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CPT EVALUATION OF LIQUEFACTION POTENTIAL 
USING NEURAL NETWORKS 

Pradeep U. Km-up 
University of Massachusetts Lowell 
Lowell, MA-USA-O 1854 

Nitin K. Dudani 
University of Massachusetts Lowell 
Lowell, MA-USA-O1 854 

ABSTRACT 

The increasing popularity of the cone penetration test (CPT) for site investigations has led to several methods for predicting 
liquefaction potential from CPT data. This paper describes a feed-forward neural network model trained by back-propagation for 
predicting liquefaction potential. The model requires the following seven input variables: cone resistance, total vertical stress, 
effective vertical stress, earthquake magnitude, maximum horizontal acceleration at ground surface, the mean grain size D50, and the 
seismic shear-stress ratio. A total of ninety-six data sets from different sites around the world were used for training, and eighty-hvo 
data sets were used for testing and validating the neural network model. The model gave an overall success rate of 96% for correctly 
predicting the liquefaction potential. 

INTRODUCTION 

One of the major causes of destruction during an earthquake is 
the loss of strength and stiffness of cohesionless soils. This 
phenomenon, called liquefaction, occurs mainly in loose and 
saturated sands. Liquefaction of sandy soils during 
earthquakes can cause enormous damage to buildings, bridges, 
highway embankments and other civil engineering structures. 
Determination of liquefaction potential due to an earthquake is 
a complex geotechnical engineering problem. Many factors, 
including soil parameters and seismic characteristics influence 
this problem. 

Methods have been developed in the past for assessing the 
liquefaction potential of sand using the standard penetration 
test data (Tokimatsu and Yoshimi 1983, Seed et al. 1985, Goh 
1994). The cone penetration test (CPT) gives continuous, 
detailed soil profiles with depth and is capable of locating 
even thin liquefiable seams of sand or silts. This is important 
in sand and silts because of the non-uniformity of these 
deposits. Several methods have been developed for predicting 
liquefaction potential from CPT data (Robertson and 
Campanella 1985, Seed and De Alba 1986, Shibata and 
Teparaksa 1988, Goh 1996). This paper examines the prospect 
of using neural networks for assessing liquefaction potential 
from actual CPT data. 

Artificial neural networks (ANN) are data processing 
paradigms that work similar to the brain in processing 
information (Khanna 1989, Dowla and Rogers 1995, Hagan et 
al. 1999). Neural networks have been found to be very useful 
in learning complex relationships between multidimensional 

data. A particular strength of ANN is its relative tolerance to 
noisy and fuzzy data that makes it more robust and flexible 
than mathematical models. Many types of neural network 
exist. These neural networks differ in the topography or 
architecture and the rules of learning and self-organization. In 
this paper a feed-forward neural network with back- 
propagation algorithm is used to predict liquefaction potential 
from CPT data. 

ANN MODEL ARCHITECTURE 

A typical neural network consists of processing units 
(neurons) organized in layers. The architecture of the ANN 
model used in this study is illustrated in Fig. 1. The seven 
parameters that were used as input for the neural network 
model are the earthquake magnitude, M; effective vertical 
stress, o’~; total vertical stress, ao; cone tip resistance, q,; the 
peak acceleration at the ground surface of the site, amax; 
seismic shear-stress ratio, SSR; and the median grain diameter 
of the soil, D5,,. Hence the input layer has seven neurons. The 
only output is the liquefaction potential, and therefore there is 
only one output neuron (in the output layer). The hidden layer 
enables non-linear modeling of the sensor data. The number of 
neurons in the hidden layer is determined by a trial and error 
method, i.e. by training the network with different number of 
hidden neurons and comparing the results with the desired 
output. A hidden layer with seven neurons gave good results 
for predicting the liquefaction potential of the sites. Thus a 
7x7x1 network architecture was trained and tested for 
predicting the liquefaction potential of sites using CPT data 
from actual field records. 
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The connection between the neurons in the different layers are 
as shown in Fig. 1, where the output from one neuron is one of 
the inputs to all the neurons in the next layer and the inputs are 
the outputs from all the neurons in the previous layer. With 
each connection is associated a modifiable weight (models the 
synapse in the brain). Each neuron transforms the weighted 
sum of the inputs into a single outgoing activity that it 
transmits to all other neurons in the next layer. A tangent 
sigmoid function was used as the activation function to 
transform the input values to the hidden layer neurons, where 
as a log sigmoid function was used for transformations by the 
output layer neuron. 

