
Journal of Computer Science and Cybernetics, V.32, N.2 (2016), 133–152

DOI no. 10.15625/1813-9663/30/2/7574

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE
FOR LARGE-SCALE IMAGE CLASSIFICATION

TIEN-DUNG MAI

University of Information Technology,
Vietnam National University-Ho Chi Minh City

dungmt@uit.edu.vn

Abstract. Large-scale image classification is a fundamental problem in computer vision due to many

real applications in various domains. One of the popular methods is to train one-versus-all binary

classifiers independently for each class. Although this method is simple, they are impracticable

in the case of a large number of classes because their testing complexity grows linearly with the

number of classes. Another is to organize classes into a hierarchical tree structure. The number

of classifier evaluations of a test sample when traveling from the root to a leaf node is significantly

reduced. A challenging issue is how to learn a tree structure which achieves both classification

accuracy and computational efficiency. The current methods use a confusion matrix and spectral

clustering techniques to group confusing classes into clusters associated with the nodes. However,

training one-vs-all classifiers used to calculate the confusion matrix is costly for a large number of

classes. Moreover, the output tree might not be balanced because the objective function of spectral

clustering penalizes unbalanced partitions. In this paper, we suggested a novel method to learn the

tree structure by using a spectral clustering algorithm and a similarity matrix. Here, the similarity

between two classes is exactly measured by the sum-match kernel. In addition, a feature map is

used to reformulate the sum-match kernel function as a dot product of two mean feature vectors

in a mapped-feature space. Furthermore, we proposed an algorithm for learning a balanced tree

which gains the computational efficiency in classification. We carried out experiments on benchmark

datasets including Caltech-256, SUN-397, and ImageNet-1K. The evaluation results indicated that

our method achieves a significant improvement in terms of accuracy and efficiency compared to other

methods. In particular, our method achieved 14.52% in accuracy on ImageNet-1K, compared to

6.51% of the Bengio et al.’s method.

Keywords. Large-scale image classification, multi-class classification, label tree-based classification,

sum-match kernel.

1. INTRODUCTION

In this paper, we tackle the problem of large-scale image classification - classifying an
image belonging to one of a large number of target categories or classes. This is one of
the fundamental problems that has been recently receiving significant interest in computer
vision. The reason is that there are many real applications such as visual recognition,
semantic image retrieval [5, 8, 9], and scene understanding [16, 18, 35], which require the
classifier to discriminate multiple categories on large image databases. For example, SUN

c© 2016 Vietnam Academy of Science & Technology

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229082831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dungmt@uit.edu.vn

134 TIEN-DUNG MAI

dataset [35] contains 130,519 images of 899 scene categories and ImageNet [26] contains
14,197,122 images of 21,841 categories.

The One-versus-All (OvA) [1, 25] is one of the most commonly used methods for multi-
class classification problem in which each class corresponds to one binary classifier. However,
with a large number of class labels, this method is not practical because all classifiers have to
be evaluated for every testing image at run-time classification. Hence, the testing complexity
grows linearly with the number of class labels.

The error-correcting output codes (ECOC) [2,38] used the embedding of binary classifiers
and corresponding codewords for classification. Although the testing complexity of these
methods was reduced, it is very difficult to design a coding matrix that satisfies both high
accuracy and low computational cost in the case of large-scale datasets.

A recent approach reduces the testing complexity to a sub-linear with the number of
class labels by exploiting a hierarchical structure in the label space [3, 10, 19]. The key idea
is to organize classes into a label tree structure in which each leaf node is assigned a class
label, and each internal node is associated with a set of class labels and an OVA classifier
for determining which child node to follow. For classifying, we traverse the tree from the
root until a leaf node is reached, the label class of the leaf node is predicted as the class
label of the test sample. By using a small number of classifiers along the path, the testing
complexity is sub-linear to the number of class labels.

There are two main tasks for a label tree-based classification approach: learning the tree
structure and learning classifiers at internal nodes. The current methods [3,10,12,19] either
separate or combine these two tasks in a joint optimization framework.

Despite the combining methods usually have higher classification accuracy, their learning
cost is too costly because the classifiers have to be trained multiple times until the solution is
converged. Hence, in this paper, we follow the methods in which these two tasks are learned
separately, as [3], and focus on the task of learning the tree structure.

The popular learning methods are to use clustering algorithms (e.g., k-means, spectral
clustering) to recursively partition a set of class labels into subsets such that classes which
are easily confused or highly similar should be grouped in the same subset. Each subset
corresponds to a node of the tree, the root contains all class labels, and the leaf node contains
a single class label. For example, the methods (e.g., Bengio et al. [3], Griffin and Perona [14],
Wang and Forsyth [34]) used a spectral clustering algorithm and a confusion matrix which
measures a confusion among classes. First, training OVA classifiers for all classes, and
evaluating these classifiers on a validation set to obtain a confusion matrix. After that,
the spectral clustering is used to recursively split the classes into groups. However, these
methods have several limitations. First, training all OVA classifiers is costly for a large
number of classes. Second, the confusion between two classes is not reliable when the OvA
classifiers have poor accuracy due to a small number of available training samples and the
curse of dimensionality. Third, the tree structure may be unbalanced because the objective
function of spectral clustering does not take into account the size of groups. Consequently,
the testing complexity may not achieve the maximum efficiency. Another method is to use k-
means clustering algorithm on training samples [20]. In this method, the mean of all feature
vectors of the training samples of a class is used as a representative of that class. However,
using the mean is not effective for classes with large variations, and the resulting tree is not
always balanced.

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 135

The above-mentioned problems are addressed as follows. First, we used the spectral
clustering and a similarity matrix to learn the tree structure. To measure the similarity
between classes, we used a sum-match kernel instead of having to train OvA classifiers as
the prior work. Second, by using the feature map [32], we reformulated the sum-match ker-
nel function in the original feature space as a dot product of two mean feature vectors in a
mapped-feature space. Finally, we proposed an algorithm for learning a balanced tree which
gains the computational efficiency while maintaining the classification accuracy. Experimen-
tal results on large-scale datasets, including Caltech-256, SUN-397, and ImageNet-1K, have
shown that our method outperforms other state-of-the-art methods in terms of accuracy and
efficiency.

