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EARTHQUAKE INDUCED SLOPE FAILURE SIMULATION BY SPH 
 
Ha H. BUI    R. FUKAGAWA, K. SAKO, Y. OKAMURA 
Ritsumeikan University  Ritsumeikan University 
Kusatsu, Shiga, 525-8577, Japan  Kusatsu, Shiga, 525-8577, Japan 
 
 
 
ABSTRACT 
 
Majority of slope stability, slope displacement and soil liquefaction analyses subjected to earthquake loading condition employed the 
finite element method (FEM) as the standard numerical tool. However, mechanism of soil failure in such condition often involved 
extremely large deformation and failure behaviors, which were unable to be modeled by FEM since this method was suffered from the 
grid distortion. In an attempt to overcome this limitation, we present herein our first attempt to extend the smoothed particle 
hydrodynamics (SPH) method to analyze slope failure behavior due to seismic shaking. For the sake of simplicity, effect of pore-water 
pressure was not taken into consideration. The numerical framework was then applied to simulate the failure behavior of a slope 
subjected to a seismic loading. Experimental model was also conducted to verify the numerical performance. It is shown that SPH can 
simulate fairly well the slope failure behavior in the model test, especially in prediction of the failure surface. The paper suggests that 
SPH should be considered as a powerful alternative for computation of geomaterials subjected to earthquake loading conditions. 
 
 
INTRODUCTION 
 
Computational applications of seismic slope stability analysis 
and earthquake induced slope failure simulation remain an 
active and important area of study in geotechnical engineering. 
In the last few decades, the seismic slope stability analysis has 
been often performed using the pseudo-static method and the 
sliding block method (Newmark, 1965). Although, these 
methods are simple and have some limitations, they are still 
widely used in the geotechnical applications. 
 
On the other hand, in order to take into account the soil 
deformation behavior during earthquake, the finite element 
method (FEM) has been often applied. Advantage of FEM is 
that it took into account stress-strain relation of soil thus more 
accurate soil behavior can be taken into consideration. 
However, geotechnical problems subjected to earthquake 
loading condition often involved large deformation and failure 
of soil which were unable to be modeled using FEM due to the 
grid distortion problem. Re-meshed technique in FEM may 
help to resolve this problem but computational procedure is 
too complicated and it is quite difficult to apply to three 
dimensional problems. Therefore, there is a need to develop 
mesh-free methods for such computational purposes.  
 
So far, the popular application of mesh-free method in 
geotechnical engineering is well known as the discrete 
element method (DEM), proposed by Cundall & Struck (1979). 

Advantages of this approach are that it can handle large 
deformation and failure problems, the concept is relatively 
simple and it is easy to implement computer code. However, 
DEM suffered from low accuracy since this method employed 
the interaction model, which was based on spring and dash-pot 
system whose parameters are difficult to determine. Another 
mesh-free method such as discontinuous deformation analysis 
(DDA) proposed by Shi et al. (1998) was also applied in 
geotechnical applications but mainly used for rock engineering, 
etc.  
 
Alternatively, the smoothed particle hydrodynamics (SPH), 
proposed by Lucy (1977) and Gingold & Monaghan (1977), 
has been recently developed for solving large deformation and 
failure flows of geomaterials (Bui et al., 2007; 2008; 2009). 
The SPH method represents a powerful alternative for 
computational geomechanics especially for handling large 
deformation and post-failure of geomaterials, thereby 
providing physical insight to the failure mechanisms of soil.  
 
In this paper, to enhance the application of SPH to 
computational geomechanics, the SPH method is extended to 
simulate the progressive failure of a slope subjected to an 
earthquake loading. Laboratory experiments were also 
conducted to verify the numerical result. In what follow, the 
numerical procedure and validation will be presented. 
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SIMULATION APPROACH 
 
In this section, brief introduction about the simulation 
approaches will be explained. 
 
