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Summary. T h e  fam ily of functional dependencies (FD s) was in troduced  by E .F . C odd . E quivalent de
scrip tions of fam ily of FD s play essential rules in th e  design and  im plem en tation  o f th e  re la tion  da tam odel. 
I t  is known [1,3,4,5,7,8,12,13,15] th a t  closure operations, m eet-sem ila ttices, fam ilies o f m em bers w hich-are 
no t in tersections of two o th er m em bers give th e  equivalent descrip tions of fam ily of FD s. i.e. they  and 
fam ily o f FD s de term ine  each o th er uniquely. T hese  equivalent descrip tion  were successfully applied to  find 
m any  desirable p roperties of functional dependency. T his p ap er in troduces th e  concept of m axim al fam ily 
of a ttr ib u te s . We prove th a t  th is fam ily is an equivalent descrip tion  of fam ily of FD s. T h e  concept o f nonre- 
d u n d a n t fam ily of a ttr ib u te s  is also in troduced  in th is p aper. We present som e ch ara te riza tio n s an d  desirable 
properties of these  families.

I. INTRODUCTION

The relational datam odel which was introduced by E .F. Codd is one of the m ost 

powerful database models. The basic concept of this m odel is a relation. It is a table  

every row of which corresponds to a record and every column to an attribute. Because the 

structure of this model is clear, simple and m athem atical instrum ents can be applied in it, 

it becomes the theoretical basis of database models. Semantic constraints between sets of 

attributes play very important roles in logical and structural investigations of relational 

datamodel both  in practice and design theory. Important among these constraints is 

functional dependency. Equivalent description of family of FD s have been widely studied  

in the literature. Base on the equivalent descriptions we can obtain im portant properties 

of family of FD s. In this paper we investigate two fam ilies of sets. We show that one of 

them is an equivalent description of family of FDs. This paper give some results about 

com putational problems related to these fam ilies. Let us give some necesarry definations 

and results that are used in next section. The concepts given in this section can be found 

in [1,2,3,4„6,7,8,15].

Let R =  { a i , ...........,a n} be a nonempty finite set of attributes. A  functional depen

dency is a statem ent of the form A —► B,  where A , B C R .  The FD A —* B  holds in a 

relation r =  over R if VTi,,h}- €  r we have hi{a) — h3(a) for all a €  A im plies

/tj(fc) =  hj(b) for all b €  B.  We also say that r satisfies the FD  A --*■ B.

Let Fr be a family of all FD s that hold in r. Then F =  Fr satisfies.



(1) A -  A e  F,

(2) (A -* B  e  F, B  — C  e  F) => {A — C  e  F),

(3) (A —> B G F, A C C ,  D C B) => (C —> D e  F),

(4) (A — 5  e F, C  -► I> €  F) => (A U C  — B U 1» 6  F).

A  fam ily of FD s satisfying ( l) - (4 )  is called an f-family (sometimes it is called the full 

fam ily) over R.

Clearly, Fr is an f-family over R. It is known [l] that if F is an arbitrary f-family, 

then there is a relation r over R such that Fr =  F.

Given a fam ily F  of F D s, there exits a unique minimal f-family F+ that contains F.  

It can be seen that F + contains all FD s which can be derived from F by the rules ( l)-(4 ).

A  relation schem es is a pair ( R , F ) , where R is a set of attributes, and F  is a set of 

F D s over R.  D enote A+ =  {a : A —► {a} e  F + }. A+ is called the closure of A over s. It is 

clear that A - * B s  F + iif B  C A+ .

Clearly, if s =  (R,  F)  is a relation schem e, then there is a relation r over R such that „ 

Fr =  F + (see, [1]). Such a relation is called an Amstrong relation of s.

Let R be a nonem pty finity set of attributes and P(R)  its power set. The mapping*. 

H  : P(R)  —► P{R)  is called a closure operation over R if for all A , B e  P{R) ,  the following 

conditions are satisfied:

(1) A C H(A),

(2) A C B  im plies H(A)  C H(B),

(3) H(H(A))  =  H(A).

Let s =  ( R , F ) be a relation scheme. Set H,(A) =  {a : A -* {a} €  F + },  we can see 

that H,  is a closure operation over R.

