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1. Introduction

In the theory of relational databases, the connection between functional and m ultivalued depen­

dencies and  a certain  fragm ent of propositional logic has been investigated in several papers. In 

[11], a  family of Boolean dependencies is introduced. In [3,4], a large subclass of positive Boolean 

dependencies, th a t is, Boolean com binations of a ttrib u tes  and the logical constan t T R U E  in which 

neither negation nor FALSE occur is studied. Boolean dependencies of a special form  are inves­

tigated  in [6,7]. Jn  [5], a class of equational dependencies is introduced. T his class includes the 

class of functional dependencies as well as Boolean dependencies, positive Boolean dependencies 

and classes of dependencies considered in [6,7,12].

T he m ain result of these aspects is showing equivalence theorem  of consequences in the world 

of all relations, the  world of 2-tuple relations and propositional logic. This makes available the 

fam iliar tools of tru th  tables, K arnaugh m aps, and syntactic  derivations for deciding if a  given 
dependency is a consequence of some set of dependencies.

In the  papers m entioned above, the  connection between dependencies and  fragm ent of proposi­

tional logic is bu ilt on the set of tru th  assignm ents Tr  of a given relation  R  as follows. For each
f

pair of d istinct tuples of R,  the set Tr  contains the  tru th  assignm ent th a t m aps an a ttr ib u te  A  to 

TR U E if the two tuples are equal on A,  and to  FALSE if the two tuples have different values for 
A.

In th is paper we introduce a  large class of m appings for constructing the tru th  assignm ents of 

relations. T his class includes the equal m appings m entioned above. We call the dependencies 

constructing  on these m appings generalized positive Boolean dependencies (G PB D ).
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T he paper is s truc tu red  as follows. In Section 2 we give some basic definitions. The equivalence 

theorem  for G PB D s is proved in Section 3. Section A discusses the m embership problem  for G PBD s. 

The update  problem  and A rm strong relations for G PBD s are studied in Section 5 and Section 6, 

respectively. Finally, in Section 7 we list some problem s of our further research.

2. Basic Definitions

We assume th a t the reader is fam iliar w ith the relational model ofjdatabase system s and with 
the basic concepts of relational database theory [9,13]. In this paper we use the following notation .

Let U =  {/Ai, . . . ,  } be a set of attributes. Corresponding to  each a ttrib u te  A,  is a set di,
1 < / <  n, called the domain  of A/.  We assume th a t every contains at least two elem ents. A 

relation R  over U is a subset, of dy x • • • x dn . Elem ents of R  are called tuples and we usually 

denote by u ,v  or /. The class of all relations over U  is denoted by Tv. For k >  0, 7Zk denotes those

relat ions in 7v tha t have a t most k tuples. If R  E 7v. t E R, A £  U and X  C U , then we denote by

f[/i] the value of I for the a ttr ib u te  A , and by /[A] the set {/[-*1] | A  £ A }.

By T  we denote the set of all formulas  th a t can be constructed from U using the logical

connectives A, V, — , — and logical constants 1 (T R I E) and 0 (FALSE).

For A' =  {.4,-j, . . . ,  A jk} C U, A X  denotes the formula A j1 A ••• A A{k , and VAr denotes the

form ula /1,-, V • • • V -4,k .

Let B  =  {0, 1}. A valuation is any function x : U —- B. The notation  x  — ( r i , . . .  , x n) E B n 

means th a t x (A j)  =  x A (  E l / , 1  < i < n.

If /  E T  and x  E B n , then f ( x )  denotes the tru th  value of /  on the valuation x. For a finite

subset E  of T  and for a valuation x  in B n , we denote T.(x) =  A { f ( x )  \ f  6 S ) .

Let /  be a form ula in T .  We  denote T j  — {x  E B n \ f ( x )  =  1}- For a subset E of T ,  we denote
IV =  n {Tf  | /  E E}. Then x  E Ts  if and only if (V / E E) ( f { x )  =  1).