Generally, this study introduce a novel approach to learn balanced trees for hierarchi-
cal classification. Compared to current state-of-the-art tree-based systems, we propose to
use similarity of classes instead of their confusion scores. There are two main benefits of
such an approach. First, the similarity of classes can be computed with low computational
cost. Second, experimental results have shown that using class similarity results in higher
classification accuracy (e.g., our method achieved 42.96% in accuracy using CNN feature on
ImageNet-1K, compared to 24.97% of the confusion metric based method of Bengio et al,
as shown in Fig.2(a)). This is mainly due the precisely built and balanced tree structure.
However, there is a trade-off. By using a balanced tree for classification, we significantly
reduce testing cost since the number of evaluation needed for each sample (i.e., new im-
age) decreases, compared to flat-based methods. But, this also causes accuracy drop. For
example, we achieve 50 times speed-up with the accuracy drop from 57.09% to 42.96% on
ImageNet1K. Such a trade-off should be carefully considered in real-life application.

The remainder of the paper is organized as follows: Section 2. introduces related work.
Section 3. describes the proposed method for generating a similarity matrix using sum-match
kernel and learning a balanced tree. Section 4. shows the experimental results. In Section
5., the advantages and disadvantages of the proposed method are under discussion. Finally,
Section 6. presents the conclusion and further research.

2. RELATED WORK

Multi-class classification problem in large-scale datasets is a challenging and interesting
problem. One of the popular approaches is to decompose multi-class to binary classification
problems such as One-versus-All (OvA) [25]; or conversely to combine binary classifiers
toward a multi-class problem such as Error-Correcting Output Coding (ECOC) [2].

In OvA method, one binary classifier is independently trained for each class. For class ith

it assumes i-labels as positive while the rest is negative. In classification, all classifiers have
to be evaluated on a test sample, the class label corresponding the highest score is assigned
to the test sample. Although this method shows good classification accuracy [1], its testing
complexity scale linearly up the number of classes. Therefore, it becomes impractical with
a large number of classes.

In contrast to OvA, ECOC combines several binary classifiers to classify a test sample.
In this method, the main task is to design an optimal coding matrix N × L, where N is the
number of class labels and L is the desired number of binary classifiers. Each row corre-
sponds to a unique codeword which is associated with a class. Each column corresponds to

136 TIEN-DUNG MAI

a binary classifier. In classification, all L binary classifiers are evaluated to obtain an output
codeword. The class whose codeword is closest to the output codeword is assigned to the
test sample. In Spectral ECOC [37], the coding matrix is designed basing on the eigenvec-
tors of the normalized Laplacians of the similarity graph of the classes. In Sparse Output
Coding [38], the optimal coding matrix and binary classifiers is learned separately basing on
semantic similarity between classes using training data and class taxonomy. However, when
the number of class labels is large, it is extremely difficult to design a coding matrix that
ensures two properties: each row is a unique codeword for robustness and the number of
binary classifiers L is minimized for computational efficiency.

The hierarchical classification is one of the efficient approaches to reduce the testing
complexity to a sub-linear with the number of class labels while maintaining reasonable
classification accuracy. The main idea is to exploit a hierarchical structure in the label space
for organizing classes into a tree [3,10,12,19,39]. The root contains all classes, each internal
is associated with a subset of classes and each leaf node is associated with a single class.
For classifying with a given tree, test examples traverse from the root until a leaf node is
reached. Therefore, for a well balanced tree, the number of classifier evaluations on the path
is logarithmic with the number of classes.

Bengio et al. [3] used a confusion matrix to measure confusion and a spectral clustering
to recursively partition a set of class labels into disjoint groups. Each group corresponds to a
child node of the tree. The confusion matrix is generated by applying OvA binary classifiers
to a validation set. Due to the objective function of spectral clustering penalizes unbalanced
partitions, the result is implicitly a balanced tree. However, this method is not reliable for a
large number of classes. The reasons are as follows: training OvA classifiers is too costly, and
the confusion among classes is not exactly estimated when the corresponding OvA classifiers
have poor accuracy due to the curse of dimensionality.

Deng et al. [10] proposed a method that combines class partitioning and classifier learning
for each child node in an optimization problem. The problem is solved by alternating between
two optimization steps. However, learning cost is high because the classifiers have to be
trained multiple times until the solution is converged. Moreover, by allowing overlapping of
classes among child nodes to reduce false navigation, it increases the testing cost.

The relaxed hierarchy method proposed by Gao and Koller [12] is an alternative based
on max-margin optimization in which a subset of confusing classes is allowed to be ignored
at each node. This method shares the idea of the method proposed by Marszalek and
Schmid [22], but has significant improvements over it. However, learning complexity increases
if there are more than two branches at each node.

Sun et al. [29] considered the classification problem as finding the best path in the label
tree and proposed a branch-and-bound-like algorithm. The bounds and the classifiers are
jointly learned using structured SVM formulation with additional bound constraints for a
trade-off between efficiency and accuracy.

Wang and Forsyth in [34] proposed a method to aggregate the probability distribution
associated with a leaf node of trees in a label forest i.e. an ensemble of label trees. The
(i+ 1)-th label tree is constructed by applying a method of Bengio et al. [3] with a confusion
matrix computed for the i-th label tree on a validation set. Although this method improved
classification accuracy, computational cost can be significantly increased if a large number
of label trees are used.

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 137

Liu et al. [19] proposed a probabilistic approach for learning a tree structure. Each node
of the probabilistic label tree is associated with a categorical probability distribution and
a maximum likelihood classifier defined as a multinomial logistic regression model. The
training process at each node is formulated as a maximum optimization of a log likelihood
function, which is then solved by using alternating convex optimization.

Recently there are some interesting results in which the features and classifiers are jointly
learned using a deep learning architecture [7, 15, 28]. Although these methods archived the
excellent results in large-scale classification, they require the modest computational resources
and GPU programming skills.