Let r be a relation, s =  {R , F)  be a relation scheme. Then A is a key of r (a key of 

s) if A —* R  6  Fr {A —► R e  / ’+ ). A is a minimal key of r(s) if A is a key of r(s) and any 

proper subset o f A is not a key of r(s).

D enote K r (K ,)  the set of all minimal keys of r (s), i.e. A , B  e  K r implies A g  B.

Clearly, K r, K ,  are Sperner system s over R.
y

Let K  be a Sperner system  over R.  We define the set of antikeys of K ,  denoted by 

K ~ 1, as follows:

K - 1 =  {A c R :  (B e  K)  => {B g  A) and (A c  C) => (3B e K) ( B  C C)}.

It is easy to  see that K  1 is also a Sperner system  over R.
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It is known [5] that if K  is an arbitrary Sperner system  over R,  then there is a relation  

scheme such that K,  =  K.

In this paper we always assume that if a Sperner system  plays the role of the set of 

minimal keys (antikeys), then this Sperner system  is not em pty (doesn’t contain R).  We 

consider the comparision of two attributes as an elementary step of algorithms. Thus, if 

we assume that subset of R are represented as sorted lists o f attributes, then a Boolean 

operation on two subsets of R requires at m ost \R\ elementary steps.

Let L C P ( R ) . L is called a meet-irreducible family over R (som etim es it is called a 

family of members which are not intersection of two other members) if VA, B , C  e  L, then  

A =  B  n C  im plies A =  B or A — C.

Let I  C P(R),  R €  I,  and A , B e I = > A n B e I  (Som etim es I  is called a meet- 

sem ilattice over R).  Let M  C P(R).  Denote M + =  {nM'  : M'  C M} .  We say that M  

is a generator of I  if M + =  I.  Note that R C M + but^not in M,  by convention it is the 

intersection of the em pty collection of sets.

D enote N  =  {A  €  /  : A ±  n{A' e l - .  A d  A'}}.

In [5] it is proved that N  is the unique minimal generator o f I.

It can be seen that N  is a family of members which are not intersections of two other 

members.

Let H  be a closure operation over R.  Denote Z(H) =  {A : H(A)  =  A} and N(H)  =  

{A €  Z(H)  : A ^  n {4 ' £  Z[H) : A c  A'}}. Z(H)  is called the family of closed sets of H.  

We say that N(H)  is the minimal generator of H.

It is shown [5] that if L is a meet-irreducible family then L is the minimal generator 

of some closure operation over R.  It is known [1] that there is an on-to-one correspondence 

between these families and f-family.

Let r be a relation over R.  Denote Er =  {Ei j  : 1 < i < j  <  |r|}, where =  {a e  R : 

hi{a) =  hj(a)}.  Then Er is called the equality set of r.

Let Tr =  {A  €  P(r) : 3E -̂ =  A, f l Epq : A c Ep<1}.  We say that Tr is the maximal 

equality system  of r.

Let r be a relation, and K  a Sperner system  over R.  We say that r represents K  if 

K r =  K.

The following theorem is known ([8]).

Theorem  1.1. Let K  be a non-empty Sperner system and r a relation over R. Then r represents 

K  iff K ~ l =  Tr, where Tr is the maxima1 equality system of r.

Let s =  (R , F ) be relation scheme over R, K , is a set of all minimal keys of s. D enote



by K , 1, the set of all antikeys of s. From Theorem 1.1 we obtain the following corollary.

Corollary 1.2. Let s =  (R , F)  be a relation scheme and r a relation over R.  We say that r 

represents if K T — K , .  Then r represents a iff K ~ l =  Tr, wher^ Tr is the m axim al equality 

system  of r.

In [7] we proved the following theorem.

T heorem  1.3. Let r =  {hi ,  ...,h m} be a relation, and F an f-family over R. Then Fr =  F iff for 

every A C R

Where Hp(A)  =  {a 6  R : A —► {a} €  F} and Er is the equality set of r.

Theorem 1.4. [4] Let K  be a Sperner system and s = (iî, F ) a relation scheme over R. Denote 

Z{s)  =  {A  : A+ =  A}.  Then K , =  K  i f f { R } u K ~ 1 ç z{s) ç {R}  u G { K ~ l ), where G ị K - 1) =  

{A  : 3 B e K ~ l : A C  B} .

