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Abstract. In 2014, the notion of intuitionistic linguistic labels was first introduced. In this paper,

we develop two symbolic computational models for intuitionistic linguistic labels. Various operators

are proposed, and their properties are also examined. Then, an application to group decision making

using intuitionistic linguistic preference relations is discussed.
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1. INTRODUCTION

1.1. Group decision making problem under linguistic information

Decision making is the process of choosing alternative(s) among several alternatives based on the

assessments given by decision makers (DMs). The uncertainty and the fuzziness of human thought

result in decision making with linguistic information in a wide variety of practical problems. In 2000,

Herrera and Herrera-Viedma [14] proposed the solution scheme for solving group decision making

(GDM) problems under linguistic information:

(1) Specification of the linguistic term set with its semantic. In this step, the

linguistic variable [30] or linguistic expression domain with a semantic is established to provide

the evaluations about alternatives according to the different criteria.

(2) Choice of the appropriate aggregation operators of linguistic information.
This step depends on the characteristics of the problem and how we represent linguistic terms

of the linguistic variable.

(3) Choice of the best alternative(s). It consists of two phases:

(a) Aggregation phase: It consists of obtaining overall linguistic assessments on the

alternatives by aggregating the assessments provided according to all the criteria by

means of the chosen aggregation operator of linguistic information.

(b) Exploitation phase: It consists of establishing a rank ordering the alternatives ac-

cording to the overall assessments for choosing the best alternative(s).

Many aggregations which aggregate linguistic information were developed. They are classified

into four groups [15,16]:
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(1) Linguistic computational model based on membership functions (type-1 fuzzy sets). Lin-

guistic terms are seen as fuzzy numbers. Using Extension Principle, the result of the aggregation

is also a fuzzy number. Then, an approximation function is utilized to associate this result

with a particular label.

(2) Linguistic computational model based on type-2 fuzzy sets. This model is an improvement of

the previous one by replacing the type-1 representation by type-2 representation. According

to this approach, computational processes make use the interval type-2 fuzzy sets (a particular

kind of the type-2 fuzzy sets) which maintain the uncertainty but reduce the computational

performance.

(3) Linguistic symbolic computational models based on ordinal scales. This model has been

widely used in computing with words due to its simplicity and high interpretability. It has two

characteristics:

• A finite and totally ordered discrete label set is used to represent the information;

• The operators, according to this model, perform calculations on the indices of the lin-

guistic labels.

(4) Linguistic symbolic computational models based on 2-tuple representation. Linguistic infor-

mation is presented as a pair of values, called linguistic 2-tuple, (s, α), where s is a linguistic

label and α is a numeric value representing a Symbolic Translation. This model makes cal-

culations with linguistic labels easily and without loss of information.

Tanino [19, 20] represented the information about the set of alternatives in three different ways:

as a preference ordering of the alternatives, as a fuzzy preference relation, and as a utility function.

Hence, obtaining a uniform representation of the evaluations must be the first step of the resolution

process of the GDM problem. Chiclana, Herrera and Herrera-Viedma [4] showed that a preference

ordering of the alternatives and a utility function can be converted to achieve a preference relation.

So, preference relations have been frequently considered in the GDM problem: Delgado et al. [8]

studied the situations in which DMs provide their preference information by using linguistic labels,

Xu [26] introduced the concept of intuitionistic preference relations and their application in GDM,

Zhang [31] proposed GDM with 2-tuple intuitionistic fuzzy linguistic preference relations, Xia and

Xu [21] developed an approach to GDM problem based on the hesitant fuzzy preference relations, ...

.

1.2. Intuitionistic linguistic label set

Motivated by Atanassov’s intuitionistic fuzzy set theory [1,2], we defined the intuitionistic linguistic

label [5, 17]. The novel definition is useful in situations when experts’ opinions are given as pairs of

linguistic labels. For each pair of linguistic labels, the first label expresses the membership and the

second expresses the nonmembership (of an element in a set).

For example, the relation between a car x and the set of good cars A can be expressed by two

components: (linguistic) membership component µA (x) = very likely, and (linguistic) nonmem-

bership component νA (x) = impossibly. So the pair (very likely, impossibly) is an intuitionistic

linguistic label expressing this relation.
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Some order relations for intuitionistic linguistic information were developed: membership-based

order relation and nonmembership-based order relation [17], score and confidence-based order relation

[5]. Using order relations, intuitionistic linguistic max and min [17], intuitionistic linguistic weighted

median [17], intuitionistic linguistic fuzzy relations and max-min composition of these relations [5]

were introduced.

1.3. The organization of the paper

The rest of the paper is organized as follows. Section 2 gives an overview of linguistic symbolic

computational models as well as intuitionistic label set. Sections 3 and 4 are devoted to present the

contributions of the paper: two linguistic symbolic computational models for intuitionistic linguistic

information. Section 5 proposes a refined algorithm, which use the new operators, for GDM problem

under intuitionistic fuzzy linguistic preference relations. Section 6 draws a conclusion.

