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ABSTRACT 
 
The objective of the study presented herein is to develop an empirical predictive relationship for permanent relative displacements for 
use in assessing the seismic stability of slopes, dams, and/or embankments subjected to active shallow crustal earthquake motions. A 
total of 330 horizontal motions, recorded at rock sites during 29 earthquakes in active shallow crustal regions (e.g., western North 
America: WNA), were used in this study. For each motion, the permanent relative displacements were computed using the Newmark 
sliding block procedure for a suite of yield-accelerations: 0.01, 0.05, 0.10, and 0.20 g. The predictive relationship proposed herein was 
derived by performing separate regression analyses for each yield-acceleration. This allows the relationship to be simply formulated in 
terms of ground motion characteristic parameters, independent of yield-acceleration (ky), and results in lower standard deviations than 
those for relations developed by regressing all the data in a single analysis. The non-linear mixed-effects technique was used to regress 
the relative displacement data as functions of maximum ground accelerations and velocities (Amax and Vmax, respectively). The median 
permanent relative displacements predicted for WNA rock motions decreases with increasing ky/Amax but increases with increasing 
Vmax. Also, the rate of decrease in displacement with respect to ky/Amax varies as a function of ky. 
 
INTRODUCTION 
 
The objective of the study presented herein is to develop an 
empirical predictive relationship for permanent relative 
displacements for use in assessing the seismic stability of 
slopes, dams, and/or embankments subjected to active shallow 
crustal earthquake motions at rock sites. The Newmark sliding 
block method was used to compute the permanent relative 
displacements. This method was proposed by Newmark 
(1965) for evaluating the seismic stability of slopes, wherein 
the sliding mass is modeled as a block on an inclined 
plane/ground. Displacement of the block relative to the plane 
initiates when the yield-acceleration (ky) is exceeded and 
continues until the velocities of the block and ground coincide. 
The permanent relative displacement is defined as the 
cumulative relative displacement at the end of ground shaking, 
as illustrated in Figure 1.  
 
As may be surmised from Figure 1, the permanent relative 
displacements may vary with the orientation (or sign) of the 
ground motion. Accordingly, permanent relative 

displacements were computed for both directions (i.e., +/-) of 
a ground motion. These displacements were treated as an 
individual data points in the regression analyses. The 
permanent relative displacements were computed for a suite of 
yield-accelerations: 0.01, 0.05, 0.10, and 0.20 g. The 
displacement data were then correlated to the maximum 
ground acceleration (Amax) and velocity (Vmax). 
 
Numerous empirical relationships for estimating permanent 
relative displacements have been developed over the past 30 
years (e.g., Ambraseys and Srbulov, 1994; Gokhan and 
Rathje, 2008; Richards and Elms, 1979). Most of these 
previous studies used fixed-effects regression techniques (e.g., 
least squares method) and correlated permanent relative 
displacement to the ratio of ky and the maximum peak ground 
acceleration (Amax), in addition to other ground motion 
parameters. This study differs from the previous studies in that 
the relationships proposed herein were developed by 
performing separate regressions for each ky using the non-
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linear mixed-effects (NLME) technique. Performing separate 
regressions for each ky allowed the relationships to have 
relatively low standard deviations and to have simple 
functional forms that are independent of ky. Using NLME 
regression analyses results in unbiased fits of the data, 
irrespective of the varying amount of data from different 
earthquakes. 
 
Regarding the organization of this paper, first the strong 
ground motion dataset used in this study is described. Then, 
basic concepts of the NLME regression method are reviewed; 
the proposed functional form of the predictive model is 
discussed; and the results of the regression analyses are 
presented. It should be noted that this study did not consider the 
effects of vertical ground motions on the permanent relative 
displacements. It is also noted that the acronym "WNA" in this 
paper is used in a general sense to refer to "active shallow 
crustal" regions, not just to the western North America. 
 

 
Fig. 1. Example of Newmark sliding block analyses for ky = 
0.03 g and a ground acceleration time history (BES090: M6.9; 
R49.9km) from the 1989 Loma Prieta earthquake. 
 
