen B!'t:no l"aul t several kilometers to 

Figu!t'tl! 3 - lJia(!l•tJJriH!atia cross section f:rom the Pa.;;i,fle Ocean to California's C1mtraZ Vall-ey acco.'l!dtng to 

Crane (1988). Thtil San Andreas tran.s:fo1.!m and tta ancHta:ry fault zones rid€ atop the .'Jlibducting Pacif!e 

pt<-:rte, Both ae:qismte and cos('ltsmtc ac~wt·ty ceMe <W"f!'U:P1:1y at the zorte of f>'W:iductton, 1.>hieh can locaZZy be: 

deep o-r sh.JUi:JM, deper.dit!fl on t~ thickness and d~ity ot thll ~t<i!d e:t:'!WJt. In gene:ral, the ancilrm:oy 

fu:ulte eli$t ¢f tk€' San. Andl"e!Ui bllcome deepe1' <mil l!i!slil actd.ve "1!th dist;:m.ce fr:om the San Al'ltl:;r&as. This "IIICI.JI 

be flu:q t;Q f"rom thd inrrf.'ea<>ed corttact area eng€nde:red 1;y deep cor:fin&-

2'ful .'l"'l~te as iflt?St a:ctttt-1:1 the tl'iTf'!sfm::m, 

2811 



DOWNDROPPED BLOCKS IN TENSILE ZONE CREATED BY ACTIVE RIGHT 
STEP-SEPARATED RIGHT LATERAL FAULT ZONES 

COMPRESSION GENERATED BETWEEN 

LEFT-STEPPING RIQHT-LATE;RAL FAULTS 
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Figure 4 - ExampLes of step-over induced tensiLe and compressionaL fractures seen in the CaLifornia coastaL 

borderland. The magnitude of the inter-block stress fieLd generated depends on the respective strain rates 

of the adjacent strike-slip faults. 
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Figure 5 -Historic creep rates aLong the Hayward fauLt, taken from Lienkaemper and others (1990). Most of 

the data are from precise surveys of cultural features. Bars represent U.S.G.S. geodolite survey lines from 

the mid-1970's to 1988. Microseismic events for the interim 1969-89 are presented below, with the largest 
event being aM 4.7. 

the east, and the Hosgri-San Gregorio fault, a few 

kilometers to the west. In this fashion, simultaneous 

movement along two active strike-slip faults alternately 

produce intra-block basins, subjected to either ten

sional or compressional stress fields. This explains 

the apparent reversal from compression to tension of the 

San Francisco Bay block between the Hayward and San 

Andreas Faults during late Pleistocene time. Several 

representative examples of fault-offset induced stress 

fields are possible (Figure 4). 

The Hayward fault abruptly ceases microseismic activity 

at a depth of around 10 km (Figure 5). This is likely 

due to the vertical fault plane's termination at that 

depth as it is absorbed into the underlying subducted 

oceanic crust. According to Crane's model, the 

Calaveras may extend to 15 km, the Greenville-Marsh 

Creek zone may extend to 25 km, and faults under the 

Sierra Nevada may extend to even greater depths. 

EARTHQUAKE HISTORY AND FUTURE PROSPECTS 

The October 17, 1989 Lorna Prieta event served notice 

that major earthquake activity has been renewed along 
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the San Andreas sys tern in the San Francisco Bay Area. 

As in the late 1800's, strain release through seismic 

activity seems to be marching inexorably northward, 

toward the most densely populated part of the Bay Area 

(Figure 1). The paired earthquakes of 1836/1838 and 

1865/1868 may have involved an ominous, alternating 

release of strain along the San Andreas and Hayward 

faults on either side of San Francisco Bay. The charac

teristics of these long-ago events are still being 

evaluated as we continue to discover additional histori

cal data (e.g. Photograph 1). The northern and southern 

portions of the Hayward fault have been without major 

earthquakes for 155 and 123 years, respectively. 