2. PRELIMINARIES

2.1. Linguistic symbolic computational models

2.1.1. Linguistic symbolic computational model for discrete label set

Yager [28] presented the linguistic information using a finite and totally ordered discrete label set:

S = {s0, s1, . . . , sg}, (1)

such that si ≥ sj iff i ≥ j. In order to aggregate linguistic labels, the classical operators (maximum,

minimum and negation) are used:

max (si, sj) = si if i ≥ j ; min (si, sj) = si if i ≤ j ; neg (si) = sg−i.

Example 2.1. A set of seven linguistic labels could be [3]:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = perfect} .

Using these classical operators, many operators were developed: ordinal ordered weighted av-

eraging (OOWA) operator [29], linguistic weighted disjunction (LWD) and conjunction (LWC)

operators [10], ordinal hybrid aggregation (OHA) operator [22], ... .

The convex combination of linguistic labels [7] was also employed in this computational model.

It provides a wider range of aggregation operators. An aggregation operator, which uses the convex

combination of linguistic labels, can be interpreted as [11,12]:

Sn
C−→ [0, g]

app(·)−−−−→ {0, . . . , g} → S,

where C is an operator which directly acts over the label indexes, and app (·) is an approximation

function used to obtain an index associated with a linguistic label. Some well known operators of

this type are linguistic ordered weighted averaging (LOWA1) [9], induced linguistic ordered weighted

averaging (ILOWA1) [10], linguistic weighted averaging (LWA1) [13], linguistic weighted OWA
(LWOWA) operators [18], ... .

The finite and totally ordered discrete label set, S, is also described as follows (g is an even

positive integer):
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• Subscript-symmetric linguistic evaluation scale [6]:

S =
{
sα

∣∣∣α = −g
2
, . . . ,−1, 0, 1, . . . ,

g

2

}
. (2)

• Multiplicative linguistic evaluation scale [23]:

S =

{
sα

∣∣∣∣α =
1

g
2 + 1

, . . . ,
1

2
, 1, 2, . . . ,

g

2
+ 1

}
. (3)

• ... .

Similar to the linguistic evaluation scale in (1), aggregation operators were also developed for

scales in (2-3).

2.1.2. Linguistic Symbolic Computational Model for Continuous Label Set

Xu [27] introduced the computational model to improve the accuracy in processes of linguistic aggre-

gation by extending the subscript-symmetric linguistic evaluation scale (2) to the continuous linguistic

one, S̄ = {sα|α ∈ [−t, t]}, where t (t > g) is a sufficiently large positive integer. If sα ∈ S, then sα
is called an original linguistic label; otherwise, an extended (or virtual) linguistic label. The classical

operators maximum, minimum and negation were defined similarly to the those of S.

Example 2.2. [24] The discrete label set S = {s−3, s−2, s−1, s0, s1, s2, s3} (the set of original

linguistic terms) is extended to a continuous one S̄ = {sα|α ∈ [−3, 3]}. The label s−0.3 ∈ S̄ , for

example, is a virtual linguistic label.

The operators which aggregate continuous labels were developed [25]: linguistic averaging (LA),

linguistic weighted averaging (LWA2), linguistic ordered weighted averaging (LOWA2), induced

linguistic OWA (ILOWA2) operators, ... .

2.2. Intuitionistic label set

Definition 2.1. [5, 17] An intuitionistic linguistic label is defined as a pair of linguistic labels

(si, sj) ∈ S2 such that i + j ≤ g, where S = {s0, s1, . . . , sg} is the linguistic label set; si and

sj ∈ S respectively define the degree of membership and the degree of nonmembership of an object

in a set. The set of all intuitionistic linguistic labels is denoted as S̃. Two intuitionistic linguistic

labels ã = (si, sj), b̃ = (sp, sq) are termed to be equal, denoted by ã = b̃, if si = sp and sj = sq.

Definition 2.2. [5] For each ã = (si, sj) ∈ S̃, the score, SC (ã), and the confidence, CF (ã), of ã
are respectively defined as follows:

SC (ã) = i− j ; CF (ã) = i+ j.