Definition 2.1. Let /  and g be two formulas. /  implies g , w ritten  /  h g, if Tj  C Tg. f  and g are 

equivalent. /  =  </. if 7 ) =  Tg. For E, T C T ,  E (- T if Ts  C Tr , and E =  T if Tv =  Tr .

Let e =  ( 1 , . . . ,  1) be the valuation th a t consists of all 1. A formula /  in T  is positive if / ( e )  =  1. 

Let T p denote all positive formulas on U . We knowr that T p is equivalent to  the set of all form ulas 

th a t can be built using the connectives A ,V , —* and constant 1 [10].

For each dom ain r/j, 1 <  i <  n , we consider a  m apping tv; : c/,2 —► B. We assume th a t the

m appings a,- satisfy the following properties.

(i) (Va E di) ( d i ( a , a )  =  1) ,

(ii) (Va,b £ d ^  (n i(a ,b )  = Qi(b, a)), and

(iii) (3a, fc E di) (n ,(a ,b )  — 0).



a,b E di, 1 <  i <  n

satisfy the properties (i) -  (iii).

Exam ple 2.2. Let U =  { A , B , C } ,  where d ^  is the set of positive whole num bers, dg  is the set of 

real num bers and a null-value X, and d c  is the  set of words id on a nonem pty alphabet P, where 

the length of w  is not greater th an  k, k > 1. We define the m appings oca, cub, and  a c  as follows.

It is not hard  to  verify th a t the m appings a ^ .o j s ,  and a c  satisfy the properties (i) -  (iii). 

Let R E  T v . For u ,v  E R  we denote by a ( u ,v )  the  valuation

Now for R  E T Z  we denote T r  =  {o(u , v)  \ u,  v  E R }.  Note th a t for every u  in R , a (u ,  u)  =  e, so e 

is in T r .

Définition 2.2. E lem ents of T v are called generalized positive Boolean dependencies (G P B D ).

Definition 2.3. For R  E T\- and /  G T p, we say th a t R  satisfies the G PB D  / ,  w ritten  R ( f ) ,  if 

T r C T j .

Definition 2.4. Let R  E lZ  and £  C T p, we say th a t R  satisfies the set of G PB D s E , w ritten  # ( £ ) ,  

if R ( f )  for all /  E E . T his is equivalent to  T r  Ç TV;.

For £  Ç T v and /  E Tp,  £  (= /  means th a t, for all R  E 1Z, if i? (£ )  then R ( f ) -  £  ( = 2  /  m eans 

th a t, for all R  £ TZ2, if R ( ^ )  then R ( f ) .  In o ther words, £  |= /  if and only if for all R  E TZ, T r  Ç T% 

implies T r  Ç T j .

For the equal m appings m entioned in Exam ple 2.1 several classes of Boolean dependencies were 

investigated. Boolean dependencies were introduced in [11]. Positive Boolean dependencies are 
studied in [3,4]. E quational dependencies were introduced in [5]. Boolean dependencies of a 

special form are studied in [6,7]. These papers consider dependencies equivalent to  the Boolean 

dependencies A X  —* A Y  (functional dependency), .AÀ' —* V Y  (weak dependency), \ / X  —* A Y  

(strong dependency), and VA' —► V Y  (dual dependency). In [4], the au thors shown th a t  ttie 
consequence relation for positive Boolean dependencies is the sam e as the consequence relation for 

prepositional logic.

3.Equivalence Theorem

In [4,11] equivalence theorem  was proved for the class of positive Boolean dependencies defined 

on the equal m appings. In th is section we give a generalized form  of th is theorem  for the m appings 

satisfied the pfoperties (i) - (iii).

T 1 if both a and b are sim ultaneously odd or even num bers 

t  0 otherwise.



T h e o re m  3 .1 . (Equivalence theorem ) Let E C f p a ad f  £  T r . The following are equivalent:

(1) Eh / .