In this work, we follow the methods in which learning the tree structure and learning
node classifiers are learned separately. Specifically, the spectral clustering algorithm and
similarity matrix are used to build a tree structure. Moreover, we proposed an algorithm
for learning a balanced tree aiming to gain the computational efficiency while maintaining
reasonable classification accuracy.

3. OUR APPROACH

In this section, we first represent a technique for generating a similarity matrix among
classes using the sum-match kernel in Section 3.1. We then describe an algorithm for learning
a balanced label tree structure in Section 3.2..

3.1. Generating the similarity matrix

A similarity matrix among classes can be used in a spectral clustering algorithm to
partition these classes into groups so that the classes in the same group are more highly
similar and the classes in different groups are less similar. Thus, the similarity between two
classes is measured more exactly, the clustering algorithm achieves higher accuracy. In this
study, the sum-match kernel is used to measure the similarity. The reason is this measure
recently has been achieved the effective results in evaluating the similarity between sets of
local features [4, 36,38].

Given a set of class labels L = {c1, ..., cN}, a similarity matrix SN×N is a symmetric
matrix whose element Si,j represents the similarity measurement between two class labels ci
and cj . Let fi,p and fj,q be the feature vectors of corresponding images of class ci and class
cj . Then, the similarity between classes ci and cj is defined by summing the local kernels
between every pair of feature vectors of class ci and class cj :

Si,j =
1

ni

1

nj

ni∑
p=1

nj∑
q=1

}(fi,p, fj,q), (1)

where }(.) is a Mercer kernel function; ni and nj are the total number of images in class ci
and cj , respectively. By this way, the similarity matrix SN×N can be built without the need
of OvA classifiers training as the prior work. Eq.(1) requires to compute the kernel function
}(., .) for all feature vectors, so the computational cost is too expensive when the number of
images of classes is large or the number of class labels can be in the thousands of classes.
This is also a limitation of our previous work [21]. In this work, we introduce an approach

138 TIEN-DUNG MAI

to deal with this problem by applying recently developed feature map [32] that is described
in Section 3.1.1. and 3.1.2..

3.1.1. Explicit feature mapping

Relying on a property of reproducing kernel Hilbert spaces [27], it is guaranteed that
there exists a function ϕ mapping the data x into a Hilbert space H for any positive definite
kernel function }(x, y), such that

}(x, y) = 〈ϕ(x), ϕ(y)〉, (2)

where ϕ(x) and ϕ(y) are the mapped data point of x and y in the Hilbert space, and
〈ϕ(x), ϕ(y)〉 denotes the inner product between ϕ(x) and ϕ(y).

Moreover, following [32], if }(x, y) is an additive kernel, known as a homogeneous kernel
(e.g., the Hellinger’s, χ2, intersection, and Jensen-Shannon), a suitable feature map ϕ can be
explicitly constructed for sufficiently approximating it to a linear kernel. This allows using
}(xi, yj) = 〈ϕ(xi), ϕ(yj)〉, where ϕ(xi) and ϕ(yj) correspond the mapped data point xi of
the feature vector x and yj of the feature vector y, respectively.

3.1.2. Sum-match linear kernel

Given the explicit feature map, an additive kernel function in the original feature space
can be approximated by a linear kernel function in the mapped-feature space. As a result,
we have }(x, y) = 〈ϕ(x), ϕ(y)〉 = ϕ(x)T · ϕ(y). Then, the value of Si,j in Eq.(1) can be
written as follows:

Si,j =
1

ni

1

nj

ni∑
p=1

nj∑
q=1

}(fi,p, fj,q) =
1

ni

1

nj

ni∑
p=1

nj∑
q=1

(ϕ(fi,p)
T · ϕ(fj,q))

=
1

ni

1

nj

[
(ϕ(fi,1)

T · ϕ(fj,1) + · · ·+ ϕ(fi,1)
T · ϕ(fj,nj)) + · · ·+

(ϕ(fi,ni)
T · ϕ(fj,1) + · · ·+ ϕ(fi,ni)

T · ϕ(fj,nj))
]

=
1

ni
(ϕ(fi,1) + · · ·+ ϕ(fi,ni))

T · 1

nj
(ϕ(fj,1) + · · ·+ ϕ(fj,nj))

= ϕ̃T
i · ϕ̃j ,

(3)

where ϕ̃i = 1
ni

(ϕ(fi,1) + · · · + ϕ(fi,ni)) and ϕ̃j = 1
nj

(ϕ(fj,1) + · · · + ϕ(fj,nj)) are mean

feature vectors that are computed by averaging the mapped-feature vectors of class ci and
cj , respectively. Consequently, Si,j can be computed as a dot product of two mean feature
vectors.

3.2. Learning a balanced label tree structure

The motivation of the label tree approach is classification efficiency, which is measured in
terms of the average number of operations needed to produce a final label for a new sample.
The efficiency will be maximized when the tree structure is balanced [10,19].

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 139

The process of learning a tree structure can be presented as a clustering problem which
splits a set of N class labels of node v into Q clusters. Each cluster corresponds to a child
node of v, and Q is the desired number of children per node. However, the objective function
of clustering algorithm (e.g., spectral clustering [23]) does not take into account the size of
clusters, and thus the output tree might not be balanced.

Although the constrained clustering algorithms may be applied, the balancing constraints
are formulated as a linear programming that is known to be an NP-complete problem in
practice [10]. In this work, to overcome this drawback, we propose an algorithm for balancing
the number of class labels in each cluster.

According to [23], let L be the Laplacian matrix of the similarity matrix SN×N (e.g.,
L = D−1/2SD−1/2, where D is the diagonal matrix whose (i, i)-element is the sum of S’s i-th
row). The Q largest eigenvectors e1, ..., eQ of L are formed into the matrix Y = [e1e2 eQ] ∈
RN×Q. Each row yi ∈ Y is treated as an eigen-based feature vector of class ci. The k-means
algorithm is applied to partition Y into Q clusters. A class ci is assigned to a child node jth

if and only if an item yi is assigned to the cluster jth.