Definition 2.3. [5] For all ã, b̃ ∈ S̃, we define:

ã ≥ b̃⇔


SC (ã) > SC

(
b̃
)SC (ã) = SC
(
b̃
)

CF (ã) ≥ CF
(
b̃
) ; ã > b̃⇔

{
ã ≥ b̃
ã 6= b̃

.
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Table 1: The S̃ is reordered such that s̃0 ≤ s̃1 . . . ≤ s̃G (G = 27)

CF = 0 CF = 1 CF = 2 CF = 3 CF = 4 CF = 5 CF = 6
SC = −6 s̃0 = (s0, s6)
SC = −5 s̃1 = (s0, s5)
SC = −4 s̃2 = (s0, s4) s̃3 = (s1, s5)
SC = −3 s̃4 = (s0, s3) s̃5 = (s1, s4)
SC = −2 s̃6 = (s0, s2) s̃7 = (s1, s3) s̃8 = (s2, s4)
SC = −1 s̃9 = (s0, s1) s̃10 = (s1, s2) s̃11 = (s2, s3)
SC = 0 s̃12 = (s0, s0) s̃13 = (s1, s1) s̃14 = (s2, s2) s̃15 = (s3, s3)
SC = 1 s̃16 = (s1, s0) s̃17 = (s2, s1) s̃18 = (s3, s2)
SC = 2 s̃19 = (s2, s0) s̃20 = (s3, s1) s̃21 = (s4, s2)
SC = 3 s̃22 = (s3, s0) s̃23 = (s4, s1)
SC = 4 s̃24 = (s4, s0) s̃25 = (s5, s1)
SC = 5 s̃26 = (s5, s0)
SC = 6 s̃27 = (s6, s0)

Example 2.3. Consider the linguistic label set of seven labels S = {s0, s1, s2, s3, s4, s5, s6}. The

corresponding intuitionistic label set is S̃ =
{

(si, sj) ∈ S2
∣∣ i+ j ≤ 6

}
. Using the relation “≥”

(Definition 2.3), S̃ can be ordered as in Table 1.

Definition 2.4. [5] Let {ã1, . . . , ãn} be a collection of intuitionistic linguistic labels in S̃, the max,

min operators are defined as follows:

max (ã1, . . . , ãn) = b̃1 ; min (ã1, . . . , ãn) = b̃n,

where b̃j is the j-th largest of the ãi.

3. AGGREGATION OPERATORS FOR DISCRETE INTUITIONISTIC
LABEL SET

3.1. More on intuitionistic linguistic max-min operators

Let {ã1, . . . , ãn} be a collection of intuitionistic linguistic arguments in S̃. In order to find max (ã1, . . . , ãn)
and min (ã1, . . . , ãn), some notations are used:

arg maxSC (ã1, . . . , ãn) =

{
ã

∣∣∣∣SC (ã) = max
k=1,...,n

{SC (ãk)}
}

;

arg minSC (ã1, . . . , ãn) =

{
ã

∣∣∣∣SC (ã) = min
k=1,...,n

{SC (ãk)}
}

;

arg maxCF (ã1, . . . , ãn) =

{
ã

∣∣∣∣CF (ã) = max
k=1,...,n

{CF (ãk)}
}

;

arg minCF (ã1, . . . , ãn) =

{
ã

∣∣∣∣CF (ã) = min
k=1,...,n

{CF (ãk)}
}
.

Theorem 3.1. For all collections of intuitionistic linguistic labels {ã1, . . . , ãn} in S̃, we have:
(A1) arg maxCF (arg maxSC (ã1, . . . , ãn)) contains a unique element ã∗, and

max (ã1, . . . , ãn) = ã∗;

(A2) arg minCF (arg minSC (ã1, . . . , ãn)) contains a unique element ã∗, and

min (ã1, . . . , ãn) = ã∗.
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Proof. Let us consider ã∗ ∈ arg maxCF (arg maxSC (ã1, ã2, . . . , ãn)). With the assumption that

arg maxSC (ã1, . . . , ãn) =
{
b̃1, . . . , b̃m

}
, we get ã∗ ∈ arg maxCF

(
b̃1, . . . , b̃m

)
. Thus, SC (ã∗) =

max {SC (ã1) , . . . ,SC (ãn)}, and CF (ã∗) = max
{

CF
(
b̃1

)
, . . . ,CF

(
b̃m

)}
. Because each pair

of score and confidence determines a unique intuitionistic linguistic label, ã∗ is the unique element of

arg maxCF (arg maxSC (ã1, . . . , ãn)).

For each ã ∈ {ã1, . . . , ãn}, there are two cases:

• If ã /∈
{
b̃1, . . . , b̃m

}
, then SC (ã) < SC (ã∗).

• If ã ∈
{
b̃1, . . . , b̃m

}
, then SC (ã) = SC (ã∗) and CF (ã) ≤ CF (ã∗).

By definition 2.3, ã ≤ ã∗. So, max (ã1, . . . , ãn) = ã∗. The remainder is similar. �

Example 3.1. Consider ã1 = (s0, s4), ã2 = (s2, s4), ã3 = (s3, s1), ã4 = (s1, s5), ã5 = (s4, s2).

We have:

max (ã1, . . . , ãn) = arg maxCF (arg maxSC (ã1, ã2, ã3, ã4, ã5))

= arg maxCF (ã3, ã5) = ã5;

min (ã1, . . . , ãn) = arg minCF (arg minSC (ã1, ã2, ã3, ã4, ã5))

= arg minCF (ã1, ã4) = ã4.

