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ABSTRACT 
 
Liquefaction-induced lateral spreading can cause extensive damage and even failure to foundations and earthworks resting inside or in 
the vicinity of the affected ground. The current practice for the evaluation of the ground surface displacement due to lateral spreading, 
is to rely upon a number of published empirical relations which are based on statistical analysis of field measurements. As an 
alternative, aimed to overcome a number of objective limitations related to the interpretation of field data, this article employs a 
numerical investigation to explore the main parameters affecting the anticipated maximum ground surface displacement and to 
quantify their effect in the form of a simple analytical relation. To ensure the credibility of the numerical methodology, it has been 
thoroughly validated against nineteen (19) previously reported centrifuge experiments. Furthermore, the accuracy of the new relation 
is evaluated through a systematic comparison with the numerical predictions of ground surface displacement, as well as with field 
measurements from the data base of Youd et al. (2002). 
 
 
INTRODUCTION 
 
Lateral spreading of liquefied ground may occur in the case of 
even small free ground surface inclination or small 
topographic irregularities (e.g. river and lake banks). Recent 
earthquakes (e.g. Kobe 1995, Chi-Chi 1999, Nisqually 2001) 
have shown that this phenomenon is of significant practical 
importance for civil engineering structures (quay walls, bridge 
piers, etc) as it imposes considerable lateral loads and may 
lead to wide spread failures. The efficiency of the available 
methods for the design of such structures against lateral 
spreading depends greatly on our ability to estimate the 
anticipated lateral ground displacements and their distribution 
with depth.  
 
Seven (7) empirical relationships have been located in the 
literature that can be used for the evaluation of the ground 
surface displacement due to lateral spreading near free-face 
topographic irregularities. These relationships can be roughly 
divided in two main categories, depending upon the type of 
parameters used to quantify the severity of seismic motion:  
−  those that rely on “seismological” parameters of the 

earthquake motion (e.g. earthquake magnitude M,  
epicentral distance R), such as Bardet et al. (1999, 2002), 
Rauch & Martin (2000), Youd et al. (2002), Zhang & Zhao 
(2005), Faris et al. (2006), and  

−  those that rely on “engineering” parameters (e.g. maximum 
acceleration, frequency), such as Shamoto et al. (1998) and 
Hamada (1999).  

Note that the relationship of Hamada (1999) referenced above 
was originally developed for gently sloping ground but has 
been later found to provide equally accurate results in the case 
of free-face geometries as well (Valsamis, 2008). 
 
Regardless of the variables used, all these relationships were 
derived from statistical analysis of field measurements. This 
approach has the definite advantage of fitting directly data 
obtained from actual events. However, it has also two basic 
disadvantages which may induce considerable uncertainty. 
The first is that, in the majority of case studies, crucial 
geotechnical and seismological parameters have not been 
directly measured and consequently had to be indirectly 
evaluated based on circumferential evidence. The second 
disadvantage is that, due to the unique nature of each case 
history, it is almost impossible to isolate the effect of each 
individual parameter affecting lateral spreading displacements 
and study it in a systematic manner. 
 
To avoid the aforementioned objective limitations, this paper 
explores the potential of alternatively using a numerical 
investigation for identifying the key parameters affecting 
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lateral spreading displacements and for quantifying their 
effect. The numerical methodology that is used for this 
purpose has been recently developed at N.T.U.A. with the aim 
to perform fully coupled, effective stress dynamic analysis of 
liquefaction related problems (Papadimitriou et al. 2001, 
Andrianopoulos et al. 2009, Karamitros 2009). To ensure the 
credibility of the predictions, the parametric analyses were 
preceded by an extensive validation of the numerical 
methodology against well documented centrifuge experiments 
of earthquake – induced lateral spreading. Furthermore, the 
accuracy of the proposed new relations is evaluated through 
comparison with measurements of ground surface 
displacements in centrifuge tests, as well as in field case 
studies.  
 

 
NUMERICAL METHODOLOGY 
 
The constitutive model which was employed for the numerical 
analyses is a bounding surface model with a vanished elastic 
region that incorporates the framework of Critical State 
Theory. It is based on a previously proposed model 
(Papadimitriou et al., 2001; Papadimitriou & Bouckovalas, 
2002) which has been developed with the aim to simulate the 
cyclic behaviour of non-cohesive soils (sands and silts), under 
small-medium-large cyclic shear strain amplitude using a 
single set of soil-specific constants, irrespective of the initial 
stress and density conditions.  
 