ANNs, like people, learn by examples. Training of a neural 
network is conducted by presenting a series of example pattern 
of associated input and output values. Initially when a network 
is created the connection weights are set to random values 
(random numbers). As the training sets of inputs and outputs 
are presented, the weights are automatically modified by the 
adopted learning rule (back-propagation) until the ANN gives 
the desired output. A feed-forward network, trained by back- 
propagation, was used in this research because of its simplicity 
and robustness. Once the ANN is trained for evaluating 
liquefaction potential, the prediction mode simply consists of 
propagating the data through the network, giving immediate 
predictions. 

Liquefaction 
Potential 

output 
Layer 

M d oo qc amax SSR ho 

Hidden 
Layer 

Input 
Layer 

Fig. I Architecture of the Neural Network Model 

TRAINING. TESTING AND VALIDATING THE MODEL 

Many databases are available for CPT assessment of 
liquefaction and non-liquefaction of a site. The database used 
in this paper consists of total of 178 CPT soundings (108 

records of sites that liquefied, and 70 records of sites that did 
not liquefy), from nine sites, from all over the world (Stark & 
Olson 1995, Goh 1996). Out of 178 soundings, 96 soundings 
were selected in random and used for training the neural 
network and the remaining 82 sounding data were used for 
testing the model. 

In the training phase, the output neuron was given a value of 
one for sites that liquefied, and zero for sites that did not 
liquefy. The training was performed on a PC having 128 MB 
RAM and 400 MHz CPU speed. Training was performed until 
the average sum squared errors over the entire training pattern 
reached 0.004. This occurred after approximately 1000 cycles 
of training and took less than 5 minutes. The weight matrix 
obtained after the training phase are given below. After 
training, the neural network was once again presented with the 
data that was used for training. This step consisted of simply 
propagating the data through the network. There were only 
two errors when tested using the data records used for training 
(ninety-six records). The model was further evaluated using 
eighty-two new sounding records, not previously used for 
training the model (Table 1). The model gave accurate 
predictions for seventy-seven soundings (i.e. only five errors). 
The neural network model developed in this study was found 
to have an overall success rate of 96% for correctly predicting 
the liquefaction potential of a site. 

Weight and Bias Matrices for the Neural Network Model 

Connection weights between input layer and hidden layer 
(H x I - Hidden layer neurons x Input layer neurons): 

-3130 -10 -110 -10 92040 -75100 104740 

-4580 40 200 -70 -12850 -104580 -84420 

-16230 -380 -240 10 -48020 -13180 66050 

-25320 110 110 10 36820 77750 139600 

13900 150 220 -10 - 28970 98900 53430 

16030 290 -150 10 -23320 -54580 122070 

17310 -270 -60 -1 18930 - 74480 - 152860 

Bias for the hidden layer neurons in the form H x 1: 

3.38 
- 12.89 
- 17.33 
- 1.38 

Connection weights between hidden layer and output layer 
(0 x H - Output layer neurons x Hidden layer neurons): 

[4.50 61.49 201.67 -519.16 -7.81 -1.31 -341.201 

Paper No. 4.36 2 



Bias for the output neuron in the form 0 x 1: 

[ 3.32 ] 

Many of the existing methods to evaluate liquefaction 
potential use the normalized, corrected tip resistance qcl where 
as the neural network model does not require any 
transformation of data. The conventional approach requires 
subjective determination of an empirical boundary curve. This 
is not necessary in neural network, as it is able to “learn” the 
relationship between input and output variables. The trained 
neural network model provides instantaneous results unlike 
some of the existing methods. Also the neural network model 
can be retrained to improve its performance, as additional CPT 
field case records become available. 