3.2. Intuitionistic linguistic aggregation median operators

In this sub-section, we define some operators on intuitionistic linguistic labels by using the relation

“≥” (Definition 2.3). From now on, W = (w1, . . . , wn) denotes a weight vector such that wi ≥ 0,

and
∑n

i=1wi = 1.

Definition 3.1. Let {ã1, . . . , ãn} be a collection of intuitionistic linguistic labels in S̃, and{
b̃1, . . . , b̃n

}
be a permutation of {ã1, . . . , ãn} such that b̃1 ≥ b̃2 · · · ≥ b̃n. We define:

(1) Intuitionistic linguistic median operator:

iMed (ã1, . . . , ãn) =

{
b̃n+1

2
if n is odd,

b̃n
2

if n is even.

(2) Intuitionistic linguistic weighted median: consider the collection {(w1, ã1) , . . . , (wn, ãn)},
where W = (w1, . . . , wn) is a weight vector, wi is associated weight of ãi. We assume that{(
u1, b̃1

)
, . . . ,

(
un, b̃n

)}
is the ordered collection of {(w1, ã1) , . . . , (wn, ãn)} such that uj is

the weight that is associated with the ai that becomes bj . Let Ti =
∑i

j=1 uj , intuitionistic linguistic

weighted median (iLWM) operator is defined as:

iLWM ((w1, ã1) , . . . , (wn, ãn)) = b̃k,

where k is the smallest integer such that Tk is greater than or equal to 0.5.
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Example 3.2. Consider ã1 = (s0, s4), ã2 = (s2, s4), ã3 = (s3, s1), ã4 = (s1, s5), ã5 = (s4, s2),

and W = (0.2, 0.3, 0.15, 0.22, 0.13). Reordering the collection {ã1, ã2, ã3, ã4, ã5} in descending

order, we get b̃1 = ã5 > b̃2 = ã3 > b̃3 = ã2 > b̃4 = ã4 > b̃5 = ã1.

• iMed (ã1, ã2, ã3, ã4, ã5) = b̃ 5+1
2

= b̃3 = ã2 = (s2, s4).

• Since u1 = w5 = 0.13, u2 = w3 = 0.15, u3 = w2 = 0.3, u4 = w4 = 0.22, u5 = w1 = 0.2,

then T1 = u1 = 0.13, T2 = u1 + u2 = 0.28, T3 = u1 + u2 + u3 = 0.58 > 0.5. Consequently,

iLWM (ã1, ã2, ã3, ã4, ã5) = b̃3 = ã2.

Theorem 3.2. iLWM is idempotent, bounded, commutative and monotonous, i.e.:
(B1) For all ã ∈ S̃, and W = (w1, . . . , wn) is a weight vector,

iLWM ((w1, ã) , . . . , (wn, ã)) = ã;

(B2) For all ãi ∈ S̃, and W = (w1, . . . , wn) is a weight vector,

min (ã1, . . . , ãn) ≤ iLWM ((w1, ã1) , . . . , (wn, ãn)) ≤ max (ã1, . . . , ãn) ;

(B3) For all ãi ∈ S̃, W = (w1, . . . , wn) is a weight vector, and σ is a permutation on the
set {1, . . . , n},

iLWM ((w1, ã1) , . . . , (wn, ãn)) = iLWM
((
wσ(1), ãσ(1)

)
, . . . ,

(
wσ(n), ãσ(n)

))
;

(B4) Let ãi, c̃i ∈ S̃ such that ãi ≤ c̃i for all i = 1, . . . n , and W = (w1, . . . , wn) is a weight
vector,

iLWM ((w1, ã1) , . . . , (wn, ãn)) ≤ iLWM ((w1, c̃1) , . . . , (wn, c̃n)) .

Proof. (B1)-(B2) are straightforward.

(B3) It is implied from the fact that the j-th largest of {ã1, . . . , ãn} is equal to the that of{
ãσ(1), . . . , ãσ(n)

}
.

(B4) It is easily shown that the j-th largest of {ã1, . . . , ãn} is smaller or equal to the that of

{c̃1, . . . , c̃n}. So, (B4) is also proved. �

3.3. Convex combination of two intuitionistic linguistic labels

Definition 3.2. Let ã1 and ã2 ∈ S̃. A convex combination of ã1 and ã2 that has an associated

weight vector W = (w1, w2), denoted by iC {wi, ãi, i = 1, 2}, is defined as follows:

iC {wi, ãi, i = 1, 2} = s̃k,

where k = i + round [w1 (j − i)], round (·) is the usual round operator, and s̃j = max {ã1, ã2},
s̃i = min {ã1, ã2}.

For convenience, we also denote by iC {w1, w2, ã1, ã2} the expression iC {wi, ãi, i = 1, 2}.