In its current form (Andrianopoulos 2006, Karamitros 2009) 
the model incorporates three (3) open cone-type surfaces with 
apex at the origin of stress space: (i) the Critical State surface 
at which deformation develops for fixed stresses and zero 
volumetric strain, (ii) the Bounding surface which locates the 
(ever-current) peak stress ratio states and (iii) the Dilatancy 
surface which dictates the sign of the plastic volumetric strain 
rate during loading. The foregoing constitutive model was 
incorporated in the code FLAC (Itasca, 1998) using the User 
Defined Model capability. 
 
In the present study, the model constants have been calibrated 
on the basis of data from element laboratory tests performed 
on fine Nevada sand at relative densities of Dr = 40 & 60% 
and initial effective stresses between 40 and 160 kPa 
(Arulmoli et al, 1992). In particular, the laboratory data 
originate from resonant column tests, as well as, from cyclic 
direct simple shear and triaxial tests. Thus, they offer a 
quantitative description of various aspects of non-cohesive soil 
response under cyclic loading, such as shear-modulus 
degradation and damping increase with cyclic shear strain, 
liquefaction resistance and cyclic mobility.  
 
To evaluate the overall capacity of the aforementioned 
numerical methodology to predict the relatively large 
displacements induced by lateral spreading it was 
systematically used to reproduce the results of several relevant 
centrifuge tests, summarized in Table 1. The above centrifuge 
tests cover a wide range of soil and earthquake parameters, 

such as relative density (Dr), maximum base acceleration 
(αmax) and thickness of the liquefiable soil layer.  
 

Table 1. Summary of published centrifuge tests 
 

Test name Publication 
Pore 

Pressure 
fluid 

Type* Dr (%) 

Test 1 Taboada et al. (2002) Viscous FF (33.7o) 45 
Test 2 Taboada et al. (2002) Viscous FF (33.7o) 45 
SP-11 Dewoolkar et al. (2001) Viscous W (9m) 60 

Model 2 Arulmoli et al. (1992) Viscous GS (2o) 60 

M2-1 Taboada & Dobry 
(1998) 

Water GS (2o) 40-45 

M2-2 Taboada & Dobry 
(1998) 

Water GS (1.94o) 40-45 

M2-3 Taboada & Dobry 
(1998) 

Water GS (2.18o) 40-45 

M2-4 Taboada & Dobry 
(1998) 

Water GS (2.07o) 40-45 

M2-5 Taboada & Dobry 
(1998) 

Water GS (2o) 40-45 

M2a-3 Taboada & Dobry 
(1998) 

Water GS (0.6o) 40-45 

M2a-4 Taboada & Dobry 
(1998) 

Water GS (0.6o) 40-45 

M2b-5 Taboada & Dobry 
(1998) 

Water GS (0.8o) 40-45 

M2c-6 Taboada & Dobry 
(1998) 

Water GS (3.95o) 40-45 

LAM1 Abdoun (1998) 
Water GS (2oof the 

numerical 

methodology       ) 

40 

LAM2 Abdoun (1998) Water GS (2o) 40 
L45V-2-10 Sharp et al (2003) Viscous GS (2o) 45 
L45V-4-10 Sharp et al (2003) Viscous GS (2o) 45 
L65V-2-10 Sharp et al (2003) Viscous GS (2o) 65 
L65V-4-10 Sharp et al (2003) Viscous GS (2o) 65 
L75V-2-10 Sharp et al (2003) Viscous GS (2o) 75 
L75V-4-10 Sharp et al (2003) Viscous GS (2o) 75 

Test name amax (in base)  
(g) Ncycle 

Thick. Of 
liq. Layer 

(m) 

Lateral 
ground 

disp (cm) 
Test 1 0.20 20 10.0 191 
Test 2 0.20 20 10.0 185 

SP-11 0.20 9 9.0 4 
(residual) 