The Hayward fault traverses a highly urbanized area and 

therefore, possesses greater potential for damage than 

any other fault in the Bay Area (Steinbrugge and others, 

1986; 1987). Most of the potable water and all the 

natural gas supply lines for the San Francisco Peninsula 

and the East Bay comes through aqueducts and pipelines 

crossing the fault. All the major petroleum fuel ter

minals, such as those at major airports and marine 

facilities, are supplied by pipelines that cross the 

fault. Sudden movement along the fault would affect the 

rapid transit trains that speed through the Berkeley 



Hills turinel each day. Below we reassess the earthquake 

potential of the Hayward fault in light of the most 

recent data. 

GEOLOOIC SLIP RATES 

Calculations of the geologic slip rate of the Hayward 

fault range between 0.7 and 9.7 mm/yr for the last 6 to 

10 Ma (Graham and others. 1984: Fox and others, 198'5; 
Sarna-Wojcicki and others, 1986; Liniecki-Laporte and 

Anderson, 1988). Until recently, however, geologic 

rates for the more meaningful Holocene period were un-

available. The first Holocene slip rate determined for 

the fault was a minimum (5.0 mm/yr) determined on one 

strand of the fault for an offset of buried channel 

deposits in Fremont (Borchardt and others 1987; 1988a; 

1988b). Still more recent preliminary measurements of 

the offset of an alluvial fan yield slip rates between 7 

and 9 mm/yr for the last 4 to 14 ka (Lienkaemper and 

others, 1989; Lienkaemper and Borchardt, 1990). We con

sider this the best estimate of the geologic slip rate, 

upon which we base much of the remainder of this discus

sion. Being up to 80% greater than the earlier Holocene 

slip rate, as well as the aseismic slip rate, it ob

viously demands new calculations of the earthquake poten

tial of the fault. 

ASEISMIC SLIP 

Aseismic slip, as measured from monuments and offsets of 

cultural features, varies along the fault from 3 to 10 

mm/yr and seems to have averaged about 5 mm/yr during 
the last 50 years (Lienkaemper and Borchardt, 1988; 

Lienkaemper and others, 1990). A 4 km section south of 

Irvington creeps at about 9.5 mm/yr. Lienkaemper and 
others (1990) have identified three bends, or salients, 

along the Hayward fault between Fremont and Point Pinole 

(Figure 6). These salients may behave like macro

asperities, absorbing strain energy and perturbing aseis
mic slip. 

METHODS OF CALCULATING EARTHQUAKE POTENTIAL 

Although the earthquake potential calculated from 

geologic and aseismic slip rates is greatly affected by 

initial assumptions, the extremes are instructive: 

Method I assumes that the fault is freely slipping along 

the entire fault plane and that until aseismic slip 

ceases no major events are possible. Method II assumes 

that aseismic slip occurs throughout the 10- km deep 

seismogenic zone but that strain continues to build at 

the deficit rate. Method III assumes that aseismic slip 

occurs only in the upper few kilometers and that the 

fault plane is locked at depth. Method IV assumes that 

aseismic slip is a decreasing function of confinement 

pressure. 

(1) 

Assumptions Common to the Four Methods 

The 1836 event was M 6.8 and ruptured 50 km of the 

northern part of the fault. 

Written history concerning the 1836 event is sparse. 

There is even some doubt about whether the earthquake of 

June 21 actually occurred on the Hayward fault. Local 

historic accounts maintain that the 1836 quake was more 

severely felt by the residents of Oakland than the well

documented 1868 quake that had its epicenter further 

south (Alameda County Gazette, 1868). Louderback (1947) 

is generally cited as the first to consider it a Hayward 

event. From the evidence cited by Louderback, Jennings 

(1975) considered the event to have occurred on the 

northern part of the fault. The "fissures that opened 

at the foot of the East Bay Hills" have generally been 

taken as the result of fault displacement rather than 

seismically induced landslide (SIL) features and as Loma 

Prieta taught, in the absence of deep artificial cuts, 

most SIL evidence in the Bay Area seems to develop very 

near the causative fault. Existing landslides (Bishop 

and others, 1973), particularly along the northern 

Hayward fault, are likely to respond in a similar man
ner. 