Theorem 3.3. Let iC be a convex combination having an associated weight vector W =
(w1, w2). We have:

(C1) For all ã1, ã2 ∈ S̃, iC {1, 0, ã1, ã2} = max (ã1, ã2) and iC {0, 1, ã1, ã2} = min (ã1, ã2);
(C2) (Idempotency) For all s̃i ∈ S̃, iC {w1, w2, s̃i, s̃i} = s̃i;
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(C3) (Boundary) For all ã1, ã2 ∈ S̃, min (ã1, ã2) ≤ iC {wi, ãi, i = 1, 2} ≤ max (ã1, ã2);

(C4) (Monotonicity) For all ã1, ã2, c̃1, c̃2 ∈ S̃ such that ã1 ≤ c̃1, and ã2 ≤ c̃2,

iC {wi, ãi, i = 1, 2} ≤ iC {wi, c̃i, i = 1, 2} ;

(C5) (Commutativity) For all ã1, ã2 ∈ S̃, iC {w1, w2, ã1, ã2} = iC {w1, w2, ã2, ã1}.

Proof. (C1)-(C2) and (C5) are trivial.

(C3) As round (·) is an increasingly monotonous function, we have

i ≤ i+ round [w1 (j − i)] ≤ i+ round (j − i) = i+ (j − i) = j,∀i ≤ j.

Thus, min (ã1, ã2) ≤ iC {wi, ãi, i = 1, 2} ≤ max (ã1, ã2).

(C4) Assume that ã1 = s̃i, ã2 = s̃j , c̃1 = s̃p and c̃2 = s̃q with i ≤ j. By hypothesis, i ≤ p and

j ≤ q.

Case 1. p ≤ q. We have

(p+ w1 (q − p))− (i+ w1 (j − i)) = (1− w1) (p− i) + w1 (q − j) ≥ 0,

or

i+ w1 (j − i) ≤ p+ w1 (q − p) .

By the increasing monotonicity of round (·) function,

iC {wi, ãi, i = 1, 2} ≤ iC {wi, c̃i, i = 1, 2} .

Case 2. p > q. We have

iC {wi, ãi, i = 1, 2} ≤ max (ã1, ã2) = s̃j ≤ s̃q = min (c̃1, c̃2) ≤ iC {wi, c̃i, i = 1, 2} .

�
Using the convex combination of two intuitionistic linguistic labels, convex combination of n

intuitionistic linguistic labels is recursively defined as the following definition.

Definition 3.3. A convex combination of n (n ≥ 2) intuitionistic linguistic labels ã1, . . . , ãn in

S̃, that has associated weight vector W = (w1, . . . , wn), denoted by iCn {wk, ãk, k = 1, . . . , n}, is

defined as follows:

(1) n = 2: iC2 {wi, ãi, i = 1, 2} = iC {wi, ãi, i = 1, 2},
(2) n > 2:

iCn {wk, ãk, k = 1, 2, . . . , n} = iC

{
w1, 1− w1, b̃1, iC

n−1

{
wh

1− w1
, b̃h, h = 2, . . . , n

}}
,

where bj is the j-th largest of ai.

We also denote by iCn {w1, . . . , wn, ã1, . . . , ãn} the expression iCn {wi, ãi, i = 1, . . . , n}.
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3.4. Intuitionistic linguistic ordered weighted averaging operator

Definition 3.4. Intuitionistic linguistic ordered weighted averaging (iLOWA1) operator, whose

weight vector is W = (w1, . . . , wn), is defined as follows:

iLOWA1W (ã1, . . . , ãn) = iCn {wk, ãk, k = 1, . . . , n} .

Example 3.3. Let ã1 = (s0, s4), ã2 = (s2, s4), ã3 = (s3, s1), ã4 = (s1, s5), ã5 = (s4, s2)
be intuitionistic linguistic labels belonging to the intuitionistic label set given in Example 2.3, and

W = (0.2, 0.3, 0.15, 0.22, 0.13). It is easy to see that (Table 1) ã1 = s̃2, ã2 = s̃8, ã3 = s̃20,

ã4 = s̃3, ã5 = s̃21. So, b̃1 = s̃21, b̃2 = s̃20, b̃3 = s̃8, b̃4 = s̃3, b̃5 = s̃2. We have:

iLOWA1W (ã1, ã2, ã3, ã4, ã5) = iC

{
20

100
,

80

100
, s̃21, iC

4

{
30

80
,
15

80
,
22

80
,
13

80
, s̃20, s̃8, s̃3, s̃2

}}
;

iC4

{
30

80
,
15

80
,
22

80
,
13

80
, s̃20, s̃8, s̃3, s̃2

}
= iC

{
30

80
,
50

80
, s̃20, iC

3

{
15

50
,
22

50
,
13

50
, s̃8, s̃3, s̃2

}}
;

iC3

{
15

50
,
22

50
,
13

50
, s̃8, s̃3, s̃2

}
= iC

{
15

50
,
35

50
, s̃8, iC

2

{
22

35
,
13

35
, s̃3, s̃2

}}
.