Model 2 0.23 22 10.0 50.7 
M2-1 0.18 21.5 10.0 44.0 
M2-2 0.23 22 10.0 47.0 
M2-3 0.46 22.5 10.0 97.0 
M2-4 0.19 22 10.0 61.0 
M2-5 0.25 22 10.0 68.0 
M2a-3 0.28 21.5 10.0 12.2 
M2a-4 0.26 22 10.0 14.8 
M2b-5 0.40 22.5 10.0 30.0 
M2c-6 0.17 21.5 10.0 72.5 
LAM1 0.30 40.5 6.0 80.0 
LAM2 0.30 40.5 6.0 80.0 

L45V-2-10 0.23 20 10.0 66.0 
L45V-4-10 0.41 20 10.0 87.0 
L65V-2-10 0.20 20 10.0 28.0 
L65V-4-10 0.38 20 10.0 63.0 
L75V-2-10 0.21 20 10.0 23.0 
L75V-4-10 0.38 20 10.0 47.0 

(*) FF: Free-face geometry and free-face angle 
 W: Flexible quay wall and height of quay wall (m) 
 GS: Gently sloping ground geometry and sloping ground angle 
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Note that only two of the experiments in Table 1 concern 
lateral spreading near free-face geometries (Taboada et al. 
2002), while all the rest concern lateral spreading of gently 
sloping ground (Arulmoli et al 1992, Taboada & Dobry 1998, 
Sharp et al 2003, Abdoun 1998) or ground supported by a  
flexible quay wall (Dewoolkar et al. 2001). Still, it was 
considered appropriate to check the numerical methodology 
against all these different test types, as the underlying 
mechanism of lateral ground movements associated to each 
test type is essentially the same.  
 
Fig. 1 shows the discretized profile which was used to 
simulate the tests by Taboada et al. (2002). It consists of 403 
equal square elements, 1.0x1.0m in dimension, with the 
acceleration time history being applied at the external grid 
nodes as well as the base of the model in order to simulate the 
rigid box boundaries used during the centrifuge experiment.  
 
The discretization used to simulate the gently sloping ground 
experiments utilized a grid of 220 elements, 1.0m x 1.0m in 
dimension, with the seismic excitation imposed as an 
acceleration time history at the base of the soil profiles. In this 
case, the lateral boundaries were tied to one-another in order 
to ensure that they will have the same horizontal 
displacements, simulating the boundary conditions imposed by 
the laminar box containers. 
 
Finally, simulation of the flexible wall experiments required a 
grid of 309 elements, 1.0m x 1.0m in dimension. The applied 
excitation is a semi-sinusoidal time-history consisting of 9 
main cycles with maximum acceleration of 0.2g. The lateral 
bounds during the centrifuge experiment were rigid and thus 
were simulated by applying the acceleration time history both 
in the base and the lateral boundaries of the grid. 
 

1m
1m

PP6

PP5

PP1 PP2

PP4PP7

PP3

AH6

AH5

AH1

AH7

AH4

AH2 AH3

LVDT6 LVDT5 LVDT4 LVDT3

LVDT2

 
 

Fig. 1.  Finite difference mesh used for the numerical 
simulation of centrifuge tests of Taboada et al. (2002) and 

associated instrumentation  
 
The numerical predictions are compared to the centrifuge test 
measurements in Figs. 2 and 3. In more detail, Fig. 2 depicts a 
typical comparison between predicted and recorded time 
histories of horizontal displacement and horizontal 
acceleration for the centrifuge test  of Taboada et al. (2002) 
Moreover, Fig. 3 compares the predicted and recorded 
maximum ground displacements from all centrifuge tests 
listed in Table 1. These comparisons show a reasonably good, 
qualitative but also quantitative, consistency. The slight 
tendency of the numerical predictions to exceed the recordings 
in Fig. 3 is attributed to the artificial restraint imposed by the 
latex membrane used to prevent leakage of the pore fluid 

through the walls of laminar box containers and thus no action 
was taken to calibrate the numerical algorithm towards an 
optimal fit. 
 
A possible exception to the good overall agreement observed 
in Fig. 3 are the two points marked with a question mark, 
associated to  experiments with small dominant excitation 
frequency (f=1Hz), where the numerical procedure 
conservatively overestimates the experimental values. The 
reason behind this discrepancy is not presently clear. Still, it is 
noteworthy that Taboada & Dobry (1998), who ran these 
experiments, also admit that the maximum measured 
displacements were 2.5 times less than the ones they expected 
theoretically.  
 