(2) E h / -
(3) E N  /•

Proof. (1) =>■ (2). If E  h /  then T s C 7}. Suppose R  £  1Z and /? (£ ). Then T r  C 7 s ,  so by the 

transitiv ity , Tr  C T j . It follows th a t R ( f ) ,  and hcnce E |= / .
(2) => (3) is obvious.

(3) =-> (1). Assume (3) and suppose x — (j*j, . . . ,  ,rn) £  7V. We have to show x £  T j . For this,

let us construct a relation R  with two tuples u =  ( o i , . . . , a n ) and v = (b\ , . . .  ,bn) such th a t 

»;((!,■, 6,) =  Tj, 1 <  •» <  n. T he existence of a, and 6,- is guarant.ed by properties (i) and (Hi). T hus 

w?e have R £  V.? and Tr  =  {p, J'}. Since E C and x £  7 s ,  it follows th a t T r  C Ts- Hence /?(E).

By (3), /? ( / ) .  Therefore TR C T j ,  so x £  T; as desired. □

4. Membership problem for GPBDs

In general, the m em bership problem  can be expressed as follows. Given a set of GFBDs E and 

a G PB D  / ,  decide w hether E |— f .  In this section we give some necessary and sufficient conditions 

for the dependencies A A' —► A Y, A X  —*• VY, VA —» AY, VA —» VY, and AA —+ (A Y  V A Z )  to 
be implied from a set of G PB D s E. Note tha t the sim ilar results for equal m appings were presented 
in [1.2,6,7,8].

From prepositional logic we know th a t E h </—>■/) if and only if for all x  in T s, either g(x) =  0

or /)(.r) =  1. By an application  of this claim we get the following result.

T h e o re m  4 .1 . Let E be a set o f  G PBD s on U, and X , Y , Z  C U. Then

1. E AA —* AY «■ (Vx £ TS )(((3A  £  X ) ( x ( A )  =  0)) V ((Vfl €  Y) ( x(D)  =  1))).

2. E  |= AA -  VY « .  (Vx e  7V)(((3.1 6  A") (*(.4) =  0)) V ((3D £  Y )  ( x(D)  =  1))).

3. E  VA -  AY (Vx' £  Ts)(((V,4 £  X )  (*(,4) =  0)) V ((VB £ Y )  ( x ( B)  =  1))).

4. E  [= VA — VY (Vx £  7s)(((V .4 £ X )  (x (/l)  =  0)) V ((3D £ Y )  ( x(D)  =  1))).

E \= A X  -  (AY V AZ)  (Vx 6 T s)(((3 .1  £ X )  (x ( ,i)  =  0))V

( ( (VB £ Y )  ( x ( B)  =  1)) V ((VC £  Z) (x (C ) = 1)))).

For x  =  ( x i , . . . , x „ )  £ B n we define x' — {/1, £ I4\x.i — ]}, and for T  C ß n we define

V  = {.f'| x £ T) .
Let A' C U and y £  B n . From propositional logic vve know th a t AX ( y )  =  1 if and only if A’ C j/ ,

and V A (y)  =  1 if and only if A' l~) y'  0. Therefore we get the following result.



Theorem 4.2. Let E  be a set o f  GPBDs. Then

1. E (= A A' — AV o  (V £ G n )  (A' G E => Y  C /7).

2. E [= AA' -  W  « •  (V £  G n )  (A  C E  => V n  E ^  0).

3. E |= VA' — AV (V £  6  I s )  (A* D E ±  0 => V C Z7).

4. E |= VA — NY o  (V £  e T ' ) ( A ’ n £ / « = >  1' fl 77 /  0).

5. E |= AA' — (AV V AZ )  « • (VE G T'z ) (A  C E  => ((V' C E)  V ( Z  C £ ) ) ) .

Let /  be a G PB D  and E be a set of G PB D s on Following a result of [10] we can assum e th a t /  

and E do not contain the connective For A' C U, denote by f \ X  the form ula constructed  from 

/  by replacing all the occurrences of symbols in A' by 1. For E we denote E \ A ' =  { / \  X \ f  G E}. 