To create a balanced tree structure, at each node v, its child node has at most Pmax =
QH−1 class labels, where H = logQ(N) is the maximum depth of node v to the root, and

N is the number of class labels of node v. So, if the child node jth has more than Pmax

class labels, several its classes have to be moved to others. This is equal to moving several
eigen-based feature vectors in the cluster jth to other clusters.

The process for balancing the number of class labels in the child nodes basing on the
eigen-based feature vectors at the node v is summarized by Algorithm 1.

To learn the label tree structure, the similarity matrix SN×N is firstly computed with
the given set of N class labels L = {c1, ..., cN} as described in Section 3.1. For each non-leaf
node v, beginning from the root, we rebuild a similarity matrix Sv basing on the matrix S
with a set of class labels Lv of the node v. Then, the spectral clustering algorithm [23] -
implemented as [Y,G,A] = SpectralClustering(Lv, Sv, Q, Pmax) - is applied to the matrix
Sv to partition the set of class labels Lv into Q clusters. The maximum number of classes
in each cluster is Pmax. The outputs of this function are three sets Y , G, and A. Here, Y is
a set of |Lv| eigen-based feature vectors, Y = {y1, ..., y|Lv |}. G is a set of Q cluster centers,
G = {g1, ..., gQ}. And, A is a set of |Lv| items, A = {a1, ..., a|Lv |}. ai = k indicates that the
class ci is assigned to the cluster gk.

Finally, these outputs are used as the inputs of the Algorithm 1 for balancing the number
of class labels in the child nodes of the node v. This learning process is performed repeatedly
for each node until the tree structure is completely built. The algorithm for clustering at
every node of the label tree is summarized in Algorithm 2.

Following the notation in [10,19], a Q-way balanced label tree is denoted as TQ,H , where
H is the maximum depth and QH approximate the number of class labels. Notice that it is
unable to partition into Q child nodes with less than Q class labels.

140 TIEN-DUNG MAI

Algorithm 1 [A] = Balancing(Y,G,A, Pmax): balancing the number of class labels in the
child nodes of the node v
Input:
1: • Set Y = {y1, .., yN} of N items correspond to eigen-based feature vectors of class

labels at node v;
2: • SetG = {g1, ..., gQ} ofQ cluster centers that were obtained from spectral clustering;
3: • Set A = {a1, ..., aN} of N items, each item ai = k indicates that class ci is assigned

to cluster gk;
4: • Pmax: the maximum number of class labels in a cluster;

Output: Set A = {a1, ..., aN} contains information about the assignment of class labels into
Q children. ai = k means that class label ci is assigned to child node kth. For each child
node, the size of its set of class labels is at most Pmax.

5: Step 1:
6: • Let R be set of clusters whose number of items is greater than Pmax.
7: • Let T be set of clusters whose number of items is less than Pmax.
8: • Let D be set of items that will be assigned to clusters in T : D = ∅
9: Step 2: For each cluster in R, we only hold Pmax items whose distance to its cluster

center is minimum in the 2-norm. The remaining items are added to D.
10: Step 3:
11: while D 6= ∅ do
12: yi ← D
13: Assign yi to cluster tj ∈ T such that the distance from center gj to yi is minimum in

the 2-norm: tj = tj ∪ {yi}
14: Update center gj : compute gj as the mean of all items assigned to cluster tj .
15: if |tj | = Pmax then . the number of items of tj equals Pmax

16: T = T \ {tj}
17: end if
18: end while

Algorithm 2 [A] = Clustering(Lv, SN×N , Q, Pmax): for clustering the set of class labels Lv

into Q children.

Input:
1: • Lv : the set of class labels of node v;
2: • SN×N : the similarity matrix among N classes;
3: • Q: the number of children per node;
4: • Pmax: the maximum number of class labels in a child node;

Output: Set A = {a1, ..., aN} contain information about the assignment of class label into
Q children. ai = k means that class label ci is assigned to child node kth. For each child
node, the size of its set of class labels is at most Pmax.

5: Step 1: Compute Sv matrix basing on the similarity matrix S and Lv.
6: Step 2: Cluster [Y,G,A] = SpectralClustering(Lv, Sv, Q, Pmax)
7: Step 3: Balance the number of class labels: [A] = Balancing(Y,G,A, Pmax)

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 141

4. EXPERIMENTS

4.1. Experimental setting

4.1.1. Datasets

The experiments are carried out on benchmark datasets which are usually used to evaluate
large-scale image classification approaches.

• Caltech-256 [13]. There are 29,780 images of 256 object classes. Each image is
assigned to a single class label, each class contains at least 80 images. Images are
different lighting conditions, poses, sizes, and resolutions.

• SUN-397 [35]. This is a subset of the SUN dataset. It is selected from 908 scene
classes used for a scene recognition. There are 108,754 images of 397 classes, at least
100 images per class. The collection of images covers a large variety of environmental
scenes, places, and the objects within.

• ImageNet-1K [26]. The dataset contains 1,461,406 images of 1,000 classes (e.g.,
animal, plant, artifact, events, people). Each class contains at least 668 images.

With SUN-397 and Caltech-256, we randomly picked 50% of the images for training, 25%
images for validation and the remaining for testing. Meanwhile, on ImageNet-1K, we used
the provided image sets for validation with a total of 50,000 images, each class includes 50
images. For testing, there are 150,000 images, each class includes 150 images. We randomly
pick 100 images from each class for training. In our experiments, the validation set is used to
compute the confusion matrix, similar to [3]. The training set is used to obtain the similarity
matrix represented in Section 3.1., and to train the OvA classifiers as well as the classifiers
at the non-leaf nodes.