(4)

Let us calculate iC2
{

22
35 ,

13
35 , s̃3, s̃2

}
, substitute in to (4):

iC2

{
22

35
,
13

35
, s̃3, s̃2

}
= s̃2+round[ 2235 (3−2)] = s̃3;

iC3

{
15

50
,
22

50
,
13

50
, s̃8, s̃3, s̃2

}
= iC

{
15

50
,
35

50
, s̃8, s̃3

}
= s̃3+round[ 1550 (8−3)] = s̃5;

iC4

{
30

80
,
15

80
,
22

80
,
13

80
, s̃20, s̃8, s̃3, s̃2

}
= iC

{
30

80
,
50

80
, s̃20, s̃5

}
= s̃5+round[ 3080 (20−5)] = s̃11;

iLOWA1W (ã1, ã2, ã3, ã4, ã5) = iC

{
20

100
,

80

100
, s̃21, s̃11

}
= s̃11+round[ 20

100
(21−11)] = s̃13.

Theorem 3.4. iLOWA1 operator satisfies the following properties:
(D1) (Idempotency) For all ã ∈ S̃, and W = (w1, . . . , wn) is a weight vector,

iLOWA1W (ã, . . . , ã) = ã;

(D2) (Boundary) For all ãi ∈ S̃, and W = (w1, . . . , wn) is a weight vector,

min
i=1,...,n

{ãi} ≤ iLOWA1W (ã1, . . . , ãn) ≤ max
i=1,...,n

{ãi} ;

(D3) (Monotonicity) Let ãi, c̃i ∈ S̃ such that ãi ≤ c̃i for all i = 1, . . . , n, and W =
(w1, . . . , wn) is a weight vector,

iLOWA1W (ã1, . . . , ãn) ≤ iLOWA1W (c̃1, . . . , c̃n) ;

(D4) (Commutativity) For all ãi ∈ S̃, π is a permutation over the set of arguments, and
W = (w1, . . . , wn) is a weight vector,

iLOWA1W (ã1, . . . , ãn) = iLOWA1W (π (ã1) , . . . , π (ãn)) .
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Proof. Properties (D1), (D2) and (D4) are clearly verified because of the corresponding properties

of the convex combination of two intuitionistic linguistic labels. We prove (D3) by induction on n.

• It is true for n = 2, because in this case iLOWA1 is reduced to iC.

• For all t ≥ 2, suppose that it is true for n = t. i.e.:

iLOWA1W

(
ã′1, . . . , ã

′
t

)
≤ iLOWA1W

(
c̃′1, . . . , c̃

′
t

)
, (5)

for all ã′i, c̃
′
i ∈ S̃ such that ã′i ≤ c̃′i for all i = 1, . . . , t, and W ′ = (w′1, . . . , w

′
t) is a weight vector.

Let us consider ãi, c̃i ∈ S̃ such that ãi ≤ c̃i for all i = 1, . . . , t+1, and W = (w1, . . . , wt+1) is a

weight vector. Without loss of generality we may assume: that ã1 ≥ . . . ≥ ãt+1 and c̃1 ≥ . . . ≥ c̃t+1.

Then,

iLOWA1W (ã1, . . . , ãt+1) = iC

{
w1, 1− w1, ã1, iC

t

{
wh

1− w1
, ãh, h = 2, . . . , t+ 1

}}
,

and

iLOWA1W (c̃1, . . . , c̃t+1) = iC

{
w1, 1− w1, c̃1, iC

t

{
wh

1− w1
, c̃h, h = 2, . . . , t+ 1

}}
.

By (5),

iCt

{
wh

1− w1
, ãh, h = 2, . . . , t+ 1

}
≤ iCt

{
wh

1− w1
, c̃h, h = 2, . . . , t+ 1

}
. (6)

Using the monotonicity of the iC operator, inequality (6) and ã1 ≤ c̃1, we obtain:

iC

{
w1, 1− w1, ã1, iC

t

{
wh

1− w1
, ãh, h = 2, . . . , t+ 1

}}
≤ iC

{
w1, 1− w1, c̃1, iC

t

{
wh

1− w1
, c̃h, h = 2, . . . , t+ 1

}}
.

Thus, iLOWA1W (ã1, . . . , ãt+1) ≤ iLOWA1W (c̃1, . . . , c̃t+1). (D3) is proved. �

4. AGGREGATION OPERATORS FOR CONTINUOUS INTUITIONISTIC
LABEL SET

In this section, we extend the discrete intuitionistic labels set S̃ =
{

(si, sj) ∈ S2
∣∣ i+ j ≤ g

}
to

continuous one, such that the indexes of the membership and the nonmembership of each intuitionistic

linguistic label take continuous values.

