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SYNOPSIS As an alternative to rigorous boundary-element solutions, simple physical models can be used to deterrping e.g.
the interaction force-displacement relationship (dynamic stiffness) of foundations and the seismic effective foundatlon input
motion. Translational and rotational cones and their corresponding lumped-parameter models together with simple one-
dimensional wave patterns in the horizontal plane allow surface, embedded and pile foundations even for a }ayer'ed site to pe
analyzed and thus form a major step towards developing a strength-of-materials approach to foundatlop—v@raqon analysis.
The analysis can mostly be performed directly in the time domain. The physical models provide physical mgxght which is
often obscured by the mathematical complexity of rigorous solutions, offer simplicity in application as well as in the physws
and in the rigorous mathematical solution of the physical model, are sufficiently general to enable reasonably compl_lcated
practical cases to be solved, exhibit adequate accuracy, allow physical features to be demonstrated and offer the potential for

generalizations.

1. INTRODUCTION

A key aspect of any foundation vibration or dynamic soil-
structure interaction analysis is the calculation of the inter-
action force-displacement relationship (dynamic stiffness)
on the basemat-soil interface. To discuss the concepts, a
specific case is addressed (Fig. 1): the vertical degree of
freedom with the force P, and displacement uy of a rigid,
massless disk of radius ry on a soil layer of depth d resting
on a flexible rock halfspace. G represents the shear modu-
lus, v Poisson's ratio and p the mass density, from which
the dilatational wave velocity c, follows. Indices L and R
are introduced to identify constants associated with the
layer and the rock respectively.

To determine the Py-u, relationship, rigorous methods
exist: either the region of the layer and part of the halfspace
are modeled with axisymmetric finite elements and sophisti-
cated consistent transmitting boundaries are introduced to
represent wave propagation towards infinity or the boun-
dary-element method is applied whereby the free surface
and the interface between the layer and the halfspace must
be discretized when the fundamental solution of the full
space is used. In these rigorous methods a formidable theo-
retical background is required. A considerable amount of
expertise in idealizing the actual dynamic system is neces-
sary [8], and a significant amount of data preparation has to
be performed. The computational expense for just one run
is large, making it difficult from an economical point of
view to perform the necessary parametric studies. A false
sense of security could thus be provided to the user. The
engineer tends to be intimidated by these procedures. The
effort to interpret the results is also significant. These rigo-
rous methods with their mathematical complexity obscure
the physical insight and belong more to the discipline of
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applied computational mechanics than to civil engineering.
They should only be used for large projects of critical fa-
cilities such as nuclear-power plants, bunkered military
constructions, dams, etc. with the corresponding budget and
available time to perform the analysis. For all other pro-
jects, the most majority, the simple physical models to re-
present the unbounded soil summarized in this paper should
be used.

For instance, the soil below the disk is modeled as a trun-
cated rod (bar) with its area varying as in a cone (Fig. 2).
The vertical force Py(t) produces an incident dilatational

wave propagating with the velocity CIF; (for v <1/3) along a
cone (with Apex 1) with mass density p; and a specific
opening angle determined by z(% downwards from the disk.

At the beginning of the excitation before the wave reaches
the soil-rock interface, the wave pattern in the layer will be
the same as that occurring in a halfspace. The correspon-
ding displacement in the truncated semi-infinite cone is in-
versely proportional to the distance from apex 1

zZ
zf[“c—L]
p

with z measured from the free surface. Apex 1 is specified
in such a way as to yield the same static-stiffness coeffi-

L
Zg
L

zg +

u(z,t)= (D

. C e 2
cients for the truncated semi-infinite cone p(crL,) nr% / zb

and the disk on a homogeneous halfspace with the material
properties of the layer 4Gy ro/(1-vy), yielding
i _r (1-vp )2

= 2
ro 2 1_2DL ( )
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Fig. 1  Vertical motion of disk on surface layer resting

on flexible rock halfspace.

At the interface of the layer and the rock (z=d) the incident
wave f will lead to a refracted wave h propagating in the
rock in the same direction as the incident wave along its
own cone with the apex distance-to-radius ratio

26 /(ro(z5 +d)/ 25 ) (apex 2, dotted line). (Note that the
aspect ratio of the rock's cone is generally different from
that of the layer's cone. However, in the special case Vg=Vy,
both cones have the same proportions and ZOR equals

z{)‘ +d). The displacement in the rock ugr(z,t) is formulated
as

2579

L

Z5 +d d d 1z
ug(z,t)= hit-v+—%-—+x 3
r(z.0 zOR—d+z( cII; cg cg ®)

with the numerator chosen for convenience. In addition, a
reflected wave g is created propagating back through the
layer along the indicated cone (apex 3) in the opposite up-
ward direction. The resulting displacement in the layer
up (z,t) then equals

L L
P U I
5 +2 clr; zg +2d -z

Notice that the denominators in Eqs. 3 and 4 are the dis-
tances to the apexes of the respective cones. At the interface
z=d the arguments of the three functions f, g and h are the

same, t—d/ cIL,. The upwave g will reflect back at the free

uL(Z’t) =
p ©p

surface and then propagate downwards along the cone (apex
4) shown in Fig. 2. Upon reaching the interface of the layer
and the rock, a refraction and a reflection again take place,
etc. The reflection coefficient -, defined as the ratio of the
reflected wave g to the incident wave f, is determined by
formulating compatibility and equilibrium at the interface.

2d
g[t —o %](4)
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Fig. 2 Wave patterns of corresponding cones in soil

layer and rock halfspace.

From a practical point of view sufficient accuracy results
from using the high-frequency limit which corresponds to
replacing the cone by a prismatic bar.

_ PLCy —PRC
Py ety ®
pLCp + pch
The resulting displacement in the layer uy(t,z) is equal to
the superposition of the contributions of all cones; i.e. the
displacements of the incident wave and of all subsequent up-
waves and downwaves are summed. Denoting the incident
wave at z=0 as U, (t)(=f(t)) the displacement u (z,t) of the
layer at depth z and time t may be expressed as the wave
pattern

incident wave
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Fig.3  Vertical dynamic-stiffness coefficient for disk on

soil layer stiffer than rock halfspace.

The integer k is equal to the largest j for which at least one
of the arguments of U, for a specific z and t is positive.

The cones describing the wave propagation in the layer
can be unfolded to form a single layered cone. This genera-
lized unfolded layered cone represents a wave pattern
whose amplitude decays with distance, that considers the
reflections at the free surface and the reflections and
refractions at the layer-rock interface and that spreads
resulting in radiation of energy in the horizontal direction.
Through the choice of the cone as a physical model, the
complicated three-dimensional wave pattern with body and
surface waves and three different velocities is replaced by
the simple one-dimensional wave propagation governed by
the one constant dilatational wave velocity of the conical
rod, whereby plane sections remain plane (theory of
strength of materials). Only the (one) unknown u, needs to
be introduced.

As an example, the vertical dynamic-stiffness coefficient
for harmonic loading of the disk on the soil layer-rock
halfspace based on the refolded layered cone equals [44]

1+19I

K

1+22( -
J_

S(w) =

)

e—xij

1+ jx
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where K=4Gyrg/(1-vy) denotes the static-stiffness
coefficient of the disk on a homogeneous halfspace with the
properties of the layer, T=2d/c:; and K=2d/Z})‘. The nume-
rator is equal to the dynamic-stiffness coefficient of the
truncated semi-infinite cone modeling the halfspace which
is multiplied by the transfer function Uuy(®)/ug(w)
determined from Eq. 6 which introduces the reflections of
the layered system. Equation 7 represents a compact
expression with a clear physical interpretation.

To check the accuracy, the case of a stiffer and denser
layer than the halfspace is examined. This situation can
occur for a new sand fill over soft alluvial virgin soil. It is
typical for some sea coast areas. The ratios d/rg=1,
G1/Gg=5, pL/pr=1.25 and vy =vg=1/3 are selected, resul-
ting in an impedance ratio p;cp/(prcr)=2.5. The apex ratio
for the vertical motion equals z§/ry=2.094 (Eq. 2) and the
reflection coefficient -a=+3/7 (Eq. 5). In this case
z8=2z5+d. The non-dimensionalized vertical dynamic-stiff-
ness coefficient S(w)/K (Eq. 7) is decomposed as k,(ag)+iag
¢ (ag) with ag=wry/ ci‘ (shear-wave velocity cg). The spring
and damping coefficients k,{(ag), c,(ag) of the unfolded
layered cone agree well with the rigorous result using the
consistent-boundary formulation [37] denoted as exact in
Fig. 3.

gI‘o capture the horizontal radiation of energy through a
layer with cones, the sum in Eq. 7 must be evaluated up to a
large j. The sum may be avoided if the layer is idealized by
an ordinary non-radiating cone frustum (finite element of a
tapered bar) with vertical dynamic-stiffness coefficients
(index 1 for top (r;=rg), index 2 for bottom [25])

od/c}

tan((od / CIP; ):| (82)

2 _L|zb+d wd/ c{.;
zgd sm(cod / Cp )

511((0)=P(C ) T Li‘ %
0

Spp(®) =5, (w) =~-

p(cy

(8b)

LedY 1 od/ct
R
p 0

In this ordinary frustum, waves reflected at the layer-rock
interface cannot spread and radiate energy horizontally as
they propagate back upwards. Instead, they are focused in
the narrowing neck of the frustum. This disadvantage
makes the ordinary frustum used to model the soil layer
whose dynamic-stiffness matrix (Eq. 8) can be assembled
with the dynamic-stiffness coefficient of the cone represen-
ting the rock halfspace to calculate the layered system
clearly inferior (Fig. 3). The spring and damping coeffi-
cients of the ordinary frustum oscillate more than they
should.

The simple phy51cal models such as the unfolded layered
cone easily fit the size and economics of a project, and no



sophisticated computer code needs to be available. Use of
these procedures leads to some loss of precision, which is
more than compensated for by their many advantages. It
cannot be the aim of the engineer to calculate the complex
reality as closely as possible. For a well balanced design
which is both safe and economical rigorous results are not
called for in a standard project. Their accuracy is anyhow
limited because of the many uncertainties (for instance in
defining the soil profile), some of which can never be
eliminated.

As the simple physical models cannot cover all cases,
they do not supplant the more generally applicable rigorous
boundary-element method, but rather supplement it. It
should also be stressed that an improved understanding can
be gained from the results of a rigorous analysis, which
should thus be developed to enable progress. As experience
increases, the key aspects of the behavior can be identified.
This then leads to the development of simplified procedures
which, however, still capture the salient features of the phe-
nomenon. These physical models for soil dynamics are not
the first attempt to capture the physics which has not been
properly evaluated yet. On the contrary they make full use
of the experience gained from the rigorous state-of-the-art
formulations. The physical models are thus not only simple
to use and lead to valuable physical insight, but they are
also quite dependable incorporating implicitly much more
know-how than meets the eye.