4.1.2. Image descriptors

Besides standard features for a fair comparison with previous methods, the state-of-the-
art feature i.e., deep features is also applied to investigate the influence of feature selection.
Particularly, two types of features are applied, including:

• SIFT+LLC+SPM feature. In order to compare our method with the others, e.g.,
those of Bengio et al. [3] and Deng et al. [10], we used the same feature settings
as in [10]. Specifically, we extract dense SIFT feature for each image by VLFeat
toolbox [30]. These features are then encoded using the Locality-constrained Linear
Coding (LLC) approach described in [33]. The code book consists of 10,000 visual
words generated by using k-means with images randomly selected from the dataset.
Each image is encoded using a two-level Spatial Pyramid Matching (SPM) [17] with
1× 1 and 2× 2 grids. The results are feature vectors with 50,000 dimensions.

• CNN feature. We used the state-of-the-art deep feature for image representation.
Following settings that have been widely used in recent work [6, 24, 28], we used Mat-
ConvNet toolbox [31] with the VGG-VERYDEEP-16 model. The model is pre-trained

142 TIEN-DUNG MAI

on the ILSVRC-2012 dataset with 16 layers (13 convolutional layers and three fully-
connected layers) [28]. The output of the network at the fc7 layer with 4,096 channels
was widely used as the feature vector of an input image.

4.1.3. The baseline methods

In this section, we briefly describe baseline methods that are used for comparison.

• First is the label embedding tree of Bengio et al. [3]. This method achieved state-of-
the-art results in testing with the tree structure learned by using a confusion matrix.
N binary OvA classifiers were trained independently, where N is the number of class
labels. These classifiers are then evaluated on a validation set to compute a confusion
matrix C̄ and an affinity matrix A = 1

2(C̄ + C̄T). Starting from the root, the spectral
clustering algorithm [23] is applied to the affinity matrix A to partition the set of class
into subsets. Each subset corresponds to a child node. This process is recursively
repeated until the label tree is completely built.

• Second is the SVM tree of Liu et al. [20]. This method used the mean feature vectors
of classes to build a binary SVM tree. We re-implemented this method for comparison.
In particular, each class is represented by a mean feature vector obtained by averaging
all feature vectors in this class. In contrast to [20], the k-means algorithm was used
for partitioning the set of mean vectors into Q clusters to build a Q-ways tree instead
of the original binary tree.

• Last is the Fast-Balanced Tree of Deng et al. [10]. This method combined tree con-
struction and classifier learning at each node in an optimizing framework. Due to the
insufficient description, we cannot re-implement the method, we used the experimental
results on ImageNet-1K with the SIFT+LLC+SPM feature for comparison.

To make a fair comparison, the LIBLINEAR library [11] is used to train all OvA classifiers
and the classifiers at each node of the tree without parameters tuning.

4.2. Evaluation measurement

To compare the methods, the classification accuracy and test speedup are used. These
measures are widely used in the label tree-based classification [10, 19]. In addition, the
run-time is recorded for evaluation.

• Classification Accuracy (Acc) is measured as the number of correct predictions among
the total number of predictions on the testing set. It is calculated as follows:

Acc =
1

M

M∑
i=1

1yi(ŷi), (4)

where M is the total number of testing images and 1yi(ŷi) is an indicator function.
The value of 1yi(ŷi) = 1 if the predicted class ŷi and the given assigned class yi are the
same; otherwise, the value of 1yi(ŷi) = 0.

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 143

• Test speedup (Ste) is used to measure a speedup capacity of the label tree-based clas-
sification comparing to OvA classifiers-based classification. That is the one-vs-all test
cost divided by the label tree test cost [10]. Since we only used the linear classifiers in
experiments, this measure may be computed as follows:

Ste =
N ∗M
P

, (5)

where N is the number of class labels, M is the total number of testing images, and P is
the total number of dot products that are performed for classifying M testing images.
For example, the Ste of the tree T16,2 is 8.0, meaning that only 32 linear classifiers are
used for classifying a testing image instead of 256 OvA classifiers. The higher the value
of Ste, the more computationally efficient the method.

• Run-Time is used for evaluating the length of time required to classify the testing
set. For a fair comparison, all experiments were carried out on the same hardware
configuration with the same dataset.

To ensure the stability of the experimental results, each experiment is repeated at least
five times for each dataset. The reported performance measures are the average values and
their standard deviations.

4.3. Experimental results

In this section, we report the experimental results on benchmark datasets with different
tree configurations. For each configuration TQ,H , the maximum depth H and the desired
number of children per node Q are adjusted such that QH approximate the number of class
labels. In addition, our method is reported with the popular kernels, including χ2 (Ours -
kchi2), Intersection (Ours - kinters) and Jensen− Shannon (Ours - kjs) [32].

From the experimental results, some essential conclusions can be drawn as follows. First,
the classification accuracy (Acc) and the test speedup (Ste) depend on the tree configuration.
In particular, when the value of H increases, the value of Q decreases; this leads to decreasing
the number of classifiers evaluated at a node. And the test speed up is significantly improved
but the accuracy is also dropped. Second, our method outperformed the other tree-based
approaches. At the same accuracy level, our approach was more efficient. Moreover, at the
same speedup level, our method achieved higher accuracy in most cases. Lastly, our method
is faster than others in terms of the run-time in most configurations.

4.3.1. Results on ImageNet-1K

Table 1 lists the experimental results using the SIFT+LLC+SPM feature on ImageNet-
1K. The results show that our method significantly outperformed in terms of computational
efficiency and classification accuracy. For example, considering the tree T32,2, our method
achieved the best accuracy Acc = 14.52 ± 0.01% and Ste = 15.74 ± 0.02 (average 32 ∗ 2
classifiers evaluated) with the χ2 kernel. Meanwhile, the accuracy of Bengio et al.’s method
[3] was Acc = 6.51 ± 0.10% and Ste = 15.93 ± 0.03. Although its value of Ste is slightly
greater than, our method is two times more accurate than. In addition, the accuracies of

144 TIEN-DUNG MAI

Table 1. Comparison of the average and standard deviation of our method to the other
methods on ImageNet-1K using the SIFT+LLC+SPM feature