 
SPH approximations 
 
In the SPH method, a computational domain is modelled using 
a set of discrete particles, each is assigned with a constant 
mass and carries field variables at the corresponding location. 
The particles have a kernel function to define their interaction 
range, called the support domain, and the field variables are 
calculated through the use of an interpolation process over its 
neighboring particles located within the support domain. The 
interpolation process is based on the integral representation of 
a field function f(x) as follows, 

xdhxxWxfxf  


),()()(   (1) 

where x represents the location of particle;  specifies the 
influence domain of the integral; W is the basis function of the 
approximation, called the “kernel function”; h is the 
“smoothing length”, which defines the influence domain of W; 
and this  approximation  is called “kernel approximation”.  
 
The kernel function W must be chosen to satisfy the following 
conditions:  
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where  is the krecke detal function. Equation (2) ensures that 
a constant function of the space is exactly reproduced by 
equation (1), while equation (3) ensures a correct reproduction 
of the function when the smoothing length tends to zero. 
 
The choice of kernel function directly affects the accuracy, 
efficiency and the stability of numerical algorithm. A number 
of kernel functions have been proposed in the SPH literature 
so far, we apply herein the most popular kernel function, 
namely cubic-spline function proposed by Monaghan and 
Gingold (1985), which has the following form, 
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where d is the normalization factor which is 15/(7h2) in 
two-dimensional space and q is the normalized distance 
between particles i and j defined as q = r/h. 

 
 

h 

rij 
i j 

W 

Interpolation 
point 

Interpolation 
region 

 
 

Fig. 1.  SPH interpolation through particles. 
 
 
The continuous integral representation (1) can now be 
discretized as a summation over the particles in the influence 
domain as follows, 
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     (5) 

where j = 1, 2, …, N indicate particles within the influence 
domain of the particle at x, called neighboring; mj and j are 
respectively the mass and the density of particle j. Fig.1 
illustrates the approximation of this equation. 
 
The approximation for the gradient f(x) can be obtained 
simply by substituting f(x) with f(x) in equation (1). 
Integrating by parts and using the divergence theorem, one 
obtains 
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From equation (5) and equation (6), the particle approximation 
for a function and its gradient at a particle i can finally be 
written in condensed form as, 
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where 

),( hxxWW jiij       (9) 
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with r is the relative distance between particles i and j. Further 
details of SPH integration scheme as well as other issues of 
SPH can be found in Liu and Liu (2004) or the SPH review of 
Monaghan (2005). 
 
 
SPH discretization of motion equation 
 
The motion equation of soil particles, in term of the effective 
stress, can be written in the following form, 




  gu        (11) 

where  and  denote Cartesian components x, y, z with the 
Einstein convention applied to repeated indices;  is the 
density; u is the displacement;   is the effective stress tensor, 
which is minus for compression; and g is acceleration due to 
the gravity.  
 
Using equation (8), the partial differential form of equation 
(11) can be approximated in the SPH formulation in the 
following way,  
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where Cij is the stabilization term which was employed to 
remove the stress fluctuation and tensile instability found in 
SPH. The stabilization term Cij consists of two components: 
artificial viscosity and artificial stress, which were computed 
similar to Bui et al. (2008) except that the sound speed, c, for 
the artificial viscosity term herein is calculated by, 

)1(2 ii

i
i

E
c

 
   (13) 

where E is the Young’s modulus of soil and  is the Poisson’s 
ratio.  
 
 
Implementation of damping force to SPH 
 
Motion of soil particles in SPH can be described using 
equation (12). However, under the seismic loading condition, 
this equation may not be enough to provide realistic soil 
performance since soil particles may have free vibration 
without damping. In order to obtain more realistic seismic 
behavior of soil particles in SPH, a damping force will be 
introduced into equation (12). In this paper, the non-viscous 
local damping force, proposed by Cundall (1987) for DEM, 

will be implemented into the SPH formulation. Accordingly, if 
the total force acing on particle i is denoted as F(i), the 
damping force acting on this particle will be calculated by, 

)()()( ii
d
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The damping force is controlled by the non-dimensional 
damping constant , whose value must be carefully chosen. In 
this paper,  = 0.2 will be employed throughout our numerical 
test. Advantages of using this form of damping are that: 
 

1. Only accelerating motion is damped. Therefore, no 
erroneous damping forces arise; 

 
2. The damping constant is non-dimensional, thus it is 

easy to use; and 
 

3. The damping is locally adaptive so that it varies from 
particle to particle and time to time. 

 
The damping force will be added to the right hand side of 
equation (12) at every time step. 
 