As described by Roesset in the foreword covering the
early work on simple models of [49], the same researchers
engaged in the derivation of rigorous procedures based on
elasto-dynamics have at the same time tried to explain their
results with simple models. These attempts dating back to
the thirties were not always successful. Summaries, written
by Roesset [29, 30], who contributed significantly to the
advancement of the state of the art, influenced the deve-
lopment significantly. A brief historical review with a clas-
sification of the methods concentrating on certain key
aspects influenced by the preferences of the author follows.
For a more complete evaluation of the rich tradition the
reader is referred to the literature mentioned in the refe-
rences of this paragraph. The first group to calculate the
interaction force-displacement relationship of a foundation
on the surface of a halfspace consists of truncated semi-in-
finite cones introduced by Ehlers [5] for translational
motion and much later by Meek and Veletsos [15] for
rotational motion. An application to the torsional motion is
described in Veletsos and Nair [35]. Wedges for plane-
strain conditions are examined by Gazetas and Dobry [7]. It
is important to stress that in a practical application the (one
dimensional) wave propagation does not have to be
addressed as the dynamic stiffness of the semi-infinite cone
is exactly equal to that of a simple discrete-element model
consisting of a spring and a dashpot (for rotation also of a
mass moment of inertia with its own internal degree of
freedom) with frequency-independent coefficients. Based
on this arrangement the coefficients of the discrete elements
are determined not from the cone model - but as an
extension - from calibration with rigorous solutions of
elasto-dynamics. This permits not only material damping to
be considered (Veletsos and Nair [36]), but allows generali-
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zations to embedded and inhomogeneous sites (Wolf and
Somaini [39]) whereby also an additional discrete-element
(a spring) can be introduced (de Barros and Luco 2D. In
this second group, the lumped-parameter models, the early
single-degree-of-freedom systems determined in an ad-hoc
manner (Whitman [38], Richart, Hall and Woods [28]) are
also included. Starting from the discrete-element model of
the rotational cone, a family of lumped-parameter models
can be constructed systematically for any dynamic-stiffness
coefficient (Wolf [40]). In the third group, wave patterns in
the horizontal plane are prescribed. Dobry and Gazetas [4]
assume simple cylindrical waves to calculate dynamic-inter-
action factors which permit a pile group to be analysed
considering dynamic pile-soil-pile interaction. Finally, the
fourth group consists of calibration procedures to deter-
mine approximate expressions for the dynamic-stiffness
coefficients in the frequency domain and the static-stiffness
coefficients for a wide range of foundations (Gazetas [9],
[11], Pais and Kausel [27]), in many cases also being guided
by the dynamic-stiffness coefficient of the rotational cone.

This paper concentrates on summarizing the research and
development performed in an informal, enthusiastic, and
collegial atmosphere during the past fours years with Dr.
J.W. Meek. His role as leader and his significant contribu-
tions in generalizing the concept of cones (group 1 [18, 22])
and the wave pattern in the horizontal plane (group 3 [21])
are acknowledged. In addition, the extension of the
systematic formulation to construct consistent lumped-
parameter models (group 2 [41, 43]) is addressed. For
details the reader can consult the references cited above or
the book [49] which contains easy-to-follow derivations,
many examples and engineering applications.

2. CONCEPTS, CLASSIFICATION AND EXAMPLES
2.1 Applications

The simple models to be summarized can be used in the
majority of cases for the final dynamic analyses of founda-
tion vibration and soil-structure interaction. In addition, the
following considerations are appropriate. In certain cases,
the effect of the interaction of the soil and the structure on
the response of the latter will be negligible and need thus
not be considered. This applies, for example, to a flexible
high structure with small mass where the influence of the
higher modes (which are actually affected significantly by
soil-structure interaction) on the seismic response remains
small. It is then possible to excite the base of the structure
with the prescribed earthquake motion. For loads applied
directly to the structure, the soil can in this case be repre-
sented by a static spring or the structure can even be
regarded as built-in. In other cases, which include many
everyday building structures, ignoring the interaction
analysis can lead to an overly conservative design. It should
be remembered that seismic-design provisions [26] allow
for a significant reduction of the equivalent static lateral
force (up to 30%) for soil-structure interaction effects. For
these two categories, to determine if a dynamic interaction
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analysis is meaningful or not and to calculate the reduction
in the response of everyday structures, i.e. to perform the
actual dynamic analysis, physical models are well suited.
They are also appropriate to help the analyst to identify the
key parameters of the dynamic system, for preliminary
design, to investigate alternative designs, to perform para-
metric studies varying the parameters with large
uncertainties such as the soil properties or the contact
conditions on the structure-soil interface. Finally, simple
models are used to check the results of more rigorous
procedures determined with sophisticated computer codes.

2.2 Overview

To construct a physical model, physical approximations are
introduced for the cone models and the assumed wave
patterns in the horizontal plane, which at the same time
simplify the mathematical formulation. The latter can then
be solved rigorously, in general in closed form. These
assumptions of mechanics permit a much better evaluation
of the consequences than when mathematical
approximations are introduced, such as e.g. neglecting
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g of springs, dashpots and a mass with two internal

certain higher-order derivatives in the differential
equations of the rigorous formulation. For the lumped-
parameter models, which for more complicated cases does
involve curve fitting, a visual check of the accuracy is
possible by comparing the dynamic-stiffness coefficients of
the rigorous procedure and the physical model.

An overview of the physical models to calculate the
interaction force-displacement relationship (dynamic
stiffness) of the unbounded soil and the effective foundation
input motion for seismic excitation is presented.

A summary of the key expressions used to model the
various foundations is specified in the Appendix.

The simplest case consists of a rigid massless circular
basemat, called disk in the following, resting on the surface
of a homogeneous soil halfspace. A translational degree of
freedom, e.g. the vertical motion, is examined (Fig. 4a). To
determine the interaction force-displacement relationship of
the disk and thus its dynamic stiffness, the disk's displace-
ment (as a function of time) is prescribed and the corres-
ponding interaction force, the load acting on the disk (as a
function of time), is calculated. The halfspace below the
disk is modeled as a truncated semi-infinite rod (bar) with
its area varying as in a cone with the same material



properties. A load applied to the disk on the free surface of
a halfspace leads to stresses, due to geometric spreading,
acting on an area that increases with depth, which is also the
case for the translational cone. As already mentioned, by
equating the static stiffness of the translational cone to that
of the disk on a halfspace, the cone's opening angle is
calculated. It turns out that the opening angle for a given
degree of freedom depends only on Poisson's ratio of the
soil. Through the choice of the physical model, the
complicated three-dimensional wave pattern of the
halfspace with body and surface waves and three different
velocities is replaced by the simple one-dimensional wave
propagation governed by the one constant dilatational-wave
velocity of the conical rod, whereby plane cross-sections
remain plane. The radiation condition (outwardly
propagating waves only) is enforced straightforwardly by
admitting waves traveling downwards only. For the
horizontal motion a translational cone in shear with the
shear-wave velocity is constructed analogously. For the
rocking and torsional degrees of freedom, rotational cones
can be identified using the same concepts (Fig. 4b).

The same cones can also be used to examine a surface
foundation for a site consisting of a soil layer resting on
flexible rock halfspace, as already discussed in the
Introduction. The vertical degree of freedom is addressed
in Fig. 4c using the corresponding translational cone. The
same approach can be applied for the horizontal and
rotational degrees of freedom. The vertical force applied to
the disk produces dilatational waves propagating
downwards from the disk. The opening angle of this cone
follows again from equating the static stiffness of the
truncated semi-infinite cone to that of the disk on a
homogeneous halfspace with the material properties of the
layer. At the interface of the soil layer and the rock
halfspace the incident wave will lead to a refracted wave
propagating in the rock in the same direction as the incident
wave along its own cone (dotted lines). In addition, a
reflected wave is created propagating back through the soil
layer along the indicated cone (dashed lines) in the opposite
upward direction. The latter will reflect back at the free
surface and then propagate downwards along the cone
shown in Fig. 4c. Upon reaching the interface of the layer
and the rock, a refraction and a reflection again take place,
etc. The waves in the layer thus decrease in amplitude and
spread resulting in radiation of energy in the layer in the
horizontal direction (in addition to the energy loss through
the rock halfspace).

The concepts of cone models can be expanded to the
analysis of embedded cylindrical foundations. Again, the
vertical degree of freedom of a foundation embedded in a
halfspace is addressed in Fig. 4d, but the following argu-
mentation is just as valid for the horizontal, rocking or
torsional ones. The embedded part is discretized with disks.
To represent a disk within an elastic fullspace, a double-
cone model is introduced. Its displacement field defines an
approximate Green's function for use in an uncomplicated
(one-dimensional) version of the boundary-element method.
To enforce the stress-free condition at the free surface of
the halfspace (Fig. 4d), a mirror-image disk (again modeled
as a double cone) placed symmetrically (with respect to the
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free surface) and excited simultaneously by the same force
is considered. Indeed, any halfspace problem amenable to a
solution via cone models may also be solved in the full-
space. It is only necessary to augment the actual foundation
in the lower halfspace by its mirror image in the upper
halfspace. By exploiting principles of antisymmetry and
superposition, the soil's flexibility matrix defined at the
disks located within the embedded part of the foundation
can be set up. The rest of the analysis follows via conven-
tional matrix methods of structural analysis. The concept
can be expanded to a fixed boundary and also to an inter-
face with another halfspace. This permits cylindrical foun-
dations embedded in a soil layer resting on a rigid or
flexible rock halfspace to be calculated using cones. The
methodology points towards a general strength-of-materials
approach to foundation dynamics using the approximate
Green's functions of the double-cone models.

A generalization is possible, enabling the dynamic-stiff-
ness coefficients of a foundation on the surface of or
embedded in a layered halfspace to be calculated. For each
layer a dynamic-stiffness matrix based on cones is establi-
shed. Assembling the dynamic-stiffness coefficients of the
underlying halfspace and the dynamic-stiffness matrices of
the layers yields that of the layered site.

Returning to the translational and rotational cones of
Figs. 4a and b, it should be emphasized that in an actual
soil-structure-interaction or foundation vibration analysis
the cones are not represented physically by finite elements
of a tapered rod. For practical applications it is not neces-
sary to compute explicitly the displacements of the waves
propagating along the cone. The attention can be restricted
to the interaction force-displacement relationship at the
disk. The translational cone's dynamic stiffness can rigo-
rously be represented by the discrete-element model shown
in Fig. 4e. It consists of a spring with the static stiffness (of
the disk on a halfspace) in parallel with a dashpot with its
coefficient determined as the product of the density, the
dilatational-wave velocity (for the vertical degree of
freedom) and the area of the disk. As the latter is equal to
the disk on a halfspace’s limit of the dynamic stiffness as the
frequency approaches infinity, the cone's dynamic stiffness
will be exact for the static case and for the limit of infinite
frequencies (doubly-asymptotic approximation). For
intermediate frequencies the cone is only an approximation
of the disk on a halfspace. One rigorous representation of
the rotational cone's dynamic stiffness is shown in Fig. 4f.
The model again consists of a spring with the static stiffness
in parallel with a dashpot with as coefficient the exact high-
frequency limit of the dynamic stiffness (density times
dilatational-wave velocity times disk's moment of inertia
for the rocking degree of freedom). An additional internal
degree of freedom is introduced, connected by a spring
(with a coefficient equal to minus a third of the static-
stiffness coefficient) to the footing and by a dashpot (with a
coefficient equal to minus the high-frequency limit) to the
rigid support. Again, the rotational cone's dynamic stiffness
is doubly asymptotic. This is easily verified by noting that
the internal degree of freedom of the discrete-element
model is not activated in the two limits.