Methods T32,2 T10,3 T6,4 T4,5

Acc Ste Acc Ste Acc Ste Acc Ste

Bengio et al. [3] 6.51 15.93 4.73 31.49 4.06 38.15 3.73 43.89
±0.10 ±0.03 ±0.08 ±0.54 ±0.12 ±0.46 ±0.04 ±0.41

Deng et al. [10] 11.9 10.3 8.92 18.20 5.62 31.3 NA NA
Liu et al. [20] 12.51 15.81 10.61 30.91 9.73 38.10 9.08 42.03

±0.07 ±0.05 ±0.10 ±0.05 ±0.09 ±0.50 ±0.05 ±0.40

Ours - kchi2 14.52 15.74 11.44 33.33 10.28 42.92 9.79 50.11
±0.01 ±0.02 ±0.20 ±0.00 ±0.02 ±0.01 ±0.15 ±0.02

Ours - kinters 14.47 15.77 11.37 33.33 10.10 42.78 9.69 50.12
±0.22 ±0.02 ±0.23 ±0.00 ±0.29 ±0.16 ±0.06 ±0.02

Ours - kjs 14.48 15.75 11.55 33.33 10.35 43.05 9.52 50.11
±0.08 ±0.01 ±0.08 ±0.00 ±0.02 ±0.06 ±0.21 ±0.01

the methods proposed by Deng et al. [10], and Liu et al [20] are 11.9% and 12.51 ± 0.07%,
respectively.

The relationship between the accuracy and the test speedup are illustrated in Figure
1(a). As we can see, the accuracy drops when the test speedup increases. The reason is that
the average number of classifiers evaluated for classifying a test image decreases. The result
is that there is less information to make a correct classification. However, in all of the cases,
the accuracy of our method is significantly higher than the accuracies of others at the same
test speedup.

We recorded and reported for each method the length of time they require to classify all
images of the testing set in Figure 1(b). The result has shown that our method is faster than
the others with the same tree configuration. This is because the lengths of all paths from the
root to a leaf node on our balanced tree are mostly equal. They may not exceed logQ(N),
given Q is the number of children per node and N is the number of classes. Unbalanced
trees, e.g. those constructed by the methods of Bengio et al. [3] and Liu et al. [20], may have
longer paths. As a result, they require more time for classification.

Figure 2 illustrates the results of the methods using the CNN feature. Similar to the
results using the SIFT+LLC+SPM feature, the experimental results demonstrate that our
method achieved a higher Acc than others at the same Ste in most cases. Furthermore, the
run-times were consistent with those described above.

An interesting result found from the experimental results is that the run-time depend on
the number of dimensions of the feature vector and the depth of the tree. Specifically, when
the depth of the tree increases, it takes a longer time for making a decision which child node
to follow.

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 145

10 15 20 25 30 35 40 45 50 55
1

3

5

7

9

11

13

15
ImageNet−1K: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Deng et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup of
methods

T32,2 T10,3 T6,4 T4,5
350

450

550

650

750

850

950

1050

1150

1250
ImageNet−1K: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 1. Performance of the evaluated methods using the SIFT+LLC+SPM feature on
ImageNet-1K

15 20 25 30 35 40 45 50 55
20

25

30

35

40

45

50

55
ImageNet−1K: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup

T32,2 T10,3 T6,4 T4,5
80

85

90

95

100

105

110

115

120

125

130

135
ImageNet−1K: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 2. Performance of the evaluated methods using the CNN feature on ImageNet-1K

146 TIEN-DUNG MAI

Table 2. Comparison of the average and standard deviation of our method to the other
methods on SUN-397 using SIFT+LLC+SPM feature

Methods T20,2 T8,3 T5,4 T4,5

Acc Ste Acc Ste Acc Ste Acc Ste

Bengio et al. [3] 31.08 10.18 24.87 16.77 22.84 20.23 21.34 21.22
±1.05 ±0.25 ±1.06 ±0.37 ±0.71 ±0.33 ±0.34 ±0.48

Liu et al. [20] 38.26 9.84 34.94 15.78 33.73 18.63 32.72 19.65
±0.27 ±0.11 ±0.12 ±0.23 ±0.56 ±0.11 ±0.15 ±0.36

Ours - kchi2 39.44 9.96 36.61 17.34 34.44 21.26 33.81 22.53
±0.56 ±0.01 ±0.32 ±0.02 ±0.18 ±0.08 ±0.26 ±0.16

Ours - kinters 39.56 9.95 36.68 17.36 33.70 21.07 32.98 22.50
±0.27 ±0.00 ±0.87 ±0.07 ±0.30 ±0.07 ±0.54 ±0.16

Ours - kjs 38.74 9.95 36.56 17.22 34.74 21.13 32.38 22.56
±0.71 ±0.01 ±0.45 ±0.08 ±0.54 ±0.22 ±0.13 ±0.03

4.3.2. Results on SUN-397

Table 2 and Figure 3 show the experimental results using the SIFT+LLC+SPM feature
on SUN-397. The results are consistent with those on ImageNet-1K. At the same level
of speedup, we observe that our trees have much better performance than other methods.
For example, considering the tree T20,2, the best classification accuracy of our method is
Acc = 39.56±0.27% with Intersection kernel meanwhile of the method proposed by Bengio
et al. [3] and Liu et al. [20] are 31.08± 1.05% and 38.26± 0.27%, respectively.

The results are shown in Figure 4 using the CNN feature. The trees generated by our
method achieves comparable or significant accuracy while achieving better speedup.

8 10 12 14 16 18 20 22 24
20

25

30

35

40
SUN−397: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup

T20,2 T8,3 T5,4 T4,5
60

70

80

90

100

110

120

130
SUN−397: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 3. Performance of the evaluated methods using the SIFT+LLC+SPM feature on
SUN-397

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 147

8 10 12 14 16 18 20 22 24
30

35

40

45

50
SUN−397: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup

T20,2 T8,3 T5,4 T4,5
10

12

14

16

18
SUN−397: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 4. Performance of the evaluated methods using the CNN feature on SUN-397

4.3.3. Results on Caltech-256

The experimental results using the SIFT+LLC+SPM feature on Caltech-256 dataset
are reported in Table 3 and Figure 5. As shown in this table, with the trees built by our
method, the classification accuracy and the test speed for different kernels is significantly
higher. For example, we consider the tree T16,2, the best classification accuracy of our method
is 39.31± 0.46% with Jensen−Shannon kernel meanwhile of the Bengio et al.’s method [3]
and Liu et al.’s method [20] are 31.55± 0.43% and 36.59± 0.48%, respectively.