 
Soil constitutive model in SPH framework 
 
Any soil constitutive models can be implemented into the SPH 
method using the framework proposed by Bui et al. (2007). In 
this paper, a simple elasto-plastic soil constitutive model in 
conjunction with the Drucker-Prager yield criterion is 
employed to model soil behavior. Details of discretization of 
this soil model in the SPH framework have been recently 
presented in Bui et al. (2008) we herein give brief description 
of this procedure to obtain the stress-strain relation.  
A common approach to derive a stress-strain relation of soil is 
to use the classical plasticity. Accordingly, the total strain-rate 
tensor is often decomposed into two parts: an elastic strain rate 
tensor and a plastic strain rate tensor, 

  pe       (14) 

The elastic strain rate tensor can be calculated using the 
generalized Hooke’s law, i.e., 
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where s  is the deviatoric effective shear stress tensor;  is 
Poisson’s ratio; E is the elastic Young’s modulus; G is the 
shear modulus and m   is the mean effective stress. 
 
The plastic strain rate tensor is calculated by the plastic flow 
rule, which is given by: 










 p

p

g
    (16) 

where   is the rate of change of plastic multiplier, and gp is 
the plastic potential function. In the current study, the 
Drucker-Prager model with non-associated plastic flow rule is 
applied, under the assumptions that the yield surface is fixed 
in stress space, and plastic deformation occurs only if the 
stress state reaches the yield surface. Accordingly, plastic 
deformation will occur only if the following yield criterion is 
satisfied, 

0),( 2121  ckJIJIf       (17) 

where I1 and J2 are the first and second invariants of the stress 
tensor; and  and kc are Drucker-Prager constants that are 
calculated from the Coulomb material constants c (cohesion) 
and  (internal friction). In plane strain, the Drucker-Prager 
constants are computed by, 
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The non-associated plastic flow rule specifies the plastic 
potential function by, 

21 JIg p      (20) 

where  relates to the dilatancy angle and it can be computed 
using equation (18) by replacing the friction angle () with the 
dilatancy angle (). Finally, substituting equation (20) into 
equation (16), and then equations (15-16) into equation (14), 
and additionally adopting the Jaumman stress rate for large 
deformation treatment, the final stress-strain relation for the 
current soil model at particle i becomes, 
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where   iiie 
3
1  is the deviatoric shear strain rate 

tensor; i  is the rate of change of plastic multiplier, which in 

SPH is specified by, 
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and  i ,  i  are the strain rate and spin rate tensors defined 

by 
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The above soil constitutive model requires six soil parameters, 
which are the cohesion coefficient (c), friction angle (), 
dilatancy angle (), and Young’s modulus (E), Poission’s 
ratio (), and soil density ().  
 
 
BOUNDARY CONDITIONS IN SPH 
 
Boundary condition is one of the major issues in SPH that 
needs to be resolved. In this part, boundary conditions used to 
model solid boundary and earthquake loading will be 
explained. 
 
 
Solid boundaries 
 
In the SPH method, there have been several methods which 
were developed to model solid boundary conditions such as: 
ghost particles to model the free-slip boundary conditions 
(Libersky et al., 1993); repulsive force boundary condition 
(Monaghan, 1994; 1997; 2009); no-slip condition for viscous 
fluid (Takeda et al., 1994; Morris et al., 1997); stress boundary 
condition (Bui et al., 2008); etc. In this paper, we deal with 
two types of boundary conditions: free-roller and full-fixity. 
The free-roller boundary condition is modeled using ghost 
particles (Libersky et al., 1993), while the full-fixity one can 
be only modeled using the stress boundary method (Bui et al., 
2008) whereby virtual particles are used to model the solid 
boundary and an additional procedure assigns velocity and 
stress to these boundary particles. 
 