The model of Fig. 4f is shown for a translational degree
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of freedom in Fig. 4g, which forms the starting point to
develop systematically a family of consistent lumped-para-
meter models. The direct spring is chosen to represent the
static stiffness. The coefficients of the other spring and of
the two dashpots are selected so as to achieve an optimum
fit between the dynamic stiffness of the lumped-parameter
model and the corresponding exact value (originally
determined by a rigorous procedure such as the boundary-
element method). If the direct dashpot is used to represent
the high-frequency limit of the dynamic stiffness, the
number of coefficients available for the optimum fit is
reduced to two. To increase the number of coefficients and
thus the accuracy, several systems of Fig. 4g can be placed
in parallel. Figure 4h shows the lumped-parameter model
for three such systems, whereby two of them are combined
to form a new system consisting of two springs, one inde-
pendent dashpot (the two dashpots in series have the same
coefficient) and a mass. A total of six coefficients keeping
the doubly-asymptotic approximation thus results. It can be
shown that these six frequency-independent coefficients,
which can be determined using curve fitting applied to the
dynamic stiffnesses (involving the solution of a linear sys-
tem of equations only) will be real (but not necessarily
positive). The springs, dashpots and mass will represent a
stable lumped-parameter model with only two additional
internal degrees of freedom. The fundamental lumped-
parameter model of Fig. 4g is easy to interpret physically.
This physical insight is, however, lost to a large extent in
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Fig. 6  Interpretation of dynamic-stiffness coefficient for
harmonic excitation as spring and as dashpot in

parallel with frequency-dependent coefficients.

the model shown in Fig. 4h. But the latter does allow the
analyst to model quite complicated cases, as will be
demonstrated, such as a foundation embedded in a soil layer
resting on rigid rock. Use is implicitly made of the results
obtained with the state-of-the-art formulation which leads
to the rigorous dynamic stiffnesses used in the optimum fit.
By comparing visually the dynamic stiffness of the lumped-
parameter model with the rigorous solution, the accuracy
can be evaluated.

Summarizing, two types of physical models are described
in connection with Fig. 4: the translational and rotational
cones [truncated semi-infinite single or double cones based
on rod (bar) theory with the corresponding one-dimensio-
nal displacement and wave propagation] and the lumped-
parameter models. The latter can conceptionally be
constructed from the former by assembling the exact
discrete-element models of the cones in parallel and using
calibration with rigorous solutions.

The models shown in Fig. 4 prescribe a displacement
pattern varying with depth along the axis of the cone. To
extend the application, displacement patterns in the horizon-
tal plane other than those corresponding to the strength-of-
materials assumption of plane cross-sections remain plane
are introduced as a third type of physical models in this
text. One-dimensional wave propagation is again prescri-
bed.

Two examples follow. For a vertical point load on the
surface of an elastic halfspace the displacement in form of a
Green's function may be deduced via non-mathematical
physical reasoning, then calibrated with a few constants
taken from a rigorous solution. By superposing point loads,
an approximate Green's function is constructed for a sub-
disk of radius Arg (Fig. 5a). In the near field the displace-
ment amplitude is inversely proportional to the distance r
from the center of the loaded source subdisk (body wave),
and the wave propagates with a velocity which is slightly
less than the Rayleigh-wave velocity cg. In the far field the
displacement amplitude decays inversely proportional to the
square root of r (surface wave), and the wave propagates
with cg. Arbitrary shaped foundations can be treated as an
assemblage of subdisks. The through-soil coupling of
neighboring foundations can also be analyzed using
subdisks.

To analyze a pile group, the dynamic-interaction factor
describing the effect of the loaded source pile on the recei-
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¢) Dynamic-stiffness coefficient for harmonic

excitation.

ver pile is applied (Fig. 5b). To calculate the interaction
factor e.g. for a horizontal motion of a source pile, it is
assumed that dilatational waves propagating with the cor-
responding velocity ¢, are generated in the direction of
motion and shear waves propagating with the velocity ¢, in
the perpendicular direction. The amplitudes of both types
of these cylindrical waves decay inversely proportional to
the square root of the radius.

2.3. Examples

To illustrate the concepts of constructing physical models,
some examples with selected results are presented, which
also allow the accuracy to be evaluated.

Harmonic excitation with frequency ® is addressed.
Complex-variable notation is used in the following. Frorp
the complex response u(w)=Reu(w)+ilmu(w), the magni-

tude is calculated as /Re uz(co)+Im u?(®) and the phase
angle as arctan [Imu(®)/Reu(w)]. Applying a dlsplacement
with amplitude uy(®), the corresponding force amplitude
Py(w) is formulated as
Py(@)=S(0)uy(m) )
with the (complex) dynamic-stiffness coefficient S(®). In

foundation dynamics it is appropriate to introduce the
dimensionless frequency ag

)
c

ag (10)

s
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with r, representing a characteristic length of the founda-
tion, for example, the radius of a disk, and ¢, the shear-
wave velocity. Using the static-stiffness coefficient K to
nondimensionalize the dynamic-stiffness coefficient
S(ag)=Kl[k(ap)+iagc(ap)] (11)
is formulated. The spring coefficient k(a;) governs the
force which is in phase with the displacement, and the
damping coefficient c(ag) describes the force which is 90°
out of phase. The dynamic-stiffness coefficient S(ay) can
thus be interpreted as a spring with the frequency-depen-
dent coefficient Kk(ay) and a dashpot in parallel with the
frequency-dependent coefficient (rp/c)Kc(ag) (Fig. 6).
First, the rocking degree of freedom of a rigid disk with
radius ry (Fig. 7a) resting on the surface of an undamped
homogeneous soil halfspace with shear modulus G,
Poisson's ratio v and c, is addressed. The rigorous result
denoted as exact is specified in [32]. The discrete-element
model representing exactly the rotational cone (which is a
doubly-asymptotic approximation of the disk on a half-
space) is shown in Fig. 7b with K, =8Grg /(3(1-v)),
C, = pcpnr{)1 / 4(p=mass density, c,=dilatational-wave ve-
locity). The accuracy of the corresponding dynamic-stiff-
ness coefficient (Fig. 7c) is acceptable. Better agreement is
achieved when the coefficients of K, and C; are determined
by an optimum fit based on the exact values, leading to the
fundamental lumped-parameter model with the same arran-
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gement of the springs and dashpots. The coefficients K;, C;
are presented in the caption.

Second, the Green's function illustrated in Fig. 5a is
applied. The vertical and rocking degrees of freedom of a
rigid square foundation of length 2b resting on the surface
of a soil halfspace is investigated with the exact result given
in [50]. One quadrant is discretized with 7x7 subdisks.
Figure 8 shows the dynamic-stiffness coefficients. The
agreement is good.

As another application of the subdisks, the through-soil
coupling in the vertical direction of two square rigid base-
mats of length 2b and distance d=2b on a halfspace is
addressed (Fig. 9a). Each basemat is discretized into 10x10
subdisks. The dynamic-stiffness coefficient S;,(ag)
representing the through-soil coupling of the two basemats
in their centers of gravity points 1 and 2 in the vertical
direction is normalized as

S 12(a0)=GbIK, 15(ag)+iage, 12(20)] (12)
with ay=wb/c;. A good agreement (Fig. 9b) exists with the
exact solution of [51].

Third, the vertical degree of freedom of a rigid disk on
the surface of an undamped soil layer of depth d resting on
rigid rock (Fig. 10a) is examined (with the exact solution
specified in [12]). The cone model with the wave pattern
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Fig. 9  Through-soil-coupling of two foundations mode-

led with subdisks.

a) Plan view of two square foundations (v=1/3).

b) Vertical through-soil coupling dynamic-stiff-
ness coefficient for harmonic excitation.

representing the reflections at the rigid interface and the
free surface is shown in Fig. 10b. The corresponding
dynamic-stiffness coefficient (Fig. 10c) yields a smooth
approximation in the sense of an average fit to the exact
solution, which becomes increasingly irregular. The unit-
impulse response function shown in Fig. 10d exhibits jump
discontinuities from the reflected waves at the travel times
from the disk at the surface to the rock and back and at
multiples thereof. The unit-impulse response function of the
halfspace is also shown. The lumped-parameter model of
Fig. 10e based on an optimum fit leads to the results shown
in Fig. 10f,

Fourth, a rigid cylindrical foundation embedded with the
depth e in a halfspace is addressed (Fig. 11a). In the
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embedded part of the foundation, 8 disks with their double
cones are selected. For the rocking motion, the dynamic-
stiffness coefficient is presented for three embedment ratios
in Fig. 11b. The derivation from the exact result of [1]
shown for e/ry=1 is less than 10%. For vertically propaga-
ting S-waves with the amplitude uf(®) at the free surface
(Fig. 11a) the effective foundation imput motion consisting

of the horizontal component with amplitude u§(®) defined
at the center of the basemat and of the rocking component

with amplitude 9§ (®) are calculated (Fig. 11c and d). The

agreement with the exact solution [14] is excellent.

Diverting somewhat, it is instructive to derive an
approximate expression for the vertical static-stiffness
coefficient of the embedded cylindrical foundation. The
substructure-deletion method [3] is used which expresses the
stiffness coefficient of the embedded foundation as a func-
tion of that of the surface foundation and of the stiffness
matrix of the excavated part (Fig. 12a). Applying the
strength-of-materials concept, the stiffness coefficient of the
disk on the surface of the halfspace is calculated based on
the cone (Eq. 13) and the stiffness matrix of the excavated
part is determined for a cylindrical rod (Eq. 14)

R, = Ky (13a)
where (Table A-1)
K> = Ze (13b)
s Zo
P, _ K —K|[ug (142)
P, -K K Jlu.
where
2
K = B0 _ K2 (14b)
e e

with the interaction forces R and P, the displacement u, the
constrained modulus E_ and the apex height of the cone z,
(Fig. A-2). The subscripts s and e denote the surfa.lce'a_nd
the embedded cases and the superscript o the infinite
halfspace. The stiffness coefficient of the embedded
foundation is defined as

R, =KZu, (15)
Formulating equilibrium
R=P; (16a)
R="P, (16b)
and eliminating all interaction forces and uy yields
(—K(K—K:)_1K+K+K:)ue=0 (17)
Setting the coefficient equal to zero leads to
2
K= K (18)
K -K;
Substituting Eq. 14b results in
Zg
Ky =Ky| —--2 (19)
- e
Zy
Applying a Taylor expansion for e/zy«l yields
- o e
K. =K (1 +~—J (20)
Zg

For v=0.25, e/zg=(e/rp)(ry/z9)=0.566€/r,, with zy/r, speci-
fied in Table A-1 leading to
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K:=K;"(1+O.566ij Q1)
Ty

which hardly deviates from the expression determined from
curve fitting [27] shown in Table A-6

K== K;"’[l + 0.543) (22)

Iy

In Fig. 12b, the vertical static-stiffness factor 1+0.566e/r is
compared to that determined with cones and with the exact
value. For the rocking motion, the solution using cones is
very close to the exact result and the equation specified in
Table A-6 (dashed line).

Fifth, a rigid cylindrical foundation embedded with the
depth e in a soil layer resting on rigid rock (Fig. 13a) is
discussed. The cones are applied to calculate the dynamic-
stiffness coefficient of the vertical degree of freedom and
the lumped-parameter model that of the horizontal motion.
In the embedded part of the foundation (Fig. 13b), 8 disks
with doubles cones are selected (two are shown in the
figure, one with a solid and one with a dashed line). To
enforce approximately the stress-free condition at the free
surface and the fixed boundary condition at the base of the
layer, mirror images of the disk with the loads acting in the
indicated directions with the corresponding double cones
(dashed lines) are introduced. The dynamic-stiffness coef-
ficient (Fig. 13c) is surprisingly accurate, as can be seen
from a comparison with the exact solution determined with
a very fine mesh of boundary elements [6]. The lumped-
parameter model for the coupled horizontal and rocking
degrees of freedom is shown in Fig. 13d. The coupling
term is represented by placing the lumped-parameter model
of Fig. 4h at the eccentricity e. The agreement for the hori-
zontal dynamic-stiffness coefficient in Fig. 13e with the
exact value [31] is good.