The occurrence of an equally large event along the 

so•Jthern part of the Hayward fault only 32 years later 

further indicates that the northern part was the causa

tive fault for the 1836 event. The 50-km rupture was 

calculated from Louderback's cited evidence and was used 

by WGCEP (1988, 1990) fpr their probabity estimates. 

The 6.8 magnitude was assigned by Toppozada and others 

(1981) based on its being felt strongly from San Pablo 

to Mission San Jose, with shaking of VII (Rossi-Forel) 

in Monterey and Mission Carmel. These effects were in 

many respects similar to that of the 1868 event. 

2314 



(2) The 1868 M 6.8 event ruptured 41 km of the 

southern part of the fault. 

The magnitude of this event was assigned by Toppozada 

and Parke (1982) based on felt effects. The 1868 event 

produced less than 0.9 m amount of displacement with a 

rupture length estimated variously at 48 km (Slemmons 

and Chung, 1982), 50 km (Radbruch, 1967; Toppozada and 

Parke, 1982), 41 km (Lienkaemper and others, 1990), and 

32 km (Lawson and others, 1908; Byerly, 1951; WGCEP, 

1988; 1990). Following the reasoning of Lienkaemper and 

others (1990), we chose 41 km for the rupture length. 

(3) The next major earthquake on the Hayward fault 

will be M 6.8 with hypocentral displacement being 

1.4 m. 

This assumption follows from the historical evidence 

used to deduce the first two assumptions. Slemmons and 

Chung (1982), however, estimate a maximum credible 

earthquake (MCE) of M 7.0 •_ 1/4 for the Hayward fault. 

Similarly, WGCEP (1990) assumed aM 7 in calculating the 

probabilities of events on the fault. Further, the 

earthquake planning scenario for the Hayward fault used 

aM 7.5 event with up to 3m of right-lateral displace

ment along i.ts entire 100-km length (Steinbrugge and 

others, 1986; 1987). This worst-case scenario was most 

suited to emergency planning, following the precedent 

set by the U.S. Geological Survey (1981) who calculated 

aM 7.4 for the same rupture. Both theM 7.5 and M 7.4 

scenarios consider the Hayward fault as one-half of the 

Healdsburg-Rodgers Creek-Hayward fault system (Figure 

2). Although the Hayward fault may indeed be part of 

this system and although its complete rupture may not be 

impossible, we consider the historical evidence for M 

6.8 events to be most compelling and most suitable for 

earthquake prediction. The strain required for a M 6.8 

event obviously will be reach!!d much sooner than that 

required forM 7 or M 7.5 events. 

The choice of hypocentral displacement also will be af

fected by this conservative approach to prediction. 

Lienkaemper and others (1990) calculate 1.4 •_ 0.7 m of 

coseismic slip for a 50-km rupture on the north and 1.2 

! 0.6 m of coseismic slip for a 41-km rupture on the 

south forM 6.8 and M 6.7 events, respectively. 

Method I 

Method I assumes that at the present time the fault is 
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freely slipping along the entire fault plane and that 

until its aode of behavior changes, the fault poses no 

significant earthquake threat. The change to the seis

mogenic mode will be signaled by a cessation of aseismic 

slip, at which time strain will begin to build at the 

geologic rate. 