 
Earthquake loading 
 
In order to model earthquake loading condition, seismic 
acceleration is applied directly to each SPH particle as the 
external load, rather than shaking from solid boundaries. 
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Accordingly, the SPH motion equation under earthquake is 
written as follows: 
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where g  is the modified gravitational acceleration due to 

earthquake defined by, 
  

 
earthquakeii agg         (26) 

 
 
NUMERICAL PERFORMANCE AND VALIDATION 
 
The proposed SPH method has been validated by comparison 
of the numerical result with data measured during suitable 
experiments. In these experiments, a small-scale cut slope 
model was subjected to seismic loading, generated by a 
vibration generation machine. 
 
 
Experimental setup 
 
Fig.2 shows the schematic diagram of the soil box and 
location of displacement sensors used for the slope model test. 
The soil box used in the model test is 100cm long, 60cm wide 
and 70cm high. The walls of the soil box are made of stainless 
plate, except the front side which is made of transparent 
reinforced glass in order to facilitate the observation of the 
slope failure process. Seven laser displacement sensors 
(ILD1300-200) were used to measure the displacement of the 
failure mass at some specific locations along the center of the 
slope model as shown in Fig.2. Three sensors, namely SH1-
SH3, were affixed to right side of the soil box to measure the 
horizontal displacement of the failure mass, while four other  
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Fig. 2.  Arrangement of slope mode test (unit in mm). 
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Fig. 3.  Grain size distribution of Masa soil. 
 
 

Table 1.  Soil properties used for the slope model 
 

Density 
() 

Friction 
angle () 

Cohesion 
(c) 

Young’s 
modulus (E) 

Poisson’s 
ration () 

1.68 22.56o 0.78kPa 2.57MPa 0.33 

 
 
Sensors, namely SV1-SV4, were located on the top of the soil 
box to measure the vertical displacement of the failure mass. 
The output signals from these sensors were sent to the analog 
output and finally to the computer. 
 
The soil used in the current slope model experiment is Masa 
soil (weathered granite) which is the typical soil in Kansai 
region in Japan. The particle size distribution was measured 
by the laboratory test and the results are shown in Fig. 3. The 
maximum dry density was 1672kg/m3 and the minimum one is 
1297 kg/m3.  
 

 
 

Fig. 4.  Overview of slope model after construction. 
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Fig. 5.  Input earthquake wave in experiment 
 
 
The slope model consisted of a homogenous soil slope which 
is 90cm long, 60cm wide, 50cm high, and inclined an angle of 
45o to the horizontal direction. The water content of soil was 
kept to approximate 10%. The shear strength parameters of the 
corresponding soil were measured from direct shear tests and 
the results are given in Table 1. The overview of the slope 
model after construction is shown in Fig.4. 
 
The soil box model was placed on a vibration machine which 
can generate an earthquake with the maximum horizontal 
acceleration of 323m/s2 and frequency of 700Hz. In this paper, 
the slope model was subjected to the horizontal shaking which 
has the wave form shown in Fig.4. The shaking was applied to 
the slope model until it was completely collapsed. It took 
about 12s to complete the experiment. The potential failure 
surface of the slope was then estimated by removing the 
failure soil. 
 
 
Details of simulation 
 
The 2D plane-strain simulation has been applied in the current 
simulation to reproduce the experiment. Soil is considered to 
be elastic-perfectly plastic material which can be modeled 
using the soil constitutive model presented foregoing. The soil 
parameters shown in Table 1 were employed in the current 
simulation and the dilatancy angle was assumed to be zero. 
The effect of pore-water pressure was therefore assumed 
negligible. 
 