Finally, a rigidly capped floating pile group taking pile-
soil-pile interaction into consideration is addressed. The
3x3 pile group in a halfspace is shown in Fig. 14a
(s=distance between axes of two neighboring piles, /=length

of pile, 2rp=diameter of pile, E=Young's modulus of
elasticity, p=density). To model the single pile, 25 disks
with the corresponding double cones are used. To calculate
pile-soil-pile interaction, the dynamic-interaction factor
based on the sound physical approximation illustrated in
Fig. 5b - but for vertical motion - is determined. The
dynamic-stiffness coefficient in the vertical direction of the
pile group (normalized with the sum of the static-stiffness
coefficients of the single piles) calculated with cones is
astonishingly accurate (Fig. 14b) with the exact solution
specified in [13]. Even details of the strong dependency on
frequency are well represented.

2.4 Requirements

1. Physical insight. The mathematical complexity of rigo-
rous solutions in elastodynamics often obscures physical
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insight and intimidates practitioners. By simplifying the
physics of the problem, conceptual clarity with physical
insight results. As an example, the calculation of the
dynamic stiffness of a disk on the surface of a soil layer
resting on rigid rock (Fig. 10a) - a complicated three-
dimensional mixed boundary-value problem with dispersive
waves - is addressed. In the physical model made up of
truncated cones (Fig. 10b), for which the familiar strength-
of-materials theory applies, the wave pattern is clearly
postulated. The one-dimensional waves propagate with the
dilatational-wave velocity (a material constant), reflecting
back and forth, spreading and decreasing in amplitude, and
thus radiating energy towards infinity in the horizontal
direction.

2. Simplicity. Due to the simplification of the physical
problem, the physical model can be rigorously mathemati-
cally solved. The fundamental principles of wave propaga-
tion and dynamics are thus satisfied exactly for the simple
physical model. Closed-form solutions (even in the time
domain) exist for the (one-dimensional) cones. For
instance, to calculate the dynamic stiffness of the disk on the
soil layer resting on rigid rock with cones (Fig. 10b), the
analysis can be performed with a hand calculator as no
system of equations is solved; for the embedded cylindrical
foundation with cones (Fig. 13b), a special-purpose
computer code can easily be written; and when lumped-
parameter models are applied (Figs. 10e, 13d), a standard
general-purpose structural dynamics program which
permits springs, dashpots, and masses as input can be used
directly. The practical application of the physical models is
thus also simple, together with the physics and the rigorous
mathematical solution.

3. Generality. To be able to provide engineering solutions
to reasonably complicated practical cases and not just to
address academic examples, the physical models must
reflect the following key aspects of the foundation-soil
system for all translational and rotational degrees of free-
dom [8].

e The shape of the foundation-soil (structure-soil)
interface: Besides the circle, the rectangle and the
arbitrary shape, which can be modeled as an
equivalent disk or directly (Fig. 8) without
"smearing", can be represented as a three-dimensional
case or, if applicable, as a two-dimensional slice of a
strip foundation.

» The nature of the soil profile: The homogeneous half-
space, the layer resting on a flexible halfspace, and
the layer resting of a rigid halfspace as well as the
layered halfspace with many layers can be modeled.

» The amount of embedment. Surface, embedded (with
soil contact along the total height of the wall or only
on part of it), and pile foundations can be represen-
ted.

The physical models must also allow the calculation of
the effective foundation input motion for seismic excitation.
They must work well for the static case, for the low- and
intermediate-frequency ranges important for machine
vibrations and earthquakes, and for the limit of very high
frequencies as occurring in impact loads.
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Elevation and plan view of 3x3 pile group
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Pp/Ps=1.43, 5% material damping).

b)

Dynamic-stiffness coefficient for harmonic

excitation with cone model and dynamic-
interaction coefficient.
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4. Accuracy. Due to many uncertainties, the accuracy of
any analysis will always be limited. A deviation of £20% of
the results of the physical models from those of the rigo-
rous solution for one set of input parameters is, in general,
acceptable. This engineering accuracy criterion is, in
general, satisfied, as can be verified by examining the
dynamic-stiffness coefficients shown in Figs. 7, 11, 13 and
14. It should also be remembered that for a transient loa-
ding such as an earthquake the deviations (with both signs)
are "smeared" over the frequency range of the excitation
and thus further reduced compared to the larger error for
one frequency.

The use of the physical models does indeed lead to some
loss of precision compared to applying the rigorous boun-
dary-element procedure or the sophisticated finite-element-
based method; however, this is more than compensated by
the many advantages discussed in this section.

5. Demonstration of physical features. Besides leading (by
construction of the physical model) to physical insight of
the mechanisms involved in foundation vibration (item 1),
the physical models are also well suited to demonstrate
certain unexpected features and to derive further results.
Four examples follow.

1. Placing a row of an infinite number of identical verti-
cal point loads (Fig. 1-5a) on the surface of a half-
space as a simple physical model, the vertical dynamic
stiffness of a two-dimensional slice of a rigid surface
strip foundation can be determined. An analytical
solution can be derived. The static stiffness is zero,
but the spring coefficient increases abruptly to a more
or less constant value for larger frequencies. By
contrast, the damping coefficient begins from infinity
at zero frequency and then diminishes asymptotically
for increasing frequency. The same features exist in
the rigorous solution.

As can be shown, the radiation damping ratio in a
two-dimensional model is significantly larger than in
the corresponding three-dimensional case (just the
contrary of what is expected intuitively). To model a
two-dimensional slice of a strip foundation on a half-
plane, wedges can be used which are again based on
rod theory, just as cones represent a disk on a half-
space (three-dimensional situation). For both the
translational and rotational motions, the damping
ratios {=bgc(bg)/[2k(bg)] of the wedges are signifi-
cantly larger than those of the cones (Fig. 15). The
dimensionless frequency parameter is defined as
by=wzy/c with z, denoting the apex height of the cone
or wedge and c the appropriate wave velocity. The
multipliers are also specified in the figure.
For the frequency range below the cutoff frequency
of the soil layer resting on rigid rock, the radiation
damping and thus the damping coefficient of the
dynamic stiffness vanish, which is well simulated
using cones and lumped-parameter models. See Figs.
10c and 10f, where below the cutoff frequency for
dilatational waves, ag=mw, c(ag) is very small.
. The combined structure-soil system can be modeled
approximately as an equivalent one-degree-of-free-
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Fig. 15

dom system. The corresponding effective natural fre-
quency and damping ratio can be determined by
modeling the soil as cones.

6. Suitability for everyday practical foundation-vibration
analysis. Especially the ease in use, the sufficient generality
and the good accuracy allow the physical models to be
applied for foundation vibration and dynamic soil-struc-
ture-interaction analyses in a design office.

7. Potential for generalization. The concepts and certain
features of the physical models can be generalized and the
results applied in much more sophisticated calculations.
Three examples of such extensions are listed.

1. The cone models lead to simple Green's functions,

and the analysis of an embedded foundation can be
interpreted as a straightforward application of the
one-dimensional boundary-element method. The rigo-
rous calculation can be performed also with a boun-
dary-element method based on the same concept, the
major difference being that the Green's function of
the three-dimensional fullspace is used and not the
one-dimensional solution derived from the rod theory
of cones,
A consistent lumped-parameter model for the
dynamic-stiffness matrix of any general flexible
foundation can be systematically constructed starting
from the same fundamental lumped-parameter model
(Fig. 4g). In general, a large number of these
building blocks are assembled in parallel for each
coefficient of the matrix to be represented.

The interaction force-displacement relationship of
some physical models will involve convolution
integrals which can be evaluated exactly very effi-
ciently using a recursive formulation. The same pro-
cedure can also be applied to the corresponding rela-
tionship of any general flexible foundation.

3.
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Fig. 16 Foundation of three-cylinder compressor with
cranks at 120° with dynamic models.

Summarizing, the cone models with the prescribed
deformation of rod (bar) theory, the lumped-parameter
models based on them, and the displacement patterns in the
horizontal plane present a major step towards developing a
strength-of-materials approach to foundation dynamics. The
aim is the same as in stress analysis of structural
engineering, where, for instance for very complicated
skew-curved prestressed concrete bridges, beam theory is
applied successively and the general three-dimensional
theory of elasticity is not needed. As in stress analysis, each
specific case has to be calculated based on the strength-of-
materials approach. It is not sufficient just to use tables of
dynamic-stiffness coefficients calculated for certain cases
based on the rigorous formulation of elastodynamics. As
the soil is a three-dimensional body without a dominant
axial direction, the strength-of-materials approach, with
prescribed displacement behavior taking all essential
features into account, will be more difficult to formulate in
foundation engineering than in structural engineering.
Concluding, the dynamic analyst should always "make
things as simple as possible but no simpler (H. Einstein). Or
to state it differently: "Simplicity that is based on rationality
is the ultimate sophistication" (A.S. Veletsos).
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3. ENGINEERING APPLICATIONS

Selected simple engineering applications taken from [49]
follow.

As a first example, a machine foundation on the surface
of a soil halfspace excited by a three-cylinder compressor
operating at 9 Hz with the cranks at 120° resulting in a
moment (Fig. 16) is investigated. The discrete-element
models of the cones shown in Figs. 4f and 4e are used to
represent the soil in the rocking and horizontal motions.
Including the coupling between the horizontal and rocking
motions increases the rocking response (Fig. 17a).

The second example examines non-linear soil-structure-
interaction analysis. A rigid block with individual footings,
which can uplift, resting on the surface of a soil layer with
¢,=750 m/s and d/ry=1 is discussed (Fig. 18). An idealized
horizontal earthquake acts during 2s. Only the vertical and
rocking motions of the block's bottom center are
considered in the calculation. The lumped-parameter model

Fig. 18 Rigid block on disks with lumped-parameter
models of disks on surface of soil layer resting on

rigid rock.

of Fig. 4h is used to represent the soil neglecting through-
soil coupling. As the fundamental frequency in rocking lies
below the cutoff frequency of the layer, no radiation
damping occurs during the free vibration phase after 2s.
This leads to no decay occurring in the gaps (Fig. 19a). If
the soil is a halfspace, the gaps are much smaller and decay
rapidly after 2s (Fig. 19b).

The third example, also addressing nonlinear soil-
structure-interaction analysis, discusses the vibration of a
hammer foundation embedded in a soil layer on rigid rock
(d/rg=2) with an excentrically mounted anvil (Fig. 20). The
head impacts with a velocity c,=5 m/s against the anvil. As
a tension-resistant connection for the pads of the anvil is not
provided, the anvil will partially uplift from the block,
when the dynamic stress in tension exceeds the static stress.
The dynamic system with 14 degrees of freedom (Fig. 21)
is constructed using the lumped-parameter models of Figs.
13d and 4h. As expected, the partial uplift of the anvil
increases the motion significantly when compared with the
result of a linear analysis (Fig. 22). The response for a soil
halfspace is also plotted.