Definition 4.1. Continuous intuitionistic linguistic label set, Ŝ, is defined as the set of all pair

â = (sα, sβ) such that α, β ≥ 0 and 0 ≤ α+ β ≤ g, i.e.:

Ŝ = {(sα, sβ) |α, β ≥ 0, α+ β ≤ g} .

Each â = (sα, sβ) is termed as a continuous intuitionistic linguistic label. Two continuous intu-

itionistic linguistic labels (sα, sβ), (sδ, sσ) are equal, denoted by (sα, sβ) = (sδ, sσ), if α = δ and

β = σ.
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In Definition 4.1, it is not required that (sα, sβ) ∈ S2, i.e., α and β can take non-integer values.

For each â ∈ Ŝ, if â ∈ S̃, â is called a original intuitionistic label; otherwise, a virtual intuitionistic

label. The score, confidence degree, relations “≥”, and “>” of continuous intuitionistic label are

defined similarly to the those of (discrete) intuitionistic label (Definitions 2.2, 2.3).

Definition 4.2. Let {â1, . . . , ân} be a collection of continuous intuitionistic labels, âj =
(
sαj , sβj

)
for all j = 1, . . . , n. Intuitionistic linguistic averaging (iLA2) operators is defined as:

iLA2 (â1, . . . , ân) =
(
sᾱ, sβ̄

)
,

where ᾱ =
(∑n

j=1 αj

)
/n , and β̄ =

(∑n
j=1 βj

)
/n .

Theorem 4.1. For all {â1, . . . , ân} be a collection of continuous intuitionistic labels in Ŝ,
iLA2 (â1, . . . , ân) is an continuous intuitionistic linguistic label.

Proof. Since âj =
(
sαj , sβj

)
is an intuitionistic linguistic label, we have αj ≥ 0, βj ≥ 0, and

αj + βj ≤ g, for all j = 1, . . . , n. It implies ᾱ ≥ 0, β̄ ≥ 0, and

ᾱ+ β̄ =

∑n
j=1 (αj + βj)

n
≤ (ng) /g = g,

which proves the theorem. �

Definition 4.3. Let {â1, . . . , ân} be a collection of continuous intuitionistic labels in Ŝ, âj =(
sαj , sβj

)
for all j = 1, . . . , n, and W = (w1, . . . , wn) be a weight vector of (â1, . . . , ân). Intu-

itionistic linguistic weighted averaging (iLWA2) operator is defined as:

iLWA2 (〈w1, â1〉 , . . . , 〈wn, ân〉) =
(
sᾱ, sβ̄

)
,

where ᾱ =
∑n

j=1wjαj , and β̄ =
∑n

j=1wjβj .

Theorem 4.2. For all {â1, . . . , ân} be a collection of continuous intuitionistic labels in Ŝ
and W = (w1, . . . , wn) be a weight vector of (â1, . . . , ân), iLWA2 (〈w1, â1〉 , . . . , 〈wn, ân〉) is an
continuous intuitionistic linguistic label.

Proof. Similar to Theorem 4.1. �

Definition 4.4. Let {â1, . . . , ân} be set of continuous intuitionistic labels in Ŝ, and b̂j =
(
sδj , sσj

)
be the j-th largest of âi. Intuitionistic linguistic ordered weighted aggregation (iLOWA2W) operator,

whose associated weight vector is W = (w1, . . . , wn), is defined as:

iLOWA2W (â1, . . . , ân) = (sδ̄, sσ̄) ,

where δ̄ =
∑n

j=1wjδj , and σ̄ =
∑n

j=1wjσj .

Theorem 4.3. For all {â1, . . . , ân} be a collection of continuous intuitionistic labels in Ŝ and
W = (w1, . . . , wn) be a weight vector, iLOWA2W (â1, . . . , ân) is a continuous intuitionistic
linguistic label.

Proof. Similar to Theorem 4.1. �

Example 4.1. Consider intuitionistic linguistic labels â1 = (s1.2, s4.6), â2 = (s2.3, s3.1), â3 =
(s2.4, s1.9), â4 = (s1.3, s4.1), â5 = (s2.2, s0.7) in Ŝ = {(sα, sβ) |α, β ≥ 0, α+ β ≤ 6}, and a
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weight vector W = (0.19, 0.15, 0.23, 0.31, 0.12). We have b̂1 = â5 > b̂2 = â3 > b̂3 = â2 > b̂4 =
â4 > b̂5 = â1. Then,

iLA2 (â1, . . . , â5) =
(
s 1.2+2.3+2.4+1.3+2.2

5
, s 4.6+3.1+1.9+4.1+0.7

5

)
= (s2.08, s2.88) ,

iLWA2 (〈w1, â1〉 , . . . , 〈w5, â5〉) = (s0.19×1.2+0.15×2.3+0.23×2.4+0.31×1.3+0.12×2.2 ,

s0.19×4.6+0.15×3.1+0.23×1.9+0.31×4.1+0.12×0.7)

= (s1.792, s3.131) ,

iLOWA2W (â1, . . . , â5) = (s0.19×2.2+0.15×2.4+0.23×2.3+0.31×1.3+0.12×1.2 ,

s0.19×0.7+0.15×1.9+0.23×3.1+0.31×4.1+0.12×4.6)

= (s1.854, s2.954) .