The slope shown in Fig.2 was modeled by 3275 SPH particles 
with an initial smoothing length of h = 1.20cm. Boundary 
conditions are free-roller at the left boundary, and full-fixity at 
the base. Similar to FEM, the initial stress condition within the 
slope must be obtained before applying the earthquake loading. 
In this paper, the initial stress was obtained by gradually 
applying the gravity to all particles. The initial configuration 
of the slope and corresponding vertical stress distribution is 
shown in Fig. 6.  

 

 
 

Fig. 6.  Initial configuration and vertical stress distribution in 
the slope mode via SPH. 
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Fig. 7.  Input earthquake wave in simulation 
 

 
In order to reproduce the earthquake wave used in the 
experiment, an approximation sine wave function has been 
created and shown in Fig.7. This wave was then applied to the 
slope model through the horizontal of each particle using 
equation (25). 
 
 
Discussion results 
 
Fig.8 shows the comparison between the experiment and the 
SPH simulation for the final slope configuration at the end of 
earthquake loading. Four sliding surfaces and corresponding 
rotational blocks can be found from the experimental data, as 
shown in Fig. 8a. This suggests that the slope was collapsed in 
several stages during the earthquake. On the other hand, slope 
failure in the simulation occurred in one stage and only one 
rotational block can be simulated. Although, the SPH method 
can simulate well the post-failure process of the slope, it is 
quite difficult to reproduce exactly the failure mechanism 
obtained from experiment since the soil parameters in 
simulation were keep constant through out the numerical test.  
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(a) Slope failure in experiment. 
 
 

Sliding block

Initial slope

Sliding block

Initial slope

 
 

(b) Slope failure in simulation. 
 

Fig. 8.  Slope configurations at the end of the earthquake 
loading obtained from the experiment and the SPH simulation. 
 
 
It would be better to implement a more advanced soil model 
that accounts for the change of soil parameters during the 
earthquake shaking. Such works are postponed to our future 
work.  
 
Fig. 9 shows the comparison of the failure surface between 
experiment and simulation. It is interesting to notice that the 
numerical simulation result agrees fairly well with the failure 
surface of the last failure mode in the experiment. The shape 
of failure surface in the simulation is almost circular, while 
that of experiment seems to be straight line. It is not clear 
about this failure mechanism since there may have some 
technical errors when removing the failure soil to specify the 
failure surface in our experiments. Further tests will be 
conducted to clarify this difference. 
 
Regarding the displacement of the sliding mass at the center of 
the slope, Fig.10 and Fig.11 show the comparison between 
experiment and simulation for the horizontal and vertical 
displacements of the sliding mass. It can see that the 
simulation results can qualitatively predict the tendency 
developments of the horizontal and vertical displacements of  

Experiment

Simulation

Experiment

Simulation

 
 

Fig. 9.  The observed slip surface of the last sliding block as 
compared to the slip surface predicted by SPH. 
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Fig. 10.  Comparison of failure horizontal displacement 
between the experiment and the SPH simulation. 

 
 
the failure mass. However, the simulations results 
overestimated the experimental data. Furthermore, the slope 
failure in the simulation started at about 1s earlier than that in 
experiment. It seems that the proposed damping force hasn’t 
been satisfied yet for the current SPH application. Further 
studies are needed to investigate these differences. On the 
other hand, the current numerical results confirmed the 
advantage of SPH which is over the traditional method in 
handling post-failure behavior of soil during earthquake. 
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Fig. 11.  Comparison of failure vertical displacement between 

the experiment and the SPH simulation. 
 
 
CONCLUSION 
 
The SPH method in conjunction with an elasto-plastic 
(Drucker-Prager) stress-strain model has been shown to be a 
reliable and robust method for post-failure behavior simulation 
of a slope subject to earthquake loading. Numerical simulation 
can predict fairly well the experiment data, although some 
results are overestimated. The authors are encouraged by these 
results but recognize the need for further improvement of the 
numerical method. Advantage of the method is its robustness, 
conceptual simplicity, relative ease of incorporating new 
physics, and especially its potential to handle large 
deformation and post-failure behaviors. 
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