As a final example, the vertical seismic motion of a
structure founded on the surface of a soil layer on rigid
rock (Fig. 23) for a record of the Loma Prieta earthquake
is investigated. Two radius-to-depth ratios are addressed.
For d/rp=1, the vertical fundamental frequency of the
structure-soil system is smaller than the corresponding
fundamental frequency of the layer (=cutoff frequency)
which eliminates radiation damping. For d/rg=4, the oppo-
site applies which results in radiation damping occurring.
The analyses are performed with the layered cone model
(Fig. 10b) and with the lumped-parameter model (Fig.

10e). From the structural distortion u' —uf, plotted for the
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Fig. 22 Vertical displacement at center of anvil for load
transmitted as initial velocity of anvil.

shallow and the deep layers in Fig. 24, the significant
influence of radiation damping resulting in smaller peaks
and a larger decay is clearly visible.

The same effect is also present for the coupled horizontal
and rocking motions (see Fig. A-30) of a structure of
height h, fixed-base frequency wg, mass m and material
damping ratio { on a soil layer. While the natural
frequency ratio @/, of the equivalent one-degree-of-
freedom system (Fig. A-31) is hardly effected by



ud

Fig. 23

Dynamic system with two degrees of freedom for
vertical motion of structure on soil layer.

=3
o3

I
4]

o
<}

.
od

DISTORTION ut(t) - ul{t)
(8]

[
-
(o)

a}

o
o

=3
©3

5.0 10.0 15.0 20.0 25.0 [s]
TIME t

o
2]

o
o

DISTORTION ut(t) - ul(t)
&

b)

'
-

pO

o

Fig. 24

10.0 15.0 20.0

5.0 . 25.0 [s]
TIME t

Structural distortion.

a) Fundamental frequency of dynamic system
below fundamental frequency of soil layer
(cutoff frequency).

b) Fundamental frequency of dynamic system

above fundamental frequency of soil layer
(cutoff frequency).

961

5 1.0
3 a)
>-
2 o8-
o
o)
@]
o i
e 0.6
2
g J F_-IALFSF’ACE
2 017 ER—— d=1
Z ———-d=4
'_
& 02+
|
<
pd
=)
o
STIFFNESS RATIO s = wgh/cg
0.20
b)
13
] -
E 0.16
o HALFSPACE
0] -7
Z 0.124  TTTC P
[+
=
<
a
= 0.084
z
wo ST e
s <
=
5 0044 A T
2 ~.
w
0.00 T T T 1T T T T1TT T T T T TTT
0.1 0.2 0.5 2
STIFFNESS RATIO § = wgh/cg
Fig. 25 Properties of equivalent one-degree-of-freedom

system modeling coupled horizontal and rocking
motions for horizontal earthquake varying depth
of soil layer (see Fig. A-30, h/ry=2, m/(pr%):l,
v=1/3, £=0.025, £,=0.05).

d=d/ry,= (Fig. 25a), the equivalent damping ratio &
depends for large §(=wh/c), i.e. for a significant soil-
structure interaction effect, strongly on d (Fig. 25b). For
the shallow layer d=1, no radiation damping is activated, as

t converges for large § essentially to the material damping
of the soil {,=0.05. For the halfspace shown for compari-

son, { increases significantly for increasing S, due to the
large effect of radiation damping. For the intermediate site
with d=4, a transmission occurs.



APPENDIX. BARE ESSENTIALS FOR PRACTICAL
APPLICATION

The book Foundation Vibration Analysis Using Simple
Physical Models [49] contains a summary at the end of each
chapter with the key findings and relations. Of the latter
those equations which are necessary to analyze practical
cases are listed in the following. The subdivision corres-
ponds to the chapters of the book [49] which should be
consulted for a complete description including derivations
and examples. Other tables for the analysis of foundations
concentrating on harmonic loading are specified in the
handbook [9].

Al FOUNDATION ON SURFACE OF HOMOGENEOUS
SOIL HALFSPACE

Al.1 Cone Model

For all components of motion a rigid basemat with area A,
and (polar) moment of inertia I, on the surface of a homo-
geneous soil halfspace (three-dimensional foundation) with
Poisson's ratio v, shear-wave velocity c,, dilatational-wave
velocity c, and density p (Fig. A-1) can be modeled as a
truncated semi-infinite cone of equivalent radius r,, apex
height z, and wave velocity ¢ (Fig. A-2a and Fig. A-3). For
the horizontal and torsional cones deforming in shear the
appropriate wave velocity ¢ equals c,. For the vertical and
rocking cones deforming axially ¢ equals ¢, for v<1/3 and
is limited to 2c¢, for 1/3<v<1/2. The translational cone
model for the displacement u, is dynamically equivalent to
the spring K- and dashpot C-system (Fig. A-2b). The rota-
tional cone for the rotation 3, corresponds exactly to the
discrete-element models with one internal degree of free-
dom ¥, and a small number of springs(s) K, dashpot(s) C,
and in the monkey-tail configuration a mass moment of
inertia M, (Fig. A-2c). All coefficients are frequency inde-
pendent. For the vertical and rocking motions in the case of
nearly-incompressible soil (1/3<v<1/2), a trapped mass AM
and a trapped mass moment of inertia AM,; assigned to the
basemat arise. The properties of the cones and the discrete-
element models which are all that is necessary for the
modeling of a basemat of arbitrary shape on the surface of
the soil (e.g. in a general-purpose structural dynamics
program working directly in the time domain) are summa-
rized in a nutshell in Table A-1.

shear modulus G

constrained modulus E,
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Fig. A-1  Disk on surface of homogeneous soil halfspace.
AM, f\MOﬁO
_K K
3 c
3, =Cs ]
AMﬁ mMo'l‘)o
' Co
a) b) Mﬁ% Ks
Oy c)
Fig. A-2 Cone model and equivalent discrete-element
model.
a) Cone.

b) Discrete-element model for translation.
¢) Discrete-element models for rotation,

Static-Stiffness Coefficient

_ 8Gr, 4Gr,

K, = . horizontal K, = o vertical
8Grj : 16 .
L= 5(—1:_(1))—) rocking K, = ?Grg torsional

Radiation-Dashpot Coefficient (high-frequency behavior)

C=pcA, translational Cs =pcly rotational

Translational Cone

Stiffness Formulation
Interaction force-displacement relationship (Fig. A-2b)

Py (t) = Kuy (1) + Ciag(t) + AMiig (t)

(AM=0 for horizontal motion and for vertical motion when
V<1/3)



Table A-1:
Soil Halfspace with a Cone

Key Expressions to Model a Three-Dimensional Foundation on the Surface of a Homogeneous

Motion Horizontal Vertical Rocking Torsional
Equivalent f Ay Ay 4ly 21y
Radius 1o T T T n
2 2
T c In c
apet §2-V z““”(‘) 3—2““”(—) %
Ratio =% 8 Cs Cs 32
Iy
Poisson's all v 1 1.,<L <1 1,1 allv
. 3 3 2 3 3 2
Ratio v
Wave Cs Cp 2c, Cp 2¢s Cs
Velocity ¢
Trapped
Mass 0 0 2.4(0—%)pA0r0 0 1.2(0—%);)10&, 0
AM AMy
I
Discrete- K = pc? Ay K, = 3pc? i
Element Zo Co = ocl
Model C=pchAo o =P
My =plpz

Dynamic-stiffness coefficient for harmonic loading
S(ag) = K[k(ag) +iagc(ag)]

with dimensionless spring coefficient k(a,) for horizontal
motion and for vertical motion when vV<1/3

k(ag)=1

for vertical motion when 1/3<v<1/2
1\ 2
k(ag)=1-0.6m(1-v) 1)—-5 ag

dimensionless damping coefficient

Zy €
c(ao) =20
Iy €
and dimensionless frequency
or
ay = —2
c
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Flexibility Formulation
Displacement-interaction force relationship (Fig. A-2b)
For horizontal motion and for vertical motion when v<1/3

wo01= yt- 0P e
0

with unit-impulse response function

¢ ot
hi(t)y=—e€ * 20
Zg
=0 t<0

The convolution integral with the first-order term h,(t)
(Duhamel integral) at time station n can be evaluated effi-
ciently by the recursive procedure expressing the displace-
ment at time station n as a linear function of the displace-
ment at the previous time station n-1 and of the normalized
interaction forces at the same two time stations

POn

+ bl POn—l

Ug, = aug,_; +by K



where the recursive coefficients are specified as (At=time
step)

a=e 20
cAt cAt
. N _cAt
b1+ S 1 b=t "+l T
0 cAt 1 cAt
Zy Zg

The unconditionally stable recursive evaluation which is
suitable even for a hand calculation is exact when Py(t) is
piecewise linear.

For vertical motion when 1/3<v<1/2

t
u(® = hy(t-n Tt
0

. Tt 1-v
with ’Y=ﬁ 1
4,2
3
LN
1\,
2.4 v—|"0
hy(t)= 2 5 1 e ( )
n(l—u)ro\/l_i
Y
S B
24(1)——)‘0 v
3
=0 t<0

The recursive evaluation with the second-order term h,(t)
proceeds as

P P P
Ugn = 8 Ugy_y +a5Ug,_y + by~ + by 2=l 4 ) 002
K K
where
1 c
S AL
2.4 v-=|F0 [ 4
a, =2e ( j cosh I S 1-—At
2 4(1) - —) To T
3
1 [
- S At
1.2(1)——] To
a2 =-—C 3
and

- r(At) by = r(2At)—(2+a;)r(At)

07 At At

_ r(3At) —(2+a)r(2At) +(1+2a; —a,)r(At)

b
2 At

with r(t)=r,(t)

1 Cg

1-= DAY
_ - 2.4[v—=|'0
r4(t)=————7t(12 D)£9+t+ Y nd u)r_oe ( 3j

C, \/1 4 2 c,
Y

*sinh—l—S 1-— t
2.4(1)——) oV ¥
3
LY
_ 2.4/ v-=|%0
+1t(1 1))rie [ )
2 C 0
*cosh——-—l—lc—S 1—-‘i t
2.4(1)——) oV ¥
=0 t<0

Rotational Cone

Stiffness Formulation

Interaction moment-rotation relationship (Fig. A-2c)

Mo(t) = KgBo(t)+CoBo(t)+ AM (1)
t
—Ih(t—=1) Cady(t)dT
0

(AM =0 for torsional motion and for rocking motion when
v<1/3)

The recursive evaluation of the convolution integral with
h,(t) is described above.

Dynamic-stiffness coefficient for harmonic loading
So(ag) = Ky[ke(ag) + gy (ag)]

with dimensionless spring coefficient ky(ay) for torsional
motion and for rocking motion when v<1/3

2
ky(ag) = 1 - 2 %0

2
3 Iyc 2
+ag
Zocs

for rocking motion when 1/3<v<1/2
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0.97(1 1))(1) 1)
2 . - -
ky(ag)=1-~ 20 - 3/ a2
3 16 2 5 8 where
———— | +ag
971:(1"1)) 3 oAt \/_
a; = 2e 2 20 ¢os N3 At
2z
and dimensionless damping coefficient et
) a, = —e
zZ,C a
colag) = 25 2 |
3¢ ( rye ) and substituting r(t) = r,(t)
+ a
ZoCy °

Flexibility Formulation

Rotation-interaction moment relationship (Fig. A-2c)
For torsional motion and for rocking motion when v<1/3

Mo(T)

13

Bo(t)= th(t"‘)

with unit-impulse response function

3c
0
3cos£it—ﬁsin—@it t >0
2 Zo 2 Zo
= 0 t <O

The recursive evaluation with the second order term hy(t)
proceeds as:

MOn +b MOn-—l +b MOn-—2

Voq =2/ Vgy-1 + 220052 + by K
o o 9
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V3

ct

— 0
Zy
t <0

2Z°sm t >

r,(t)

by, b; and b, follow from the equations specified in connec-
tion with the convolution with h,(t)(end of Section
Translational Cone).