Note th a t E  A X  —*• AV if and only if E  \= A X  —» .4 for every A E Y  — X .  T hus /  \  A' and E  \  A' 

can be considered as formulas on U — X.

Theorem 4.3. Let F  be a G T B D  set o f  the form A Y  —* AZ, Y , Z  C U, and ¡et X  C U, 

A  E U  — X .  Then F  |= A A' —*• A on U i f  and  only i f  F  \  X  (= 1 —► A  on l i  — X .

Proof. Let V =  U — A" and G = F  \  X .  -
If: Assume G  f= 1 —>■ A  on V and suppose th a t .r is a tru th  assignm ent for F  on U such th a t 

F( x )  =  1 and A X ( x )  =  1. Form y from x  by removing the values x ( B ) for all B  G A'. Clearly, y  is 

an assignm ent on V and G( y ) =  1. Therefore =  ^(.4) =  1, since G  |= 1 —► A.  I t follows th a t 

F  |= AA — A.

Only if: Assume F  j= A X  — A  and suppose th a t y is a tru th  assignm ent for G  on V such th a t 

G(y)  =  1. Form x from y  by adding the values x ( B)  = 1 for all B  G A'. Clearly, x  is the assignm ent 

on U.  Moreover, F( x)  =  1 and A X ( x )  =  1. Since F  (= A X  —*■ A ,  it follows th a t (/(.4) =  2-(/l) =  1. 

Therefore G \= \ ^  A.  □

Theorem  4.3 gives a basis for the concept of transla tions of relation schemes [8]. T he main 

purpose of this concept is to  transform  a given set of functional dependencies by removing some 

a ttrib u tes  th a t seem to be un im portan t for com puting several objects in the relational model of 

databases. Note th a t Theorem  4.3 was proved for a more general case, where F  may contain mul­

tivalued and join dependencies besides functional dependencies (for the definitions of m ultivalued 

and jo in  dependencies see [9,13].)

5. Update Problem

In general, the upd a te  problem  can be expressed as follows. Given a relation R  th a t satisfies a 

set of G PB D s E. After perform ing one of the following upd ate  operations on R  : add a tuple to  

R,  delete a tuple from R,  and change the contents of a tuple in R  we get a new relation, say R ' . 

Does R '  satisfy £  ?
Jf R  satisfies E , then Tr  C 7V;. Since the delete operation  reduces the num ber of tuples in R,  we 

have Tr < C T r ,  so Tji> C X^, by transitivity . Hence R'  satisfies E. T hus the delete operation  does



not change the sem antics of R .  T he result of the change operation can be obtained with a delete 

followed by an add. Therefore, our aim  will be focussed on the add operation. Let R  be a relation 

th a t satisfies a set of G PB D s E and / be a tuple in di x • • • x dn . We say th a t I can be added to 

R  if R  U {/} satisfies E. We know th a t R  satisfies E if and only if Tr  C T%. Therefore we get the 

following result.

Theorem 5.1 Let R  be a relation satisfying  a set o f  GPBDs  E , and let t be a tuple in d\ x • • • X dn . 

Then t can be added to R  i f  and only i f  (Vu G R) ( a( t , u)  £  TV).

6. Armstrong relations

Let E and T be the sets of G PBD s. Denote by E + the set { / |  E  |= /} .  C learly E + D E, and 

E  =  T if and only if E + =  T+ . Let R  be a relation on U , denote by L D (R )  the set of all G PBD s 

on U th a t hold in R. C learly (L D ( R ) ) + =  L D {R ).

Definition 6.1. Let E  be a set of G PB D s on U and let R  be a relation on U. R  represents E  if

L D ( R )  D E + . R  exactly represents E  if L D (R )  =  E + . If R  exactly represents E  then we also say

th a t R  is an Armstrong relation for E.

In [1,2,8] the s tru c tu re  and size of A rm strong relations are investigated for functional depen­

dencies. T he next theorem  gives a characterization  of A rm strong relations for generalized positive 
Boolean dependencies.