Remark 4.1. It is easily seen that iLA2, iLWA2, and iLOWA2 are idempotent, bounded, increasingly

monotonous and commutative.

5. AN APPLICATION

Zhang etal. ( [31], algorithm (I)) proposed the intuitionistic fuzzy linguistic preference relation

(IFLPR) as a new type of preference relation. Then, a GDM problem under intuitionistic linguistic

information was considered, in which, the 2-tuple representation was utilized to represent intuition-

istic linguistic information. In this paper, a refined approach to this problem is introduced, which

generates the same result as [31]. This approach avoids the use of 2-tuple representation. Thus, it

seem be simpler and more understandable.

Using IFLPRs, intuitionistic linguistic averaging (iLA2) and intuitionistic linguistic weighted

averaging (iLWA2) operators, the method is described as follows:

Step 1. Consider a GDM problem, where X = {x1, . . . , xn} is a set of alternatives, and

D = {d1, . . . , dm} is a set of DMs. Assume that W = (w1, . . . , wm) is the weight vector of DMs,

wh is the weight of Dh (h = 1, . . . ,m). Denote P h =
[
phij

]
n×n

, where phij is the intuitionistic

linguistic preference of alternative xi over the alternative xj , given by the DM dh (i, j = 1, . . . , n,

h = 1, . . . ,m).

Step 2. Utilize the iLWA2 operator to aggregate the P h =
[
phij

]
n×n

(h = 1, ..., n), and derive

a collective IFLPR P = [pij ]n×n, where

pij = iLWA2

(〈
w1, p

1
ij

〉
, . . . ,

〈
wm, p

m
ij

〉)
, (i, j = 1, . . . , n). (7)

Step 3. For each alternative xi, we get an overall collective intuitionistic linguistic label:

pi = iLA2 (pi1, . . . , pin) , (i = 1, . . . , n). (8)

Step 4. Rank all pi by means of the order relation defined in Definition 2.3, then rank all the

alternatives xi and select the best one(s) in accordance with the values of pi (i = 1, . . . , n).

Example 5.1. Consider the linguistic label set S which consists of seven linguistic labels: s0 =
certain, s1 = extremely likely, s2 = meaningful chance, s3 = it may, s4 = small chance,
s5 = extremely unlikely, s6 = impossible and its corresponding intuitionistic label set S̃. There
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are two DMs who use intuitionistic labels to access the preferences over the set of alternatives X =
{x1, x2, x3, x4}.
• DM p1 has his/her weight w1 = 0.6 [31]:

P 1 =


(s3, s3) (s1, s2) (s2, s2) (s1, s3)
(s2, s1) (s3, s3) (s2, s3) (s1, s4)
(s2, s2) (s3, s2) (s3, s3) (s3, s3)
(s3, s1) (s4, s1) (s3, s3) (s3, s3)

 .
• DM p2 has his/her weight w2 = 0.4 [31]:

P 2 =


(s3, s3) (s2, s4) (s4, s1) (s5, s0)
(s4, s2) (s3, s3) (s4, s2) (s6, s0)
(s1, s4) (s2, s4) (s3, s3) (s3, s3)
(s0, s5) (s0, s6) (s3, s3) (s3, s3)

 .
Use (7) to aggregate P 1 and P 2, we obtain the collective IFLPR:

P =


(s3, s3) (s1.4, s2.8) (s2.8, s1.6) (s2.6, s1.8)

(s2.8, s1.4) (s3, s3) (s2.8, s2.6) (s3, s2.4)
(s1.6, s2.8) (s2.6, s2.8) (s3, s3) (s3, s3)
(s1.8, s2.6) (s2.4, s3) (s3, s3) (s3, s3)

 .
Use (8), we get p1 = (s2.45, s2.3), p2 = (s2.9, s2.35), p3 = (s2.55, s2.9), p4 = (s2.55, s2.9). Then,

x2 > x1 > x3 = x4.

6. CONCLUSIONS

In this paper, many operators, which can be used to aggregate intuitionistic linguistic information,

are defined. A modified algorithm based on linguistic labels representation is given to solve the GDM
problem with IFLPR. The results of the modification are the same as the previous method based on

2-tuple intuitionistic linguistic representation [31], and this proves the correctness of the refinement.
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