Although few, if any, investigators currently support 

the additional assumptions behind this method, it must 

be considered in the analysis of earthquake potential 

along the fault. Prescott and others ( 1981, p. 10853) 

wrote that "along the Hayward and Calaveras faults, all 

motion appears to take place as slip directly on the 

fault, with no accumulation of strain in the adjacent 

crust. . •. The absence of strain accumulation in the 

east bay is surprising since the Hayward and Calaveras 

faults have been the site qf large earthquakes in the 

past." Model I received further support when the first 

Holocene geologic slip rate was measured at Fremont City 

Hall (Borchardt and others, 1987; 1988a). The geologic 

slip rate and the aseismic slip rate on the well-studied 

western trace ot the fault were nearly identical. 

Similarly, the first aseismic slip rates at the Ir

vington warehouse and the curb on Camellia Street, both 

further to the southeast, were much higher than else

where (10.:._1 mm/yr) (Cluff and Steinbrugge, 1966; Bur

ford and Sharp, 1982). These were later corroborated at 

about 9 mm/yr (Lienkaemper and Borchardt, 1988; 

Lienkaemper and others 1990) and were similar to the 

Holocene geologic rate determined on the only trace of 

the fault at Union City (Lienkaemper and others, 1989; 

Lienkaemper and Borchardt, 1990). Thus it appears that 

about 4 km of the fault is indeed freely slipping in the 

Irvington area (Figure 5). 

The fact that ground rupture occurred in this "freely 

slipping area" and most likely also along the "freely 

slipping western trace" at Fremont City Hall (Lawson and 

others, 1908; Radbruch, 1967) remains a conundrum. The 

data beg the question "How can a fault that is freely 

slipping also produce major earthquakes along with 

ground rupture?" To address this question, Method I 

must also assume that the fault changes from an aseismic 

to seismic mode at some point in its earthquake cycle. 

Presumably, this will be signaled by a cessation in 

aseismic slip and the beginning of strain build-up. 

The results of Method I imply that no major earthquakes 

will occur on the Hayward fault in the near future and 

that aseismic slip should be carefully monitored. We 

give little credence to this method because of the ob-



Photograph 1 - P1•eviousLy unpul1Hshed photo of the Ed~ 

munson !Jarehouse in Haywczrd !.'ihich coUa,psed in the 1868 

llaiJi»ard ea"Pthquake. 

vious _ discrepancy OL' deficit between the geologi.c rate 

and the aseismic rate along most se<:Uons of the fault 

(Lienkaomper w1d others, 1990). 

Method II 

Method II assUllles that; asHismic sl.ip oecurs tiwoughout 

the 10··km deep seismogenic zone, but that strain con

tinues to buHd at the deficit n;te (the geologic rnto 

minus the aseismic rate). From geodetic and aseismic 

slip measurements, Prescott ru1d Lisowski ( 1982) ca1c:u

lated a deficit rate of about 4 mm/yr. SimHarly, from 

the preferred g<~ologic slip rate ( 9 llllll/Yl', Lienkaemper 

e.nd other-s, 1989) and the prefe.ered ase:i.smic slip, 

averaged along the fault (5 mm/yr, Lienkaemper and 

others, 1990), we also calculate a deficit rate or 4 

mm/yr~ 

Exat:tly how strain is partially stored and partially 

released along the fault plane is not clear. This 

method, however, assumes that "stuck patches" (Prescott 

and L:!sowski. 1982) <!x:lst at various places and at 

val.'ious depths along the fault plane. Fault gou.ge and 

soft rocks apparent-ly deform plastically around such 

patches. 

}fethod JU 

cause the locked port:!on comprises most of the fault 

plane, strain build-up is hi.ghly dependent on th<:> 

Model l.H also fits the geodettc 

measurements indicating thst seismic stra.in on the t'!lult; 

is "'al:u.)ut l! mm/yt• at the surface and up to 10 'I'!JJlJ/yr: at 

depth (Prescott and Lisowski, 19!32; 1983). 