A1.2 Lumped-Parameter Model
Standard Lumped-Parameter Model

Besides a spring with the static-stiffness coefficient K (=K
for rotational motion) a dashpot and a mass (mass moment
of inertia for rotational motion) are present (Fig. A-4) with
the coefficients

vy and | are specified in Table A-2 with the mass moment of
inertia of the disk (rigid structure) m.



Table A-2: Static Stiffness and Dimensionless
Coefficients of the Standard Lumped-
Parameter Model for a Disk with

Mass on a Homogeneous Halfspace

Dimensionless Coefficients of
Static Dashpot y Mass
Stiffness K a
Horizontal 8Gry, 0.58 0.095
2—-v
Vertical 4Gry, 0.85 0.27
1-v
Rocking 8Gr3 0.3 0.24
3(1-v) 1+§(1—_5‘))E
8r5p
Torsional 16Grg 0.433 m 0.045
3 1+ 2?m P
IoHp

Fundamental Lumped-Parameter-Model

Besides a spring with the static-stiffness coefficient K (=
K for rotational motion) and a direct dashpot C, connec-
ting the basemat node with mass M, (mass moment of
inertia for rotational motion) to the rigid support (Fig. A-
5), an internal degree of freedom with its own mass M,
(mass moment of inertia for rotational motion) is
introduced which is attached to the disk node by a dashpot
G

T I
C, = -2 yK C, =2 yK
C% c3
M = Iy K M, = Iy K
0 5 Ko 1 7
cl c;

Yo- Y1» Mo and p, are specified in Table A-3.

A 1.3 Wedge Model

For the horizontal and rocking motions a rigid basemat
with width 2b on the surface of a homogeneous soil half-
plane (two-dimensional strip foundation) can be modeled
with a truncated semi-infinite wedge with apex height z,
and wave velocity ¢ (Fig. A-6). For the horizontal wedge
deforming in shear ¢ equals ¢, and for the rocking wedge
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7.
Fig. A-5 Fundamental lumped-parameter model (mon-
key-tail arrangement) with one internal degree
of freedom.

deforming axially ¢ equals c, for v<1/3 and is limited to 2c,
for 1/3<v<1/2. For the rocking motion in the case of the
nearly-incompressible soil (1/3<v<1/2) a trapped mass
moment of inertia AM, assigned to the basemat arises. The
properties are summarized in Table A-4.

Static-Stiffness Coefficient

_ wGb?
T2(1-v)

K;, = 0 horizontal K rocking

Radiation-Dashpot Coefficient (high-frequency behavior)

3

b .
Cp =pcs2b horizontal C, = pc%z— rocking

Dynamic-Stiffness Coefficient for Harmonic Loading

boH(zx) (bo) pcz 2b

horizontal S(by) =

H(g)(bo) zZg
. boH(g)(bo) c? 8b°
rocking S(b0)= =g 5 o7y
1

with dimensionless frequency parameter defined with res-
pect to properties of wedge

and Hankel functions of second kind H®.

A 1.4 Material Damping

Material damping is introduced in the frequency domain
based on the correspondence principle applied to the elastic
solution. For non-causal linear-hysteretic damping the shear



Table A-3: Static Stiffness and Dimensionless Coefficients of the Fundamental Lumped-Parameter Model
(Monkey-Tail Arrangement) for a Disk on a Homogeneous Halfspace

Dimensionless Coefficients of
Dashpots Masses
Static Stiffness K Yo 1 Mo My
Horizontal 8Gry 0.78-0.4v — — —
2-v
Vertical 4Gry 0.8 0.34-4.3 v vel 0 0.4—4 v
1-v 3
1
v>= 0. 9(1) - —)
3
Rocking 8Grg — 0.42-0.3 v2 v<r 0 0.34-0.2 12
31-v) 3
1)>l 0.16(1)——)
Torsional 16Gr3 — 0.29 — 0.2
3
(0.017) (0.291) (—) 0.171)
Table A-4: g.ey Ex'pres]sii)?ns t((i) Model a Two- modulus G and constrained modulus E_ are multiplied by 1
S;‘;};‘;Z“"}a I;“m ation on Sth'el + 21, ({g = hysteretic-damping ratio), resulting in the solu-
Half lan(e) \:i th om‘())vg(:ineous o1 tion for the damped case. The corresponding spring and
p a Yvedge damping coefficients k¢(ag), cg(ag) are expressed
approximately as a function of the elastic values k(ay), c(ag)
Motion Horizontal Rocking ke(ag)= k(ag) —L,apc(ag)
(ag) =c(ag) ad k
Aspect Ratio 2-v 8(1—v) 2 C¢lag) =clap +-a: (ao)
% n 3 ;:?
b For Voigt visco-elasticity with damping proportional to
frequency (defined as the ratio {jat mg) the factor equals
Poisson's ] 1 ] 1fiu)2§0/c00, and t}'xe correspondence principle is applied
Ratio L all v 5—3— —<v<— directly to the discrete-element model (or lumped-
3 2 parameter model). Each original spring with coefficient K
Wave c c 2e is augmented by a dashpot with coefficient C = 2({y/wq)K
Velocity ¢ s P s in parallel, and each original dashpot with coefficient C by
a pulley-mass with coefficient ({y/m)C (Fig. A-7). Masses
Trapped 0 0 3(. 1) 8’ in the original model remain unchanged.
Mass Moment v p——> S . . . .
of Inertia 4 3/ 12 For frictional (hysteretic) material damping which
AM, preserves causality, non-linear frictional elements replace
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the augmenting dashpot and pulley-mass. The correspon-



Table A-5:
Surface of a Soil Layer on Rigid Rock

Dimensionless Coefficients of the Basic Lumped-Parameter Model for a Disk on the

Horizontal Vertical Rocking Torsional
Poisson's Ratio v
0 13 0.45 0 13 0.45 0 13 0.45
ki | -.1093% B002 | -.125658 §+02 | -.107091 £402 | -.185216 E+02 | -.312572 E+02 | -.585650 B402 | -.538137 £401 | -.127100 E+02 | -.125057 £402 - o
Ko | -.19916 B+02 | - 100143 8402 | -.27T7613 Bs02 | -.689058 E+02 | +.964651 Be0y | +.533868 £+02 | -.118019 B02 | -.127000 E01 | -.102097 Ee02 | -.488643 Ev
K3 | -.5%253 £+03 | -.236814 E+03 | -.837270 E403 | -.803915 E+04 | -.257570 Es04 | -.972054 405 | -.370561 £+03 | -.106411 403 | -.114401 £+05 |  -.76203 E+02
100 kg | +.262006 B2 | 4.172090 1002 | +.350880 iz | 1.T81698 £402 | 1.101028 B0 | - 29701 iz | 415277 Bog | 1665102 B0 | 1.1TI00Z B2 | 1. 04ESD B2
Cy [ <2395 Bl | - 351588 B0l | -, 643020 B0 | - 64579 0L | - 620122 B0 | - S3550) 01 | 15262 BAOL | - 4664 B0 | - 159579 0l |- 20980 e
g | 144380 B2 | -. 96535 Lol | - Ioi81 B2 | - ST2D B2 | - 3729 B2 | - 62817 8003 | - SHIGTL B | - ohBDL D01 | - 2008 B2 | - 2558 B
C3 | +176380 £402 | +.128349 £402 | +.196381 £e02 | +.618023 B0z | +.435725 Be02 | +.173237 Be03 | +.622671 B401 | +.621871 Es01 | +.231038 £402 | +.581955 E40)
o m | 644888 £402 | -.177585 8402 | -.804875 £+02 | -.355432 403 | -.896786 B402 | -.750600 E+03 | -.136958 402 | -.294864 EVOY | -.748688 £402 | -.501042 E+0L
2 K1 b 101741 8402 | -.756096 B401 | -.103098 £+02 | -.869629 B+01 | -.178038 B+02 | -.211261 B402 | -.558202 B0 | -.315920 Be01 | -.564B61 Be01 |  -.584813 E+03
= kg | -0711128 2401 | +.221036 £101 | +.353643 £400 | -.211429 £+02 | +.869558 Ee01 | +.237930 Be02 | - 260867 £401 | +.429538 Es00 | ¢.544528 £+01 |  ¢.779373 E+00
a k3 | - 376551 B0z | -183990 Ee02 | -.386290 B+02 § -.301954 E403 | -.648330 B+02 | -.S74768 £+04 | - 120186 1402 | -.563639 Bs00 | -.95529 Bs02 | - 267204 Ee0)
D o.50[ Ky | +.116651 £402 | +.370791 E40L | +.631911 Be0F | ¢.266455 E02 | +.167960 E+00 | -.104560 E#02 | +.553603 £+01 | +.268680 B+01 | -.714571 Ee00 | +.448746 E+01
- Cy | --563146 £401 | ~.163515 Bs01 | -.312323 £401 | - 635435 BA01 | -.300736 E401 | -.885920 B4l | - 180105 B401 | - 207449 £400 | -.226388 £+01 | -.873265 £300
2 Gy | --B53329 101 | -.484337 B401 | -.900332 Ee01 | -.118278 Be02 | - 97485 40 | -.38879 E+02 | - 209944 £A01 | -.485884 £-01 | 872006 E400 | -.664093 £100
" ox b v.116733 o0z | +.798337 401 | +.121433 Be02 | +.162678 E102 | +.159548 402 | +.453079 Es02 | +.320944 Ev0L | +.161859 Es01 | +.347201 £+01 | +.223409 E+0)
3 o | -125108 E002 | -.142805 £402 | - 222875 902 | -.436319 £402 | -.10698 B02 | - 156304 Es03 | - 166034 E4OI | - 550887 E-OI | -.105920 £A0L |  -.758683 E+00
5
i) K1 1500393 £001 | -.569922 £F01 | -.635602 E40) | -.650348 EvOL | - 866267 E+01 | -.939217 £401 | -.197103 Ee01 | -.131566 E401 | -.185845 £+01 |  -.317223 £+0)
- Ko | +.117908 Be01 | 1113372 B01 | +.126563 E»01 | +.212837 8001 | +.360033 BSO1 | +.591506 E+0] | - 908392 £400 | -.i59178 E+01 | +.140842 £+01 |  -.110204 £402
o K3 | -.531658 £s01 | -.627809 B+01 | - 861155 Es01 | -.111486 §+02 | -.20685) E+02 | -.294639 §+02 | +.320667 400 | +.889508 E400 | -.198123 E401 |  -.272014 £+02
© {0.25( Ka | 1.330564 E401 | +.414181 £401 | +.444355 B+01 | +.290606 B+0L | +.353509 £401 | +.239510 BsO1 | +.280516 £401 | +.226996 EAO1 | +.206257 £+00 |  +.133791 Es02
2 Cy | -.753687 £400 | -.123420 £401 | -.118324 B401 | -.147587 Es01 | -.301652 Ei01 | -.652332 B401 | -.111891 E¥O1 | - 117566 E401 | -.166191 E401 |  -.175255 E+0I
o Cy | -.320391 Be01 | -.343160 E01 | -.476257 2401 | - 545496 E401 | -.633133 £401 | -.153532 £+01 | -.192001 E-01 | -.120420 E+00 | - 608065 E-01 | - $76183 E+00
cy | +-636391 Bs01 | +.657160 Bs01 | +.790257 Be03 | +.9894% 01 | +.126113 402 | +.119551 E+02 | +.131920 E401 | +.199062 E¥O1 | +.266081 Es01 |  +.214618 E+01
m | - 197705 B0z | -.277938 E402 | -.353935 Ev02 | -.202557 B402 | -.262470 2402 | -.217797 £401 | -.496405 §-02 | -.234838 E-01 | -.166728 £-01 | -.408057 E+00
Ky | -.135004 £002 | -.388671 E+01 | -.517262 E+01 | -.196175 £401 | -.741830 £401 | -.17665 Bs0Z | -.177328 Ba01 | -.37079% Ee01 | -.398695 B401 | -.3¢7454 401
ko 1-.953646 £401 | -.159784 £402 | +.239313 B#00 | -.586095 E+00 | +.149859 E+01 | +.318590 £401 | - 825315 £40L | -.530262 E01 | +.488296 E+01 | ¢.161189 §400
K3 | -.152937 £002 | -,204052 £402 | -.491200 E+01 } +.418313 2400 | -.108130 £402 | -.14587) £+03 | -.%60129 E+00 | -.456729 E+01 | -.157465 £:02 |  -.175021 E400
0.00( ki | +.100318 £402 | +.139890 £¢02 | +.491843 E+01 | +.253876 Ba01 | +.42603 £901 | +.401297 £401 | +.363207 £401 | +.648378 401 | -.222776 E+01 |  +.329151 Ee0)
Cy | --108173 £001 | -.406936 £+00 | - 431719 E-01 | -.540639 Bs00 | -.308148 E+00 | -.287195 E+01 | - 105546 BeO1 | -.150532 EeO1 | -.158356 Es0l | -.25711¢ £-01
Ca | -.164199 £001 | -.441082 £+00 | - 433318 E-01 | -.316451 B-02 | -.760091 E400 | -.4%738 E+01 | - 396130 E+00 | - 400834 E+00 | -.408329 E400 | - 525606 £-02
C3 | +.478349 £e01 | +.350258 £401 | +.318483 401 | +.470316 E01 | +.704009 E4OI | +.15387 402 | +.150613 £+0L | +.197089 E+O1 | +.300833 Es01 | +.157526 Ee0
m | --207315 £000 | -.331202 B-01 | -.126178 £+00 | -.110135 E-02 | - 348161 E400 | - 240813 B+01 | -.245402 £-O1 | -.633544 E-OL | -.125199 E+00 |  -.126499 £-02