Theorem 6.1 Let E be  a set o f  GPBDs on U , and let R  be a nonem pty  relation on U . Then R  is

an A rm strong  relation for E i f  and only i f  Tr  =  TV.

Proof. Only if: If R  is an A rm strong relation for E, then by definition 6.1 L D ( R )  =  E + . It follows 

th a t L D ( R )  and E are equivalent. Hence T i q r̂  ̂ =  T-^. B ut R  satisfies L D (R ) ,  then  Tr  C Th ,(r ). 
Therefore, by the transitiv ity , TR C T j .

Suppose th a t x £  T% bu t x $  Tr . From the theory of Boolean functions we know th a t there is a 

form ula /  on U w ith Tj — Tr . Note th a t e £ Tr , since R  ^  0. It follows th a t /  is a positive Boolean 

formula. Since T r  — Tj , R  satisfies / ,  so f  £ L D (R ) .  Therefore /  £  E + , since L D ( R ) =  E + . Since 

x £  T z  and E h  / ,  it follows th a t f ( x )  =  1. Hence x  £  Tj ,  and so x  £  Tr ] a contradiction.

If: Assume T r  =  7V> Then R  satisfies E . Since S H E + , R  satisfies E + , so L D (R )  D E + . If 

/  G LD{ R) ,  then R satisfies / .  It follows th a t T r  C Tj  . Since T R =  T v , TV C 7 ) . Hence E h / ,  
and so /  G E + . □

7. Conclusion

O ur further research will be dedicated to  the following problems.

Let E be a set of G PB D s on a set of a ttrib u tes  U .

1. C onstruct an A rm strong relation for E.

2. W hat is about the size (num ber of tuples) of m inim al A rm strong relations for E.



References

1. A rm strong W .W ., Dependency S tructures of D atabase Relationship« Proc. IF IP  74, North 

Holland, A m sterdam , 1974, 580-583.

2. Beeri C ., Dowd M., Fagin R. & S ta tm an  R., On the Structure o f  A rm strong  Relations for 

Functional Dependencies, J . ACM, 31 (1984), 1, 30-46.

3. Berm an J . & Blok W .J., Generalized Boolean dependencies, A bstracts of AMS, 6 (1985), 163.

4. Berm an J . k. Blok W .J., Positive Boolean dependencies, Inf. Processing L etters, 27  (1988), 

147-150.
5. Berm an J . & Blok W .J., Equational dependencies. M anuscript (1990).

6. Czedli G ., On dependencies in the relational model o f  data, J . EIK 17 (1981), 103-112.

7. Demetrovics J . Sz Gyepesi Gy., Som e generalized type functional dependencies formalized as 

equality set on matrices, 1 Discrete Applied M ath. 6 (1983), 35-47.

8. Demetrovics J. ¿c Huy N.X., Closed sets and translations o f  relation schcmes, C om puters M ath. 

Applic. 21 (1991), 13-23.

9. M aier D., T he Theory o f  Relational Databases. C om puter Science Press, Rockville, M d., 1983.

10. Post E.L., The two-valued Interative System s o f  M athematical Logic, 1 A nnals of M ath . Studies, 

5 (1941) Princeton University.

11. Sagiv Y . ,  Delobel C., Parker D.S., & Fagin R., A n Equivalence Between Relational Database 

Dependencies and  a Fragment o f  Propositional Logic, J . ACM 28 (1981), 435-453. Also a 

correction to  th is paper in J. ACM 34 (1987), 1016-1018.

12. T halhei B., Funktionale Abhängigkeiten in relationalen Datenstrukturen,  J . EIK 21 (1985), 

23-33.
13. Ullman J .D ., Principles o f  Database Systems, (Second E dition.) C om puter Science Press, 

Potom ac, M d., 1982.

Abstract

A  class o f  generalized positive Boolean dependences (G PBD ) is introduced. The  membership  

problem , update problem and Arm strong relations for a given set o f  G P BD s are. investigated.