 
STRONG GROUND MOTION DATASET 
 
A total of 330 horizontal earthquake motions recorded at rock 
sites in active shallow crustal regions (e.g., WNA) were used 
to develop the empirical predictive relationships for permanent 
relative displacement. The ground motions were from a 
dataset assembled by McGuire et al (2001) to provide a library 
of strong ground motion time histories suitable for engineering 
analyses. The rock motion data for WNA were from 29 
earthquakes, with the 1999 Chi-Chi earthquake being the most 
recent event. The moment magnitudes of these events range 
from 5.0 to 7.6, and the site-to-source distances range from 0.1 
km to 199.1 km, where site-to-source distance is defined as 
the closest distance to the fault rupture plane. Figure 2 shows 
the earthquake magnitude and site-to-source distance 
distribution of the ground motion dataset.  
 
The motions used in this study were classified by McGuire et 
al. as "rock" motions based on the site conditions at the 

respective seismograph stations. The site classification scheme 
used by McGuire et al. is based on the third letter of the 
Geomatrix 3-letter site classification system shown in Table 1. 
Site categories A and B are considered to represent rock sites. 
This categorization is similar to that of the United States 
Geological Survey (USGS) shown in Table 2 in which rock 
sites encompass site classes A and B. 
 
Table 1. Third letter: Geotechnical subsurface characteristics 
of Geomatrix 3-letter site classification. 

Third 
letter 

Site 
description 

Comments 

A Rock 
Instrument on rock (VS > 600 m/s) 
or < 5 m of soil over rock. 

B 
Shallow 

(stiff) soil 
Instrument on/in soil profile up to 
20 m thick overlying rock. 

C 
Deep narrow 

soil 

Instrument on/in soil profile at 
least 20 m thick overlying rock, in 
a narrow canyon or valley no more 
than several km wide. 

D 
Deep broad 

soil 

Instrument on/in soil profile at 
least 20 m thick overlying rock, in 
a broad valley. 

E 
Soft deep 

soil 
Instrument on/in deep soil profile 
with average VS < 150 m/s. 

 
Table 2. USGS site classification. 

Site 
class 

Average shear wave velocity to a depth of 30 m: 
VS30 

A VS30 ≥ 750 m/s 
B VS30 =  360 – 750 m/s 
C VS30 =  180 – 360 m/s 
D VS30 ≤ 180 m/s 

 
 
 

 
Fig. 2. Earthquake magnitude and site-to-source distance 
distribution. 
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REGRESSION ANALYSIS  
 
Non-linear Mixed-effects Modeling (NLME) 
 
As stated previously, the non-linear mixed-effects (NLME) 
regression technique was used to develop the empirical 
relationships in this study. NLME modeling is a maximum 
likelihood method based on normal (Gaussian) distribution 
and is primarily used for analyzing grouped data (i.e., datasets 
comprised of subsets). The NLME regression method allows 
regression models to account for both random-effects that vary 
from subset to subset and fixed-effects that do not. In this 
study, a subset consists of motions recorded during a given 
earthquake event. In comparison to applying a fixed-effects 
regression technique (e.g., the least squares method) to the 
entire dataset, a mixed-effects regression method allows both 
inter- and intra-earthquake uncertainty to be quantified. The 
inter-earthquake error is designated by ηi where the subscript, i 
represents the ith earthquake (i.e., group) and has mean of zero 
and variance of τ2. The intra-earthquake error is designated by 
εij where the subscript, ij indicates the jth record of the ith 
earthquake and has a mean of zero and variance of σ2. The 
standard deviation of the total error can be determined by the 
following equation: 

 
22  total

 (1) 

where, σtotal is the standard deviation of total error. 
 
In more traditional regression techniques (e.g., least squares 
method), the entire dataset is regressed in a single analysis. 
However, because the dataset is comprised of motions from 
different earthquakes, with the number of recordings from 
each earthquake varying, the resulting regression is inherently 
unduly influenced by the earthquake having the largest 
number of motions. On the contrary, the NLME regression 
method produces unbiased fittings for each subset having 
different numbers of ground motion recordings. This is 
important because of the number of motions from each 
earthquake can vary significantly. The statistical analysis 
program R (version 2.5.0) was used to perform the NLME 
regression analyses (e.g., Lee, 2009). 