Centrifuge experiment

Numerical simulation  

 
 

Fig. 2.  Typical comparison between numerical predictions 
andexperimental results for the  centrifuge test of Taboada et 

al. (2002) 
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PARAMETRIC ANALYSES 
 
Using the numerical model described previously we 
performed a total of ninety three (93) parametric analyses with 
a wide range of variation of all input parameters, as shown in 
Table 2. The two different geometries that were examined are 
shown in Fig. 4: a uniform liquefiable soil layer (Fig. 4a) and a 
clay over sand, 2-layered geometry (Fig. 4b). The total 
liquefiable soil thickness ranged from Htot,liq = 4 to 10m, while 
the thickness of the non-liquefiable surface soil crust ranged 
from Hcrust=0 to 5m. Note that, as shown in the figure, several 
researchers also define W as the ratio of the free-face height to 
the distance of the point of interest from the foot of the free-
face. 
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Fig. 3 Numerical prediction of lateral ground displacements 
versus centrifuge test measurements 

 
 

Fig. 4.  Typical soil profiles used in the parametric analysis 
(a) uniform liquefiable soil layer and (b) 2-layered geometry 

(clay over sand) 
 
Sixty-five (65) of the numerical analyses were performed with 
a sinusoidal acceleration time-history, consisting of 22 main 
cycles. The remaining twenty eight (28) analyses were 

performed with five real earthquake acceleration time-histories 
coming from the Aigio 1995, Greece earthquake, Kobe 1995 
Japan earthquake (JMA N-S & E-W) and Lefkada 2003, 
Greece earthquake (TRANS & LONG). These earthquake 
time-histories were chosen because: 
(a) they have very different acceleration time-history 

waveforms (e.g. Aigio 1995 earthquake has one main 
cycle of excitation, while the Lefkada 2003 earhtquake 
has almost 15 main cycles), and 

(b) all have been associated with large ground failures and 
extensive liquefaction phenomena (Bouckovalas et al 
1995, Bardet et al. 1995, Schiff 1998, Gazetas et al. 2005) 

 
Table 2. Range of input parameters used for the parametric 

analyses 
 

Parameter Range of 
values 

Reference 
value 

Maximum horizontal base 
acceleration 

amax 0.04 to 0.82g 0.12 g 

Predominant frequency of 
shaking 

f 1 to 10Hz 2 Hz 

Number of main excitation 
cycles 

Ncyc 10 to 40 20 

Relative density of 
liquefied layer 

Dr 35% to 90% 45 % 

Fines Content FC 0% to 30% 0 % 

Liquefied soil permeability k 0.0021 to 
0.105cm/sec 

0.0021 
cm/sec 

Free-face height Hface 3 to 10m 5m 
 
 
STATISTICAL ANALYSIS OF NUMERICAL 
PREDICTIONS 
 
Figure 5 shows the effect on predicted lateral ground 
displacements of all problem parameters examined herein, 
namely: 
− 3 seismic excitation parameters: The maximum applied base 

acceleration amax, the number of main cycles after initial 
liquefaction (Ncyc-NL) and the dominant period T of the 
excitation. Equivalently the last two parameters may be 
substituted with the duration of the strong ground shaking 
after initial liquefaction td-tL. 

− 2 liquefied soil layer parameters: The relative density Dr, 
alternatively the corrected SPT blow count (Ν1,60)cs, and the 
Fines Content FC 

− 3 geometry parameters: The free-face ratio W, the free-face 
height Hface and the cumulative thickness of liquefied soil 
layers HTot. 

 
Observe that permanent displacements show a marked 
increase with increasing amax, td, Htot and W, while they follow 
the opposite trend with increasing f, (Ν1,60)cs, and FC.  
 
Following the identification of the basic problem parameters, a 
statistical analysis of the numerical predictions was performed 
for the quantitative verification of their effect. For practical 
reasons, it was assumed that each problem parameter acts 
independently, so that the relation for the prediction of ground 
displacements can be written in product form. 