If we assume that the fault ts J.pcked at depth and 

stores no ruore that 4 mru/yr of strain at the surface, 

then the northern section (laat event 155 years ago) now 

stor•es enough strain to produce a 1.il-m displacem!'!nt a.t 

depth and 0.6 m at the surface. rhe southern section 

(last event 123 years ago) now stores enough str.•nin to 

produce a 1.1-m displacement at depth and 0.5 m at the 

surface. The M 7.1 Loaa Prieta avant had 1.9 m of 

right-lateral displacement. at the 18 km depth and none 

at the surface (U.S. Geolog:l.caJ. Survey Staff', 1990)-~ 

slightly laxgor, though comparable values. Such 

speculations clemonst;rate that a 1najor earthquake on the 

l!uyward fault is possible in the near future. 

Method IV 

Method IV assumes that aseismtc slip along the fault 

plane ia a d•)Ct-ea'3ing function of confinement pre,ssure 

In tJds model the characteristics. of the 

rocks along the fault plane and the characteristics of' 

the over-burden determine the ability of the ft.ult to 

store strain energy at any particulax· point. As con-

finernent i.ncreases, greater friction 1-s genet'ated along 

the :slip sud'ace boundary. In_ this manner~ .incr-easing 

elastic strain energy is stored, lead:mg t;o periodic 

rupture through cyclic "stick-slip." 'l"his mechanism is 

especially likely, given the shallow depth of the fault 

plane ( 10 km). En deep-seated faults, the propensity to 

store elastic strain enel'gy is somewhat diminished duH 

to increasing plasticity of rock with depth. As in 

Method HI, recurr-ence varies from 120 to 300 years. 

Summary of Methods 

Assumi.ng that 1.1 to 1.8 m of displacement occurs at 

depth during M 6.8 events, calcu1ated recurrences range 

frore 120 to 300 years. Thus, in view of the l:ilil<' 

elapsed since the two previovs events (123 and 155 

years), we have entePf\ld the "earthquake window" for the 

Haywa.t'd fa1Jl t. Published estimates of recm•rences for 

the Hayward fault rangt~ .ft·um 130 (Lienkaempet' and 

otht)rs, 1990} to 5:'>6 years (Wesnousky, 1986). 
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increase of 1.atera~ confinement with depth. This increase in conffne;lum.t pr<YIIIiJtes increased shliUXl' strength 

IAlith d<i!pth t.~hlch must be oveY:come to aecomodat>t lau1;t p!.<!ne :ruptul:'t?.. 

l'he new geologic x:-ate incr~ases the 30-year probabH~ 

iti.es for ll!ajor events. Early probability estimates ro:r 
a major earthquake on eithex· the northern or sout11ern 

port:l.ons of the Hayward raul t were 20% in the nel!J;t 30 

year.s (WOGEP, 1988) , Becaul.le those calculations S!H!Uliled 

a geologic slip rate of only 7"5 mm/yr for- the f'atJlt, 

probability estimates have been revised upward as a 

Nsul. t of the new 9~ltllll/yr· geologic slip rate {WGCEP, 

1990). The new calculat:l.ons a~, 28% for the northe1•n 

part Md 23% for the li!Outhet-n. pat"t of the fault .. 

all strain. on the Hayward fault. Rathex-, several alter

native models involving varying dt?gt•ees of sti.ck-slip 

aU se;:,m to yield strai.11 build··uvs that could produce 

over a me1:er of coaeismJc slip on either the northern ot• 

southl'ltn portions of the fault at any time. As long as 

the preferred geologic slip rate remains at or below 9 
mru/ yr, none of the models pt:oduee over . 8 m of 

hypocentr~l slip. more or less assuring us that an 

earthquake greater than M 7,1 prol)ably is n(>t possible 

at present" Assu!lling that l!u>eismic slip has been 

roughly const.ant; sine<~ t.he eventlli af 1836 and 1868, sul:'

face g~cund t•upt;ure will be dim:!.nished accordingly. 

'l'htl% would be a maxim= of 0. 6 m in the north and 0, 5 ill 

in the :i!OUt."< • 
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