 
Functional Form and Regression Results 
 
The empirical predictive relationship developed in this study 
was derived by performing separate regression analyses for 
each ky. This approach allows the predictive relationship to be 
formulated only in terms of ground motion characteristic 
parameters, independent of ky, and allows the standard 
deviations to be estimated for each ky value. Furthermore, this 
approach results in lower standard deviations than those for 
models developed by regressing all the data in a single 
analysis. This approach is in contrast to previous studies 
where permanent relative displacements were correlated to the 
ratio ky/Amax, which results in complex functional forms and 
relatively large total standard deviations. This is attributable 

primarily to the large variations in displacements for a given 
ky/Amax, as shown in Figure 3.  
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Fig. 3. Displacement data and averages for ky/Amax = 0.05, 
0.10, 0.20, and 0.50 for each ky value considered in this study; 
plots for each ky/Amax in semi-log scale (lower) and a plot for 
all the ky/Amax in log-log scale (upper). 
 
After considering numerous functional forms for the 
predictive relationship, the following model was found to 
provide the best fit of displacement data for all the ky values: 
 

     max3max21 lnlnln VCACCD   (2) 

 
where: D is the permanent relative displacement (cm); C1, C2, 
C3 are regression coefficients; Amax is the maximum ground 
acceleration (g); and Vmax is the maximum ground velocity 
(cm/s). The regression coefficients and standard deviations 
determined from NLME regression analyses are listed in 
Table 3. Also, the Amax and Vmax ranges of the displacement 
data used in the regression analyses for each ky are listed in 
Table 4. It is accordingly recommended that the relationship 
(i.e., Eq. 2) be used only for Amax and Vmax values that are 
within the ranges listed in Table 4. 
 
 
Table 3. NLME Regression results: regression coefficients and 
standard deviations for each ky. 

ky (g) C1 C2 C3 τln σln (σln)total 
0.01 1.08 0.57 1.21 0.24 0.49 0.55 
0.05 0.54 1.13 1.07 0.27 0.50 0.57 
0.10 -0.077 1.38 1.03 0.37 0.49 0.61 
0.20 -2.02 1.41 1.24 0.43 0.50 0.66 
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Table 4. Ranges of Amax and Vmax of the displacement data 
used in the regression analyses for each ky. 

ky (g) 
Amax (g) Vmax (cm/s) 

Min. Max. Min. Max. 
0.01 0.019 1.58 1.32 125.1 
0.05 0.091 1.58 4.66 125.1 
0.10 0.139 1.58 8.22 125.1 
0.20 0.290 1.58 16.38 125.1 

 
 
The median permanent relative displacements predicted for 
WNA rock motions using Eq. 2, in conjunction with the 
coefficients listed in Table 3, are shown in Fig. 4. As may be 
observed from this figure, the permanent relative 
displacements decrease with increasing ky/Amax (i.e., 
decreasing Amax for a given ky) but increase with increasing 
Vmax. It is also observed that the rate of decrease in 
displacement with respect to ky/Amax varies as a function of ky. 
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Fig. 4. Regression results for varying Vmax and Amax for the ky 
values considered in this study. 
 
 
CONCLUSIONS 
 
Empirical predictive relationships for permanent relative 
displacement for use in assessing the seismic stability of 
slopes, dams, and/or embankments subjected to WNA rock 
motions have been developed. The predictive relationships 
proposed herein differs from existing relationships in that the 
non-linear mixed-effects (NLME) regression technique was 
used and separate regression analyses were performed for each 
ky (i.e., 0.01, 0.05, 0.10, and 0.20). The resulting relationships 
have simple functional forms and correlate permanent relative 
displacement to Amax and Vmax. The predicted median 
permanent relative displacements decreased with increasing 
ky/Amax but increase with increasing Vmax. It is also observed 
that a larger ky tends to have a higher rate of decrease in 
displacement with respect to ky/Amax. 
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