Clearly, (see [4]) we have

Theorem 1.5. Let K  = { K l ....... K m} be a Sperner system over R. Set s = (i?,F) with

f ’ =  {Ki. — R , . . . , Km — i2>. Then K,  =  K  and Z[s) =  GÍÀ--1) u {Æ}.

II. RESULTS

In th is section we introduce the concept of maximal family of attributes. We show  

that th is family and fam ily of FD s determine each other uniquely. We give some desirable 

properties o f this family. We also introduce the concept of nonredundant family of at

tributes. We present som e results about connections between this family, meet-irreducible 

fam ily and closure operation.

Now we introduce the following concept.

Definition 2.1. Let R  be a nonem pty finite set of attributes. A family M  =  {(A, {a}) : A c  

R, a €  R} is called a m axim al family of attribute over R iff th ể following conditions are 

satisfied:

(1) a £  A,

(2) For all (B, {6}) 6  M, a 6  B  and A C B  imply A =  B.

(3) /9 (B, {6}) €  M  : a £  B, a /  6, and La U B  is a Sperner system  over R, where 

La =  {A  -. (A, {a}) G M }.

HF ( A ) =



Remark 2.2.

(-) It is possible that there are (A, {a}), (B , {fc}) e. M  such that a /  b, but A =  B.

(-) It can be seen that by ( l )  and (2) for each a 6  RLa is a Sperner system  over R. 

It is possible that La is an em pty Sperner system .

(-) Let R be a nonempty finite set of attribute and P(R)  its power set. According to  

definition 2.1 we can see that given a family Y  C P{R)  x P{R)  there is a polynom ial time 

algorithm deciding whether Y  is a maximal family of attribute over R.

Let H  be a closure operation over R. Denote Z(H) =  {A : H(A) =  A}  and M(H)  =  

{(A, {A}) : a <£ A,  A €  Z{H)  and B  e  Z(H) ,  A C B , a ( £ B  imply A =  B }.

Z{H)  is called the family of closed sets of H.  It can be seen that for each (A, {a}) e  

M(H)  A is a maximal closed set which doesn’t contain a.

It is possible that there are (A, {a}), (B , {6}) e  M[H)  such that a ^  b, but A =  B.

Rem arks 2.3. Let R be a relation over R and Fr a family of all FD s that hold in r. Denote 

A+ =  {a : A —► {a} e  Fr . Set Zr =  {A : A =  A+}. Denote by Nr the minimal generator of 

Zr . It can be seen that Nr C Er and Nr =  {A €  Er : A ±  n { B  : B  e  Er, A c  B} ,  where Er 

is the equality set of r.

We give the following theorem which shows that closure operations and m axim al 

families of attributes determine each other uniquely.

T heorem  2.4. Let H be a closure operation over R. Then M(H)  is a maximal family of attributes 

over R. Conversely, if M  is a maximal family of attributes over R then there exits exactly one 

closure operation H over R so that M(H)  =  M,  where for all B  S P{R).

H(B)
Vb c a A, i/BA S L(M)  : B  Ç A 

R, otherwise

and L[M) =  {A : (A, {a}) €  M }.

Proof: Assume that H is a closure operation over R. Based on the definition of M(H)  

we have (1) and (2). We set L'a =  {A : (A, {a} €  M(H)} .  Suppose that there is a

(B, {b})  e  M(H)  : a /  6, a £ B, L'a U B  is a Sperner system  over R (* ) .  Then we choose 

(J3,{6}) G M(H)  such that B  is maximal for (*). By (2) in Definition 2.1 we see that 

Lprimea is a Sperner system  over R. Consequently, there is no an A €  L'a such that B C A. 

Accorrding to  the definition of M(H)  we have [B,  {a}) e  M(H) .  Thus, B  e  L'a holds. 