ding forces acting between the nodes with displacements ug
and u, are equal to (sgn () returns the algebraic sign of the

argument)

P=Klu, —u| tand sgn (4y-1,)
P=Cla, —u| 0.5 tand sgn (iip —ii;)

with the overbar denoting the short-term memory (current
or last peak value) and tand=2(, (8=friction angle).
Incorporation of these frictional elements in the discrete-
element model (or lumped-parameter model) permits causal
analysis in the time domain taking hysteretic damping inde-
pendent of frequency into consideration.

These concepts also apply to the lumped-parameter
models for a foundation on the surface of a layer on rigid
rock (Appendix A2) and for a foundation embedded in a
halfspace or in a layer (Appendix A3).
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A2 FOUNDATION ON SURFACE OF SOIL LAYER ON
RIGID ROCK

A2.1 Unfolded Layered Cone Model

For all components of motion a rigid basemat with equiva-
lent radius ry on the surface of a soil layer of depth d
resting on rigid rock (Fig. A-8) can be visualized as a
folded cone. When unfolded, this layered cone enables a
wave pattern to be postulated which incorporates the decay
of amplitude as the waves propagate away from the basemat
as well as the reflections at rock interface and at the free
surface. The aspect ratio zy/ry (opening angle) of the unfol-
ded layered cone is the same as that of the truncated semi-
infinite cone used to model a disk on a homogeneous half-
space with the same material properties as the layer (Table
A-1).

From the wave pattern it follows that the translation ug(t)
(or rotation ¥ ((t)) of the basemat on a layer is equal to that
of the basemat, with the same load acting, on a



HORIZONTAL ROCKING l
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o /0N 4XY
b / b\ =
Zo ,//60 \\\ '/,I 4 .\ﬁc \\
miu T °
vlsg
‘ch
SHEAR AXIAL Fig. A-8 Disllz on surface of soil layer resting on rigid
rock.

e Ry

Fig. A-6  Horizontal and rocking wedges with corres-
ponding apex ratio (opening angle), wave-pro-
pagation velocity and distortion.

b)

P

V_—_—&__‘
K + [[] C = (2Ly/ 0o K d[z ; : Yu, ; : :é
f

p

Fig. A-9 Nomenclature for loaded disk in vertical
motion on surface of soil.
a) Halfspace with generating displacement.

b) b) Layer with resulting displacement.

P

M= 8o/ ) C homogeneous halfspace (U,(t) or Bo(t)) (generating

function), augmented by echoes of the previous response
(Fig. A-9). The appropriate echo constants are derived for
U the flexibility formulation, then inverted to obtain the echo
T o o- ™ constants of the stiffness formulation.
Uy

Echo Constant

Fig. A-7  Augmenting elements to represent Voigt visco- Echo formula for translation in a flexibility formulation

elasticity.

a) Original spring with augmenting dashpot. K oo '

b) Original dashpot with augmenting pulley uy(t) = 'Zoej To(t—jT)
mass. ' =
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with flexibility echo constants

1)
ep = 1 e?=2—(—.1—)— i1
1+ jx
and T=z(1 K=E
c Zg

and appropriate wave velocity ¢ and aspect height z, (Table
A-1). The integer k is equal to the largest index j for which
the argument t-jT of T, is positive.

Echo formula for rotation in a flexibility formulation
k F= . K F < .
Bo(t) = XepBo(t—jT) + ey 9(t—jT)
j=0 =0
with flexibility echo constants

eF = 21
P+ jx)?

E _
€go =1

1 1
(1+jx)  (Q+jx)

elo=0 ef=2(-1)

} i1

and  B,(t) = [hy(t = 1) B (1) dt
0

with unit-impulse response function

C

-t

[ 24 t

—C
Zg
0 t

hy(t)

Alternatively, using pseudo-echo constants eﬁn (influence
functions) which follow from egj and erj (see [49], p. 175-
177) the echo formula for rotation equals

K —
Bo(t) = T ek To(t—mAt)
m=0

with time step At.

Echo formula for translation in a stiffness formulation
— kK g .
Up(t) = _zoej ug(t—jT)
J:
with stiffness echo constants

j-1
K K K.F .
ey =1 e =—2X egej, j=21
£=0

and for rotation
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M=

Bo(t) = Telhdo(t-man

m

with stiffness echo constants

K

[

K 1 o

€0

m-—1
_ _ K_F .
= _—Zzoert’erm—t’ 121

Flexibility Formulation

In a flexibility formulation, in the first step, the prescribed
interaction force Py(t) (or moment M(t)) is applied to the
cone modeling a disk on the associated homogeneous half-
space with the same material properties as the layer, resul-
ting in the surface displacement Ty(t) (or rotation By(t))
using the procedure described in Section Al.1 (Fig. A-9a).
In the second step, the displacement uy(t) (or rotation
Vo(t)) of the basemat on the layer follows from T,(t) (or

ﬁo(t)) using the corresponding echo formula.

Stiffness Formulation

In a stiffness formulation, in the first step, the prescribed
surface displacement ug(t) (or rotation By(t)) is converted
to the displacement U,(t) (or rotation ﬁo(t)) of a disk on
the associated homogeneous halfspace using the correspon-
ding echo formula. In the second step, insertion into the
interaction force-displacement relationship of the cone
modelling a disk on the associated homogeneous halfspace
leads to the interaction force Py(t) (or moment Mg(t))
acting on the basemat using the procedure described in
Section Al.1 (Fig. A-9a).

Static-Stiffness Coefficient

index L for disk on layer, no index for disk on homoge-
neous halfspace with material properties of layer

Ky = 8Gro (1+l _rg) horizontal
2-v 2 d

KL = 25% (1+1.3 r—O) vertical
1-v d
8Grg 1 1

KL = 0 (1+— ﬁ) ki

. 31-v) ¢ ) rocking

K{‘ = 19Grg (1+L r_o) torsional
3 10 d



SOIL
LAYER

ROCK
HALFSPACE

Fig. A-10 Disk on surface of soil layer resting on flexible
rock halfspace.

Dynamic-Stiffness Coefficient for Harmonic Loading

translation
oT
1+i—
S(w) = K T
1+2z( 1) 1
rotation 5=t K
Se(®) = K,
1 (wT)? , oT (o)T)2
N 3% +(0T)? 3k 2 +(0T)?
! (2( )J e —ijoT i —ua)T
7 +1*2 (-1)
1+ 8T 7 1+ jx)’ (1+j%)°
K

with static-stiffness coefficients of homogeneous halfspace
with material properties of layer K, K, (Table A-2).

Foundation on Surface of Soil Layer on Flexible Rock
Halfspace

The unfolded cone can be generalized to the case of a layer
on flexible rock (Fig. A-10) considering the refraction at
the layer-rock interface. The only modification consists of
replacing in the expressions for the echo constants the
reflection coefficient associated with the rigid rock, -1, by
the corresponding value -oo for the flexible rock. All
flexibility and stiffness formulations for the dynamic ana-
lysis remain valid.

2 2
PLCL _ PRCR
L R 2 2
_a_Zotd oz _PLCL —PRER _
o= 5 3 = 3 > for v =vx
PLCL . PRCR PLCL tPRCR
z(I)‘ +d zg

971

:':;;1 /Q\ 3
/,‘ // \\ R
ir o !\ Zp
’ <—/_-’1 N ZL \
/ ‘:: // i \\\ O\ \\\
// ' o // P \ X \ \\
L 030 K \_FREE
4 7/ sow \\//\/\% SURFACE
/ LAYER \
'/,:\\ iy ROGK /,‘__; 7, INTERFACE
/N 7/ N HALFSPACE /
Fig. A-11 Disk in vertical motion on soil layer resting on

flexible rock halfspace with wave pattern in
corresponding cones.

Indices L and R refer to the layer and the rock. z§
measured from the interface determined with the properties
of the rock halfspace (Table A-1) leads to the apex 2 of the
rock's truncated semi-infinite cone (Fig. A-11).

For the dynamic-stiffness coefficients frequency-depen-
dent reflection coefficients for translation and rotation
-0(w) can also be used ([49], pages 193 and 196). A gene-
ralization to the halfspace with many layers exists ([49],
Appendix D).

A2.2 Basic Lumped-Parameter Model

The basic lumped-parameter model can be used to represent
the dynamic behavior for all components of motion of a
disk on the surface of a soil layer on rigid rock in a
standard finite-element program for structural dynamics in
the time domain. The model (Fig. A-12) with two
additional internal degrees of freedom (u;, u,) consists of
four springs K;, three dashpots C; and one mass M whose
real frequency-independent coefficients are specified for
various ratios of the radius ry of the disk to the depth d of
the layer and Poisson's ratio v for the horizontal, vertical,
rocking and torsional motions in Table A-S.

Ki=kiGr0 l=l, ersy 4
r3 ry
Ci=c¢G2L i=1,...3, M=mG-%
cS cS

To construct a lumped-parameter model for the rotational
motions representing the relationship between the rotation

and the moment, the right-hand side has to be multiplied by
2
rO.
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Fig. A-12 Basic lumped-parameter model with two inter-
nal degrees of freedom.