Figure 6 shows the results of methods using the CNN feature. As can be seen, at the
same level of speedup, the performance of our method is better than of the other methods.
An interesting result with the tree T16,2, the accuracy of using 256 binary classifiers is 79%,
meanwhile, we achieved 73% but our method is 8 times faster than OvA method.

Table 3. Comparison of the average and standard deviation of our method to the other
methods on Caltech-256 using SIFT+LLC+SPM feature

Methods T16,2 T7,3 T4,4 T2,8

Acc Ste Acc Ste Acc Ste Acc Ste

Bengio et al. [3] 31.55 8.01 27.48 12.16 24.64 14.13 22.60 28.42
±0.43 ±0.13 ±0.52 ±0.19 ±0.24 ±0.27 ±0.48 ±0.29

Liu et al. [20] 36.59 7.62 34.00 11.17 32.02 13.12 29.28 23.02
±0.48 ±0.10 ±0.68 ±0.37 ±0.64 ±0.59 ±0.70 ±0.93

Ours - kchi2 39.30 8.00 35.45 12.95 33.02 16.00 30.02 32.00
±0.61 ±0.00 ±0.52 ±0.09 ±0.57 ±0.00 ±0.60 ±0.00

Ours - kinters 38.92 8.00 35.15 12.93 33.23 16.00 29.93 32.00
±0.72 ±0.00 ±0.28 ±0.06 ±0.12 ±0.00 ±0.43 ±0.00

Ours - kjs 39.31 8.00 35.10 12.84 33.01 16.00 29.85 32.00
±0.46 ±0.00 ±0.20 ±0.05 ±0.39 ±0.00 ±0.37 ±0.00

148 TIEN-DUNG MAI

5 10 15 20 25 30 35
20

25

30

35

40
Caltech−256: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup

T16,2 T7,3 T4,4 T2,8
10

15

20

25
Caltech−256: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 5. Performance of methods using the SIFT+LLC+SPM feature on Caltech-256

5 10 15 20 25 30 35
50

55

60

65

70

75
Caltech−256: Average Accuracy vs Ste

Test Speedup (Ste)

A
ve

ra
ge

 A
cc

ur
ac

y
(in

 %
)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinter
Ours−kjs

(a) The average accuracy and the test speedup

T16,2 T7,3 T4,4 T2,8
0

2

4

6

8
Caltech−256: Run−Time

R
un

−
T

im
es

(s
ec

on
ds

)

Bengio et al.
Liu et al.
Ours−kchi2
Ours−kinters
Ours−kjs

(b) The run-time of methods

Figure 6. Performance of the evaluated methods using the CNN feature on Caltech-256

5. DISCUSSIONS

In this paper, we follow the methods that learn the tree structure by the spectral cluster-
ing algorithm with the similarity matrix among classes. Our method has some advantages
as follows. First, using sum-match kernel helps to improve the classification accuracy since
similar classes are precisely grouped into clusters. Based on a feature mapping technique,
the sum match kernel function can be computed as the distance between two the mean fea-
ture vectors of two classes in the mapped space. Second, by building a balanced tree, the
proposed method is more efficient in classification than other methods which employ unbal-
anced trees. Here, the balanced tree is constructed without solving a NP-hard optimization
problem as in other methods (i.e., Deng et al. [10]). But, the disadvantage of our method is
the features vectors in the original feature space are needed to be mapped into a new feature
space.

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 149

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for learning an effective and balanced label tree
for efficient multi-class classification. Based on the explicit feature map, we reformulated
the sum-match kernel as a distance function between mean feature vectors of classes in the
mapped-feature space. Thus, the cost of building label tree is significantly reduced. In ad-
dition, the balanced tree structure built by our proposed algorithm gains the computational
efficiency in classification. The experimental results on the benchmark datasets indicated the
advantage of our method on large-scale classification in terms of accuracy and computational
efficiency.

For further research, we are going to exploit the relationship, such as semantic, correla-
tion, exclude among classes in order to learn a label tree structure.

ACKNOWLEDGMENT

This research is funded by Vietnam National University Ho Chi Minh City VNU-HCM
under grant number B2015-26-01.

REFERENCES

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Good practice in large-scale learning for
image classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 507–520, Mar.
2014.

[2] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary: A unifying approach
for margin classifiers,” Journal of Machine Learning Research, vol. 1, pp. 113–141, 2000.

[3] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for large multi-class tasks,” in
Advances in Neural Information Processing Systems 23, NIPS 2010 . Proceedings of a meeting
held 6-9 December 2010, Vancouver, British Columbia, Canada., 2010, pp. 163–171.

[4] L. Bo and C. Sminchisescu, “Efficient match kernel between sets of features for visual recogni-
tion,” in Advances in Neural Information Processing Systems 22, NIPS 2009. Proceedings of a
meeting held 7-10 December 2009, Vancouver, British Columbia, Canada., 2009, pp. 135–143.

[5] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Supervised learning of semantic
classes for image annotation and retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
no. 3, pp. 394–410, 2007.

[6] K. Chatfield, R. Arandjelovic, O. M. Parkhi, and A. Zisserman, “On-the-fly learning for visual
search of large-scale image and video datasets,” International Journal of Multimedia Information
Retrieval, vol. 4, no. 2, pp. 75–93, 2015.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the details:
Delving deep into convolutional nets,” in British Machine Vision Conference, BMVC 2014,
Nottingham, UK, September 1-5, 2014, 2014.

[8] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influences, and trends of the
new age,” ACM Comput. Surv., vol. 40, no. 2, pp. 5:1–5:60, 2008.