This is a constradiction. Hence, we have (3) in Definition 2.1 i.e. M( N)  is a minimal 

family of attributes over R.  Conversely, assume that M  is a m axim al fam ily of attributes



over R.  D enote L(M)  — {A : [A, {a}) e. M} .  First we will prove that L(M)  is a meet- 

irreducible fam ily over R.  For any (A, {o}) 6  M  by Remark 2.2 we have A ^  A' n  A" and 

A 7̂  A' n B,  where A', A" e  La and B e  L[M) : A ^  B.  If there are (B,  {6}), (C , {c}) €  M  

such that a, a, A c  B , A c C  then by (2) in Definition 2.1 we have a e  B, a g  C. 

Hence, A c  B  n  C  holds. Thus, for all A , B , C  €  L(M)  if A =  B  n  C  then A =  B  or 

A =  C.  Consequently, L(M)  is a meet-irreducible family over R.  It is known[5] that meet- 

irreducible families and closure operations determine each other uniquely. On the other 

hand, according to  Remark 2.3 and Theorem 1.3 we can see that H  is a closure operation  

over R,  and L(M)  is the minimal generator of Z(H).

Now we have to  prove that M(H)  =  M.  If (A, {a}) €  M  then A e  L(M).  Suppose 

that for each b ^  A there exists a S e  Z[H) : A C B, b ^ B.  It can be seen that A is the 

intersection of such Bs.  This conflicts w ith the fact that A e  L(M).  Thus, if [A, {a}) G M  

then there is a 6 ^ A such that (A, {6}) €  M{H)  (**). If {A, {a}) e  M(H)  then according 

to  definition of M{ H)  B €  Z(H) ,  and A c B  imply a €  B.  By a A we can see that 

A is not the intersection of such B.  According to construction of H  we have A €  L{M).  

T hus, if (A, {a}) €  M(H)  then A e  L(M)  (***). Now suppose that (A, {a}) g  M,  but 

(A, {a}) e  M( H) .  Because A is a closed set of H,  a €  A and by definition of M(H)  there is a 

(B , {a}) e  M{H)  such that A c B.  By (***) B e  L(M)  holds. This conflicts w ith condition

(2) o f Definition 2.1. Hence 2.1, (A, {a}) €  M(H)  holds.

Suppose that (A, {a}) €  M[H) ,  but (A, {a}) ^ M.  We consider La ■ If there is an 

A' e  La such that A c  A' then by (**) we can see that A' is closed set of H.  Accorrding 

to  definition M( H)  we obtain (A, {a}) e  M(H) .  This is a contracxdiction. If A' c  A then  

by (***) w e can see that this conflicts w ith  condition (3) of Definition 2.1. Consequently, 

there is an A' €  La so that A =  A'. Hence, M(H)  =  M  holds.

If we suppose that there is a closure operation H'  such that M(H')  =  M.  Denote 

L(H') =  {A : (Aa e  M( H) } .  According to parts (**) and (***) of above proof we can 

see that L(H')  is the minimal generator of Z(H') .  By M(H')  =  M{ H)  =  Af we have 

L(H')  =  L(M)  =  L(H).  Because closure operations and meet-irreducible families determine 

each other uniquely, we obtain H  =  H' . The proof complete.

*
It is known [5] that closure operation and fam ilies of FD s determine each other 

uniquely anf from Theorem  2.4 the fo 2.4 the following corollary is clear:

C orollary 2 .5 . There exists an one-to-one correspondence between maximal families of 

attributes anf fam ilies of FDs.

Based on the proof of Theorem 2.4 we have the following.



Propositon 2.6. Let H be a closure operation over JR. Denote Z(H) =  {A : H(A)  =  A } 

and M(H)  =  {(A, {a}) : a(A, A(Z(H)  and B  £  Z[H),  A C B, a  £  B imply A — B} .  Set 

L(H) =  {A : {A, {a}) €  M(H)} .  Then L(H) is the minimal generator of Z(H),  i.e. it is also the 

minimal generator of H.

Remark 2.7. It is known [ ll]  that if s = <  R, F > is a relation scheme, denote Z(s) =  {A : 

A+ =  A} ,  and N,  is a minimal generator of Z(s),  then

i
N,  =  M A X ( F + ) =  U a€RMAX{ F+ , a ) ,

where

M A X ( F + ,a) =  { A C  R : A — {a} £  F+,  A c B  => B  -> {a} 6  F + }.