CONCLUSIONS 

A feed-forward back-propagation neural network model was 
developed to evaluate liquefaction potential using actual CPT 
records. The model was found to be very reliable and gave an 
overall success rate of 96% for predicting the liquefaction 
potential. The advantage of the neural network model is that it 
can be retrained as more data becomes available, and the 
prediction accuracy improved. 
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Table 1. Testing Data for the Neural Network Model 

M 0’0 00 4c amax SSR D50 Liquefaction Liquefaction 

Site 

Tangshan 

Area 

Sounding &Pa) (kh) Wa) (g) W = 7.5) (mm) Field ANN Prediction 

1976 Tangshan Earthquake 

T-12 7.8 33.3 37.3 2450 0.4 0.29 0.14 Yes Yes 

T-12 7.8 42.2 55.9 2550 0.4 0.34 0.14 Yes Yes 

T-12 7.8 51.0 74.5 3140 0.4 0.37 0.16 Yes Yes 

T-12 7.8 56.9 87.3 5690 0.4 0.39 0.16 Yes Yes 

T-12 7.8 72.6 119.6 3430 0.4 0.41 0.16 Yes Yes 

T-12 7.8 100 177.5 8240 0.4 0.42 0.16 Yes Yes 

T-13 7.8 28.4 37.3 1670 0.4 0.34 0.12 Yes Yes 

T-13 7.8 28.4 39.2 3430 0.4 0.36 0.12 Yes Yes 

T-13 7.8 34.3 50 4020 0.4 0.38 0.12 Yes Yes 

T-16 7.8 69.6 74.5 11250 0.4 0.27 0.16 No No 

T-16 7.8 108.9 156.9 15460 0.4 0.34 0.2 No No 

T-17 7.8 54.9 57.9 11170 0.2 0.14 0.21 No No 

T-17 7.8 63.7 76.5 11890 0.2 0.15 0.21 No No 

T-17 7.8 73.5 97.1 17420 0.2 0.17 0.14 No No 

T-18 7.8 76.5 87.3 1620 0.2 0.14 0.17 Yes Yes 

T-18 7.8 81.4 97.1 3580 0.2 0.15 0.17 Yes Yes 

T-19 7.8 24.5 28.4 1010 0.2 0.15 0.19 Yes Yes 

T-19 7.8 36.3 53.9 4900 0.2 0.19 0.31 Yes Yes 

T-19 7.8 46.1 74.5 2850 0.2 0.21 0.18 Yes Yes 

T-19 7.8 59.8 103 5940 0.2 0.22 0.18 Yes Yes 

T-20 7.8 21.6 22.6 12980 0.2 0.14 0.17 No No 

T-20 7.8 25.5 31.4 12810 0.2 0.16 0.17 No No 

T-20 7.8 29.4 39.2 16270 0.2 0.17 0.17 No No 

T-21 7.8 57.9 57.9 10390 0.2 0.13 0.26 No No 

T-21 7.8 59.8 61.8 8940 0.2 0.13 0.26 No No 

T-2 1 7.8 65.7 74.5 11070 0.2 0.15 0.26 No No 

T-22 

T-22 

T-23 

T-23 

T-24 

7.8 

7.8 

7.8 

7.8 

7.8 

40.2 

43.1 

46.1 

48.1 

34.3 

68.6 

74.5 

68.6 

72.6 

52 

1900 

4900 

2200 

2600 

4310 

0.2 

0.2 

0.2 

0.2 

0.2 

0.22 

0.22 

0.19 

0.19 

0.2 

0.16 

0.16 

0.14 

0.14 

0.16 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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T-24 7.8 38.2 59.8 2940 0.2 0.2 0.16 Yes Yes 