Liquefied soil layer 

Non-liquefied soil layer 

Liquefied soil layer 

Hface 

Hface Hcrust 

Hliq 

Hliq 
(a) 

(b) 

L 

W=Hface/L 

? 
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Fig. 5.  Εffect of basic problem parameters on ground surface displacement due to free-face lateral spreading 
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To improve the accuracy of the statistical analyses, care was 
taken to scale the values of the examined problem variables to 
comparable magnitudes. The statistical analysis was firstly 
applied to the numerical predictions which were obtained for a 
sinusoidal acceleration time-history, and led to the following 
relation: 
 

( ) ( ) ( ) ( ) ( )
( )[ ] 6

60,1

875
max

432 1
1 d

cs

dd
d

dd
liq

d
face

d

h N
FCTaHHW

dD
−

=      (5) 

 
with d1=0.029, d2=0.33, d3=0.604, d4=0.635, d5=0.437 
d6=0.544, d7=1.147 and d8=9.056. 
 
Note that the values of the constants in Eq. 5 are in fairly good  
agreement with the values resulting approximately from Fig. 
5. 
  
Review of the numerical predictions for the non-sinusoidal 
excitations revealed one simple way to extend Eq. 5 from 
sinusoidal to actual seismic motions is to substitute the 
maximum acceleration amax with the mean acceleration of the 
motion amean, defined as 
 

( ) dtta
t

a
dt

d
mean ∫=

0

1              (6) 

 
where td is the duration of shaking.  
 
Taking further into account that, for the sinusoidal seismic 
motion, amean =0.63 amax, Eq. 5 is finally modified to: 
 

( ) ( ) ( ) ( ) ( )
( )[ ] 54.0

60,1

06.915.144.064.06.033.0 1
035.0

cs

dmeanliqface
h N

FCTaHHW
D

−
=  (7) 

 
Note that, for the non-sinusoidal excitations used in this study, 
it was found that amean = (0.10 ÷ 0.63) amax, while the 
respective mean value for strong earthquakes was computed as 
amean= 0.50 amax. 
 
A one-to-one comparison of all numerical predictions with the 
respective displacement values obtained from Eq. 7 is shown 
in Fig. 6, while the relative error of the analytical predictions 
is plotted against each problem parameter in Fig. 7. In that 
way, it was found that 95% of the estimated ground surface 
displacements varied between 50 and 200% of the computed 
values, without any significant bias with respect to any 
problem parameter. In addition, the correlation coefficient R2 
is 72% and the mean deviation for the relation is ±25% of the 
mean.    

 
COMPARISON WITH FIELD AND EXPERIMENTAL 
MEASUREMENTS 
 
To build confidence upon the accuracy of the proposed 
relationship, it was further checked against displacement 

measurements from the database of case histories created by 
Youd et al. (2002). 
 
Before proceeding with this comparison it is necessary to 
clarify that the aforementioned database does not provide 
specific information on the parameters used by the proposed 
relations to describe the prevailing soil conditions (e.g. Dr or 
NSPT of the liquefied soil) and the applied seismic excitation 
(e.g. amax or td). Thus, the following assumptions were adopted 
in order to estimate these missing data, conscious of the 
additional uncertainty that they will introduce to the 
comparisons with the proposed relation: 
(a) The corrected SPT value for the liquefiable soils was 

taken as (Ν1,60)cs=7. This is a reasonable mean value, 
since Youd et al. (2002) considered only liquefiable soils 
with (N1,60)<15. 

(b) The maximum base acceleration amax was computed from 
the provided moment magnitude MS and epicentral 
distance R based on the attenuation relationship of 
Sabetta & Pugliese (1987): 

56.117.0
]8.5log[31.0log 2/122

max

−×+
+−×=

S
RMa S           (8) 

The soil factor S in the above relation was taken as equal 
to 1, corresponding to soil conditions (as opposed to 0 for 
rock conditions). 

(c) As noted in previous paragraphs the mean acceleration 
amean has been computed as 50% of the maximum 
acceleration amax, a somewhat conservative value 
representative of common strong earthquakes. 