P roposition  2.8. Let F be an family over R, a £  R.  Dengte LF{A) =  {a £  R : A —* {a} £

F},  Z F  =  {A  : LF(A)  =  A}. Clearly, R £  ZF, and Z F  closed under intersection. Denote by 

NF the minimal generator of ZF. Set Ma =  {A £  Np ■ a A, /IB  £  N f : a ^ B, A C B }.

Then Ma =  MAX( F, a) ,  where MAX(F,  a) =  {A £  R : A is a nonempty maximal set such that

( A , { a } ) t F } .

Proof: It is known [11] that MAX( F, a)  C Nf holds ( l ) .  Assume that A £  Ma. By A £  Np,

i.e. Lp(A)  =  A and a £  A we obtain (A, {a}) £  F.  From (1) and according to  the definition  

of Ma we have A £  MAX(F,  a). Conversely, if A €  MAX( F,  a) then by (1) A £  Nf holds (2). 

By (A, {A}) ^ F  and from (2) we obtain a ^ A. According to  the definition of MAX( F,  a) 

we have A £  Ma. Our proof is com plete.

It is known [1] that meet-irreducible families and m eet-sem ilattices detem ine each 

other uniqurly. On the other hand, from Proposition 2.8 and based on definition of M(H)  

and Definition 2.1 the next corollary is clear.

Corollary 2.9. Let s = <  R, F >  be a relation scheme. Then {(A, {a}) : A & M A X ( F + ,a),  a £  

R}  is a m axim al family of attributes over R.

It is known [9] that we used the family {(A, {a}) : A £  M A X { F + ,a),  a €  R}  in

algorithm for generating Armstrong relations and inferring functional dependencies.

It can be seen that in definition of maximal family M  attributes over R it is possible 

that there are (A, {a}), [B,  {6}) €  M  such that a ^  b, but A =  B.  We introduce the new  

concept which deletes redundancy.

Deânition 2.10. Let R be a nonempty finite set of attribute. A  family M  =  {(A, {a}) : A c  

R, a £  R} is called a nonredundant family of attribute over R if for all (A, {a}), (B, {6}) £  Af:



(1) A.

(2) a £  B  and A C B  imply A =  B.

(3) ^ B ,{6 }) G M  : a ^ b ,  A =  B.

It can be seen that for each a 6  R La — {A : (A, {a}) e  M } is a Sperner system  

over R.  It is possible that La is an em pty Sperner system . It is easy to see that given 

a fam ily Y  C P(R)  x P{R)  there is a polynom ial tim e algorithm deciding whether Y  is 

a nonredundant fam ily of attribute over R.  Definition 2.11. Let i f  be a closure over R.  

D enote Z(H)  =  {A : H[ A ) =  A}. Then we say that the set T =  {(A, {a} : a e  A, A(Z{H))  

is m inim al of H  if

(*) f l B e Z ( H ) :  A c B ,  a ( £ B ,  

(**) ? i ( B , { b } ) e T :  A =  B,  a b.

It can be seen that T  is a minimal set of H  then T  C M{H) .  It is possible that for 

any closure operation H  there are many minimal sets of H.  However, we have the next 

lemm a.

Lem m a 2.12. Let H be a closure operation over R. T  a minimal set of H. Denote by N(H)  the 

minimal generator of H . Set L(T) — {A  : (A, {a}) G T},  Then L[T) =  N(H)  and |7V(ii)| =  |T|.

Proof. D enote by N(H)  the m inim al generator o f H,  i.e. N(H)  =  {A  G Z(H)  : A /  n{A' G 

Z(H)  : A C A '}}. We have to prove that L(T) =  N{H) .  Assume that A €  L(T).  By (*) in 

definition 2.11 we can see that if B  e  Z(H)  and A c  B  then a E B.  By a ^ A A is not the 

intersection of such Bs.  It is obvious that A G Z(H).  Hence, A G N[ H)  holds. Concersely, 

assum e that A G N(H) .  Suppose that for each b £ A there exits a B  G Z{H) : A c  B, b ^ B.  

It can be seen that A is the intersection of such Bs.  This conflicts w ith the fact that 

A G N(H) .  By (**) in definition of T  we see that the number of elements of T  is |7V(#)|. 

The lem m a is proved.