T-25 7.8 79.4 153 8830 0.2 0.23 0.08 Yes No 

T-26 7.8 53.9 97 1960 0.1 0.11 0.14 Yes Yes 

T-27 7.8 51 93.2 1080 0.2 0.23 0.07 Yes Yes 

T-28 7.8 103.9 205 15200 0.1 0.12 0.08 No No 

T-28 7.8 107.9 212.8 6370 0.1 0.11 0.08 No No 

T-31 7.8 43.1 43.1 3450 0.2 0.13 0.16 Yes Yes 

T-31 

T-32 

T-32 

7.8 

7.8 

7.8 

50 

49 

51 

57.9 

55.9 

59.8 

2680 

3230 

4040 

0.2 

0.2 

0.2 

0.15 

0.15 

0.15 

0.16 

0.21 

0.21 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

T-32 7.8 55.9 70.6 2880 0.2 0.16 0.21 Yes Yes 

T-33 

T-33 

T-33 

T-34 

7.8 

7.8 

7.8 

7.8 

51 

66.7 

77.6 

47.1 

59.8 

93.2 

103.9 

48.1 

2940 

5740 

8830 

1840 

0.2 

0.2 

0.2 

0.2 

0.15 

0.18 

0.18 

0.13 

0.15 

0.32 

0.32 

0.13 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

T-35 

T-35 

T-35 

7.8 

7.8 

7.8 

62.8 

63.7 

77.5 

72.6 

74.5 

103.9 

2500 

4410 

4160 

0.2 

0.2 

0.2 

0.15 

0.15 

0.17 

0.17 

0.17 

0.17 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

T-36 7.8 15.5 111.8 7850 0.2 0.18 0.22 No Yes 

1977 Vrancea Earthquake 

Dimbovitza site (1) 7.2 47.1 78.5 5120 0.22 0.22 0.2 Yes Yes 

7.2 

7.2 

7.2 

7.2 

53.9 

62.8 

71.6 

80.4 

93.2 

111.8 

130.4 

149.1 

3660 

3050 

1290 

5120 

0.22 

0.22 

0.22 

0.22 

0.22 

0.23 

0.23 

0.23 

0.2 

0.2 

0.2 

0.2 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Noshirocho 7.7 47.1 56.9 

7.7 53 71.6 

7.7 63.7 94.1 

7.7 45.1 53 

7.7 51 62.8 

7.7 65.7 94.1 

1983 Nihonkaichubu Earthquake 

9810 0.23 0.18 0.32 No No 

15690 0.23 0.2 0.32 No No 

15080 0.23 0.21 0.32 No No 

1760 0.23 0.17 0.32 Yes Yes 

4020 0.23 0.18 0.32 Yes Yes 

7800 0.23 0.21 0.32 Yes Yes 

7.7 73.5 111.8 8800 0.23 0.22 0.32 Yes Yes 

1988 Sanguenary Earthquake 

Ferland, Quebec, 

Canada 
5.9 63 90 2760 0.25 0.16 0.1 Yes No 

5.9 72.8 109.6 5710 0.25 0.17 0.1 No No 
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5.9 82.6 129.3 6510 0.25 0.18 0.1 No No 

5.9 92.4 148.9 7770 0.25 0.18 0.1 No No 

5.9 102.2 168.5 7770 0.25 0.18 0.1 No No 

1989 Loma Prieta Earthquake 

San Francisco Marina 3-Mar 7.1 67.2 77.6 13940 0.24 0.16 0.275 No No 

District 3-Mar 7.1 78.9 100 18000 0.24 0.18 0.361 No No 

3-Mar 7.1 100.1 140.9 13000 0.24 0.19 0.35 No No 

4-Mar 7.1 59.1 64.1 3350 0.24 0.15 0.178 Yes Yes 

4-Mar 7.1 83.6 115 750 0.24 0.19 0.16 Yes Yes 

5-Mar 7.1 81.8 120 1200 0.24 0.2 0.197 Yes Yes 

Leonardini 

Farm 

6-Mar 

39 

38 

7.1 

7.1 

7.1 

117.1 

36.4 

39.5 

131.9 

45.6 

44.1 

5500 

1300 

1500 

0.24 

0.14 

0.14 

0.15 

0.1 

0.09 

0.244 

0.1 

0.1 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

37 7.1 51.8 60.4 2500 0.14 0.1 0.12 No Yes 

Port of Richmond POR2 7.1 66.2 108.9 1700 0.16 0.14 0.07 Yes Yes 

POR3 7.1 66.2 108.9 1900 0.16 0.14 0.07 Yes Yes 

POR4 7.1 66.2 108.9 1500 0.16 0.14 0.07 Yes Yes 

San Francisco SOFBB4 7.1 100.6 154.5 5000 0.29 0.25 0.25 Yes Yes 

Oakland Bay Bridge SOFBBS 7.1 100.6 154.5 9400 0.29 0.25 0.25 Yes Yes 
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