(d) The height of the free-face Hface was arbitrarily chosen as 
one third of the thickness T15 of the potentially liquefiable 
soil layers with (N1,60)<15. The maximum free-face 
height used in this way was 5.6m. 
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Fig. 6. Comparison between analytically computed (Eq. 7) 
and numerically predicted ground surface displacements 
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Fig. 7. Effect of various problem parameters on the scatter of 

ground surface displacements predictions  
 
(e) The duration td for each seismic motion was derived from 

the reported seismic moment magnitude MS , according to 
Chang & Krinitzky (1977): 

 
        0.6730.2859 SM

dt e=                                         (9) 
 
Predicted ground surface displacements according to the 
proposed relation are compared to the field measurements in 
Fig. 8. Observe that Eq. 7, provides a reasonable average fit of 

the measurements, without any systematic bias. More 
specifically, 75% of the estimated displacements fall between 
50 and 200% of the field measurements, while the mean 
deviation of the comparison is ±50% of the mean and the 
correlation coefficient is R2 = 51%. 
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Fig. 8. Comparison between ground surface predictions (Eq. 
7) and field measurements reported by Youd et al. (2002) 

 
It is worth pointing that the above error margins are not very 
far from those of empirical relationships which were based 
directly on this database, despite that the latter are not subject 
to the additional uncertainty resulting from assumptions (a) to 
(e) above. For instance, in the empirical relationships of 
Barlett & Youd (1995), Bardet et al (1999) and Youd et al. 
(2002) 90% of the estimated displacements fall between the 50 
and 200% prediction bounds while reported correlation 
coefficient were R2 = 82.3%, 80.6% and 83.6% respectively. 
 
For further checking, the proposed relationship was compared 
against displacement measurements from the centrifuge 
experiment of Taboada et al. (2002). The comparison is 
shown in Figure 9 for four different positions with W ranging 
from 0.67 (33.3o) to 0.18(10.4o). It is clear that there is good 
agreement between the empirical relation estimation and the 
measured ground surface displacements, with only exception 
the measurement at the edge of the free-face where local 
ground instabilities may have increased measured 
displacements. 
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Fig. 9. Comparison between ground surface predictions (Eq. 
7) and centrifuge measurements reported by Taboada et al. 

(2002) 
 
 
CONCLUSION 
 
In summary, a recently developed numerical methodology for 
the analysis of liquefaction related boundary value problems 
was employed in order to simulate lateral spreading of gently 
sloping ground, define the basic problem parameters and 
provide empirical relationships which quantify their effect. To 
ensure the validity of the analyses, a number of well 
documented centrifuge experiments were first reproduced and 
evaluated using the aforementioned numerical methodology. 
Furthermore, the final empirical relationship was one-to-one 
compared against results from one relevant centrifuge test, as 
well as from two hundred twenty eight (228) field 
measurements, collected and interpreted by Youd et al. (2002). 
. 
The conclusions of practical interest resulted from this study 
are the following: 
 
(a) The numerical analyses performed herein have shown that 

lateral spreading displacements of “free-face” ground 
surface irregularities:  
- increase with increasing seismic acceleration amax, 

duration of shaking td, cumulative thickness of liquefied 
soil layers Htot and free-face ratio at the point of interest 
W, while they 

- decrease with increasing predominant shaking 
frequency f, SPT blow count (Ν1,60)cs, and fines content 
FC.  

The vast majority of similar empirical relations used in 
practice today do not account for the complete set of the 
above effects. 

(b) A statistical analysis of the predictions derived from a set 
of ninety-three (93) parametric numerical analyses led to a 
decoupled empirical relationship, where the effect of the 
above parameters is separately accounted for. 

(c) Comparison to the numerical predictions has shown that, 
the new relation provides a reasonably accurate fit for 
ground surface displacements up to 1.50m, with  
- 95% of the data points falling between the 50% and 

200% prediction bounds, and 
- ±25%. standard deviation from the mean,  

(d) Good agreement is also observed when the empirical 
relationship is compared to the field measurements 
reported by Youd et al.(2002), despite the fact that a 
number of the input parameters required for the new 
relationship had to be indirectly estimated from the data 
reported by Youd et al..  

(e) This objective limitation in the application of the new 
relation, addressed in conclusion (d) above, brings to the 
stage the need for better documented field measurements, 
as well as the need for more experimental studies (i.e. 
with centrifuge or large shaking table tests) where the soil 
and excitation conditions are adequately controlled. 

(f) Although not directly related to the scope of this study, it 
is also worth noting that the numerical methodology 
employed herein (Papadimitriou et al. 2001, 
Andrianopoulos et al. 2009, Karamitros 2009) performed 
well in seventeen (17) out of the nineteen (19) centrifuge 
tests which were used for its validation, prior to the 
execution of the main set of parametric analyses. 
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