Based on Lemma 2.12, Definition 2.11 and definition of M( N)  we have the following.

C orollary 2 .13 . Let H  be a closure operation over R.  Denote by N  the minimal generator 

o f H.  Then H  has an unique minimal set iff \N\ =  \M(H)\ .

*Based on Lemma 2.12, Definition 2.11, 2.10 and according to  Lemma 2.12 the next 

corollary is clear.

C orollary 2.14. Let M  be a maximal family of attribute over R.  D enote L(M)  =  {A  : 

(A, {a}) G M } .  Then M  is a nonredundant family of attribute iff \M\ =  \L[M)\  holds.

Based on Lemma 2.12 we give the following.



Theorem 2.15. Let H be a closure operation over R, T  a minimal set of H. Then T  is a 

nonredundant family of attributes over R. Conversely, if M  is a nonredundant family of attribute 

over R then there exits exactly one closure operation H over R such that M  is a minimal set of

H, where for all C €  P(R)

_  i  n ccA-A, i f ^ A e  L(M) : C  C A
[ R, otherwise.

and L(M) =  {A  : £4, {a}) e  M}.

Proof. According to Definitions 2.10 and 2.11 it is obvious that if T  is a minimal set of a 

given closure operation then T  is a nonredundant family of attributes over R. Conversely, 

if M  is a nonredundant family of attributes over R then by the proof of Theorem 2.4 we 

can see that L ( M ) is a meet-irreducible family over R,  and L[M)  is the minimal generator 

of Z(H),  i.i. L(M)  =  N(H) .  we have to prove that M  is a minimal set of H . It can be seen 

that by construction of H, if {A, {a}) S M  then a ^ A and A is a closed set of H.  Clearly, 

M  satisfies the condition (**) of Definition 2.11. Suppose that there exits a B e  Z ( H ) 

such that a e  B  and A c  5 (1 ). If B G N[ H)  then by L(M) =  N(H)  we can see that ( l )  

conflicts w ith  (2) in Definition 2.10. If B  €  { C  : C  €  L ( M) , B  c  C } then by a ^ B  we can 

see that there is a such C  so that a ^ C .  This is a contracdiction. Consequently, M  satifies 

the condition (*) in DEfinition 2.11. Thus, M  is a minimal set of H.  Now we suppose 

that there is a closure operation H’ such that M  is also a minimal set of H' . According to  

Lemma 2.12 we obtain L[M)  =  N(H') ,  where N(H')  is the minimal generator of H'.  Hence, 

N(H)  =  N(H')  holds. Because closure operations and meet-irreducible families determine 

each other uniquely. We obtain H — H' . The theorem is proved.

Now we give the following example.

Exam ple 2.16. r is the following relation over R =  {a, b,c,d} :

a b c d

0 0 2 2

5 0 0 7

1 1 0 0

0 0 0 0

3 3 3 0

It is easy to  see that

Er =  { { a ,6 } ,{ i ,c } ,{ c ,d } ,{ 6 } ,{(:},{<*},0}.



By remark 2.3 we have Nr — {{a ,  6}, {6, c},  {c, d},  {c£}}. Clearly, Fr is an f-family over 

R.  D enote L f t {A) =  {a : A —► {a}}. It can be seen that Lpr is a closure operation over R 

and Nr is the m inim al generator of Lpr it also is the minimal generator of Z f r. According 

to  Propositition 2.S we obtain

M a =  { { b , c } , { c , d } } , M b =  { c , d } ,

M c =  =  { {a ,  b},  {6, c}} .

By Proposition 2.8 and Corollary 2.9 

M ( L Fr) =  { ( { b , C } , { a } ) , { { c , d } , { a } ) , { c , d } , { b } ) .  

( { a , b } , { c } ) , { d } , { c } ) , ( { a , b } >{ d } ) , { { b , c } , { d } ) }  

is the m axim al family of attributes over R.

According to Definition 2.11 we obtain some minimal sets of Lft as follows:

Ti =  { { { b , c } , { a } } , { c , d } , { b } , { { a , b } , { c } , { { d } , { c } ) } ,

Clearly, they are nonredundant families of attribute over R and L(Ti)  ■= L(T2) =  

L(M)  =  Nr .
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