150 TIEN-DUNG MAI

[9] J. Deng, A. C. Berg, and F. Li, “Hierarchical semantic indexing for large scale image retrieval,” in
The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado
Springs, CO, USA, 20-25 June 2011, 2011, pp. 785–792.

[10] J. Deng, S. Satheesh, A. C. Berg, and F. Li, “Fast and balanced: Efficient label tree learning for
large scale object recognition,” in Advances in Neural Information Processing Systems 24, NIPS
2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain., 2011, pp. 567–575.

[11] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR: A library for large linear
classification,” Journal of Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[12] T. Gao and D. Koller, “Discriminative learning of relaxed hierarchy for large-scale visual recog-
nition,” in IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain,
November 6-13, 2011, 2011, pp. 2072–2079.

[13] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” California Institute
of Technology, Tech. Rep. 7694, 2007. [Online]. Available: http://authors.library.caltech.edu/
7694

[14] G. Griffin and P. Perona, “Learning and using taxonomies for fast visual categorization,” in
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2008), 24-26 June 2008, Anchorage, Alaska, USA, 2008, pp. 1–8.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Systems 25, NIPS 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., 2012, pp.
1106–1114.

[16] M. Lapin, B. Schiele, and M. Hein, “Scalable multitask representation learning for scene classi-
fication,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, June 23-28, 2014, 2014, pp. 1434–1441.

[17] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories,” in 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA, 2006,
pp. 2169–2178.

[18] L. Li, R. Socher, and F. Li, “Towards total scene understanding: Classification, annotation
and segmentation in an automatic framework,” in 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida,
USA, 2009, pp. 2036–2043.

[19] B. Liu, F. Sadeghi, M. F. Tappen, O. Shamir, and C. Liu, “Probabilistic label trees for efficient
large scale image classification,” in 2013 IEEE Conference on Computer Vision and Pattern
Recognition, Portland, OR, USA, June 23-28, 2013, 2013, pp. 843–850.

[20] S. Liu, H. Yi, L. Chia, and D. Rajan, “Adaptive hierarchical multi-class SVM classifier for
texture-based image classification,” in Proceedings of the 2005 IEEE International Conference
on Multimedia and Expo, ICME 2005, July 6-9, 2005, Amsterdam, The Netherlands, 2005, pp.
1190–1193.

[21] T. Mai and K. Hoang, “Label tree based image classification using sum match kernel,” in The
2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi
Minh, Vietnam, October 14-16, 2015, 2015, pp. 468–472.

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694

USING SUM MATCH KERNEL WITH BALANCED LABEL TREE FOR... 151

[22] M. Marszalek and C. Schmid, “Constructing category hierarchies for visual recognition,” in
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille,
France, October 12-18, 2008, Proceedings, Part IV, 2008, pp. 479–491.

[23] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
in Advances in Neural Information Processing Systems 14, NIPS 2001, December 3-8, 2001,
Vancouver, British Columbia, Canada], 2001, pp. 849–856.

[24] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An
astounding baseline for recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR Workshops 2014, Columbus, OH, USA, June 23-28, 2014, 2014, pp. 512–
519.

[25] R. M. Rifkin and A. Klautau, “In defense of one-vs-all classification,” Journal of Machine Learn-
ing Research, vol. 5, pp. 101–141, 2004.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), pp. 1–42, April 2015.

[27] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-
nition,” CoRR, vol. abs/1409.1556, 2014.

[29] M. Sun, W. Huang, and S. Savarese, “Find the best path: An efficient and accurate classifier for
image hierarchies,” in IEEE International Conference on Computer Vision, ICCV 2013, Sydney,
Australia, December 1-8, 2013, 2013, pp. 265–272.

[30] A. Vedaldi and B. Fulkerson, “Vlfeat: an open and portable library of computer vision algo-
rithms,” in Proceedings of the 18th International Conference on Multimedia 2010, Firenze, Italy,
October 25-29, 2010, 2010, pp. 1469–1472.

[31] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,” in Proceedings
of the 23rd Annual ACM Conference on Multimedia Conference, MM ’15, 2015, pp. 689–692.

[32] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit feature maps,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 480–492, Mar. 2012.

[33] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong, “Locality-constrained linear coding
for image classification,” in The Twenty-Third IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, 2010, pp. 3360–3367.

[34] Y. Wang and D. A. Forsyth, “Large multi-class image categorization with ensembles of label
trees,” in Proceedings of the 2013 IEEE International Conference on Multimedia and Expo,
ICME 2013, San Jose, CA, USA, July 15-19, 2013, 2013, pp. 1–6.

[35] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN database: Large-scale scene
recognition from abbey to zoo,” in The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, 2010, pp.
3485–3492.

[36] D. Xu and S. Chang, “Video event recognition using kernel methods with multilevel temporal
alignment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1985–1997, 2008.

152 TIEN-DUNG MAI

[37] X. Zhang, L. Liang, and H. Shum, “Spectral error correcting output codes for efficient multiclass
recognition,” in IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto,
Japan, September 27 - October 4, 2009, 2009, pp. 1111–1118.

[38] B. Zhao and E. P. Xing, “Sparse output coding for large-scale visual recognition,” in 2013 IEEE
Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28,
2013, 2013, pp. 3350–3357.

[39] S. Zhu, X. Wei, and C. Ngo, “Collaborative error reduction for hierarchical classification,” Com-
puter Vision and Image Understanding, vol. 124, pp. 79–90, 2014.

Received on December 24 - 2015
Revised on September 21 - 2016

	INTRODUCTION
	RELATED WORK
	OUR APPROACH
	Generating the similarity matrix
	Explicit feature mapping
	Sum-match linear kernel

	Learning a balanced label tree structure

	EXPERIMENTS
	Experimental setting
	Datasets
	Image descriptors
	The baseline methods

	Evaluation measurement
	Experimental results
	Results on ImageNet-1K
	Results on SUN-397
	Results on Caltech-256

	DISCUSSIONS
	CONCLUSION AND FUTURE WORK