Fig. A-13 Cylindrical foundation embedded in soil half-
space.

A3 EMBEDDED FOUNDATION AND PILE
FOUNDATION

A3.1 Double-Cone Model

To analyze a foundation with embedment e for all
components of motion (Fig. A-13), a rigid disk of radius r,
embedded in a full-space, which is modeled with a double-
cone model, is the building block (Fig. A-14). The aspect
ratio zy/ry and the wave velocity ¢ are the same as for the
one-sided cone used to model a surface disk (Table A-1).
The only change consists of doubling the static-stiffness
coefficients K and K4(Table A-2). The double cone's
displacement field defines approximate Green's functions
for use in a matrix formulation of structural mechanics.
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SOURCE \/ 11\

DISK i L
\\ 4 ro’l
\ l‘_/ > Zg
N\ /

—A\

Fig. A-14 Green's function based on disk embedded in
fullspace with double-cone model.

RECEIVER i
DISK

Green's Function

Translational Double Cone (Fig. A-14)

distance a 1 1

g(a’ t) = oy
2K 1+

a

Zy

with unit-impulse response function

<
C

hl(t) = — ¢ o t 2 0
Zg
=0 t <0
.(®a
_;%a
(a(D) 1 1 e ¢
s 2K 142 4%
zZ, c
Rotational Double Cone
1 1 a a
PP S S P PR R
2Ky aY ¢ 1+ ¢
1+— zy
Zy
with
3 e,
hy(t) = Le 2 3cos£ it—\/isinﬁ L I
Zg Zy 2 Zg
= 0 , t<0
C
hy(t) = 243 —e 2% 1ni§-—c—t t>0
Zo 2 Zo
= 0 t<0
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Fig. A-15 Modeling of free and fixed boundaries.

a) Disk embedded in halfspace with free
boundary with anti-symmetrically loaded
mirror-image disk to represent free
surface.

b) Disk embedded in halfspace with fixed
boundary with symmetrically loaded
mirror-image disk to represent fixed
boundary.

gs(a,w) =

3+ 3220 4 (19‘7‘—0)
Cc

For vertical motion of a pile the weighted Green's function
of the double cone g . (a,®) as above and of the fullspace
for a point load Bfulispace (a,0) is used

10 ===

2e
9 $ _
2d —-2e
6 $ —_—
2e
5 ==t— R 3
A
7\ 2d -2e
\ // /\\\\ /
/ \
\%// /NN /
FREE 2e
d+e ?
FIXED 2d - 2e
d+e
2e
2d - 2e
2e
I

Fig. A-16 Arrangements of mirror-image disks embedded
in fullspace with loads and double cones to
model disk embedded in soil layer resting on
rigid rock.

gla,0) = w(a) gcone(a9m) + (l—w(a))gfullspace(a’m)

with the weighting function

w(a) 1 a < rg

and where

1 a)?
Brece (3:6) = Z&E[W -(5) x]

and with
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Fig. A-17 Stack of disks to model embedded cylindrical
foundation with anti-symmetrically loaded
mirror-image disks.

To model the free surface of a soil, a mirror-image disk
(embedded in the fullspace and also represented by a double
cone) loaded by the same time history of force as the
original disk and with the same sign is introduced (Fig. A-
15a). The same procedure can be used to model a fixed
boundary, but the force on the mirror-image disk acts in
the opposite direction (Fig. A-15b). To model a disk
embedded in a soil layer resting on rigid rock, the concept
of anti-symmetrically loaded mirror-image disks to repre-
sent the free surface and of symmetrically loaded mirror-
image disks for the fixed boundary is applied repeatedly
(Fig. A-16).

Matrix Formulation

Modeling the soil region which will later be excavated by a
stack of rigid disks separated by soil (Fig. A-17), the

dynamic-stiffness matrix for harmonic loading [S(g)o(co)] of

an embedded cylindrical foundation with respect to the
rigid-body displacement amplitudes {uo(m)} and corres-

ponding force amplitudes {P,(®)} is formulated with stan-
dard matrix methods of structural analysis as

{Po(@)}.= [S§o(®)] {uo(w)}

where
[S§(@)] = [A]" [s"(@)] [A] + @?[M]

[A] is the kinematic-constraint matrix of the rigid founda-
tion with {u(w)} denoting the displacement amplitudes of
the disks

{u(@)} = [A] {up(w)}
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Fig. A-18 Fundamental lumped-parameter model for
foundation embedded in halfspace with
coupling of horizontal and rocking motions.

[M] is the rigid-body mass matrix of the excavated soil and
[Sf((x))] the dynamic-stiffness matrix of the free field

[s"(@)] = [G(@)]”

where the dynamic-flexibility matrix of the disks embedded
in the soil equals

{u(@)}

with the corresponding force amplitudes {P(®)}. In [G(w)]

the sum of the Green's functions g(a,) of the source disk
and g(a',m) of the mirror-image disk appears (Fig. A-17).

In the time domain, the corresponding interaction force-
displacement relationship of an embedded foundation at
time nAt equals

{Po}, =[ATT[s"] [AN{uo}, - [AT

[Sf] is the instantaneous dynamic-stiffness matrix of the
0
free field

= [G(0)] {P(w)}

[s7], {03, - [M{iio},

i -1
[S ]0 =[Gl
where the displacement-force relationship of the disks
equals

{u}, = {u}, + [G]y{Pl,

n-1
with fu}, = % [Gl,y{Pk
[G],., is the dynamic-flexibility matrix in the time domain
(displacements at time n caused by unit forces acting at time

k).
Static-Stiffness Coefficient
cylindrical foundation of radius ry embedded with height e

in a soil layer of depth d on rigid rock (d=ec: embedded in
halfspace)



Table A-6: Static Stiffness and Dimensionless Coefficients of the Fundamental Lumped-Parameter Model
(Monkey-Tail Arrangement) for a Cylinder Embedded in a Halfspace
Dimensionless Coefficients of
Static Stiffness K Dashpots Mass
Yo T H
Horizontal
8Gr [, e 0.68+0.57 |5
2-v Io To
: 4Gr, e 4
Vertical 0| 1+0.54— 0.80+0.35> | 0.32-0.01) = 0.38
1-v To I Iy
Rocking 3 3 2 2
8G
K,=—20 11+2.3% 1058/ & 0156315 0.40+0.03| = 0.33+0.10| =
3(1-v) Iy Iy ) T Io I
2
. , —0.08906(3)
To
o=k (o2 ) 3
CR AN A —0.00874[3)
To
Torsional 37
1661 1 40.672 0.29+0.09. ]S | 0.20+0.25 |=
3 To To To
A3.2 Lumped-Parameter Model
K, = 8Gry l+l Dlh+& (1+E) horizontal
L Y 2 d I, a Fundamental Lumped-Parameter Model
K, = 4G, (1 +1 3&) (l+ 0.54—3] A cylindrical rigid foundation with embedment e in a half-
1-v d To space can be modeled with the fundamental lumped-
r e vertical parameter model described in Section Al.2 (Fig. A-5). The
e) 3 . coupling between the horizontal and rocking motions is
* l+(0.85—0.28—) d achieved by connecting the horizontal lumped-parameter
To 1_% model with eccentricities fg, fc to the base (Fig. A-18).
K, = 8Gry (1+l r—Oj V2
3(1-v) 6 d fx = 0.25¢e f-=0.32e+0.03e| —
r 3 rocking To
e e e
* 1+2'3g+ 058(;] } (l +0‘75) The coefficients are specified as a function of the embed-
L ment ratio e/ry in Table A-6 (vV=1/4). Note that the coeffi-
16 3 1 1 e . cients of the rocking lumped-parameter model are defined
K, < Grn (1 +E E) [1 + 2'671._} torsional with respect to K, (and not K,), although K, is the coeffi-
e 0 cient of the direct spring (Fig. A-18).
Ky = —3—Kh coupling 5
r r r
COr = =2 YOKr Clr = C—OYIKr er = (2) ulKr
S S S
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Table A-7:

Dimensionless Coefficients of the Basic Lumped-

Parameter Model for a Cylinder Embedded in a Soil
Layer on Rigid Rock (Embedment Ratio e/ro=1)

[ Vertical [ Horizontal [ Rocking [ Coupling. | Torsional
kl -.203759 E+02 || -.124401 E+02 || -.125229 E+02 || -.618776 E+01 ~.139252 E+02
ko || +-339543 E+O1 || +.286199 E+01 || -.583162 E+00 {i +.202777 E+01 || -.275441 E+01
ks || --617014 E+01 fi ~.208541 E+02 || -.814822 E-01 || -.141784 E+02 || +.178780 E+01

1.00 fl ky ff +.166202 E+02 j| +.794575 E+01 || +.130945 E+02 || +.337083 E+01 || +.161164 E+02
[} -.918456 E+01 -.590158 E+01 -.315268 E+01 -.333135 E+01 -.774712 E-02
Co j| —-596381 E+00 | -.516028 E+01 j| -.885823 E-01 | ~.340080 E+01 || -.736101 E+00Q
C3 || +-131164 E+02 || +.130103 E+02 }| +.322858 E+01 || +.811310 E+01 || +.858610 E+01
m || -.987169 E+00 || -.163126 E+02 || -.680666 E+00 || -.146553 E+02 -.962102 E+00
kl -.190169 E+02 || -.123585 E+02 {| ~.918010 E+01 |[ ~.311508 E+01 ~.150459 E+02
k2 +.102770 E+02 |} +.382788 E+01 )| +.934512 E+00 || +.786487 E+00 || +.149201 E+01
k3 ~.256293 E+02 -.116229 E+02 || -.466308 E+01 -.869559 E+01 ~.230599 E+01
% 0.50 |l kg || +.480379 E<01 || +.697738 E+01 |} +.821627 E+01 +.184030 E+01 {| +.132374 E+02
C1 | -.803919 E+00 || -.129978 E+01 || -.212247 E+01 || -.715314 E+00 || ~.513171 E+00
Ca -.378972 E+01 -.357027 E+01 -.316747 E+00 || -.208337 E+01 -.403901 E+00
C3 +.131677 E+02 || +.102413 E+02 || +.266675 E+01 +.326137 E+01 +.511390 E+01
m ~.364874 E+01 -.820645 E+01 —-.342125 E+01 || ~.888905 E+01 -.515523 E+00
ki || --199866 E+02 || -.113528 E+02 || -.801960 E+01 -.820959 E+01
o k2 +.324059 E+01 +.187819 E+01 |} +.103933 E+01 +.236828 E+00
> k3 -.138239 E+03 || ~.141228 E+02 || -.800817 E+01 —.295213 E+00
i % 0.00 k4 +.151110 E+02 +.837372 E+01 +.584466 E+01 +.794727 E+01
5 o Ci -.577181 E+01 -.169786 E+01 || -.101867 E+01 ~.288545 E+00
% 2 Ca -.891247 E+01 ~.396633 E+01 -.157192 E+01 -.308176 E-01
D E c3 4.151425 E+02 +.710633 E+01 +.313092 E+01 +.160082 E+01
8 . ?5 m -.485815 E+02 -.142894 E+02 }j ~.217586 E+01 -.372596 E-01
2 M_'i 2 Ky || --215677 E+02 || -.800686 E+01 |[ ~.112339 E+02 [[ -.531331 E+01 || -.158881 E+02
;5 ‘E k2 +.995664 E+01 +.248098 E+01 +.271244 E+01 +.128879 E+01 -.216892 E+01
[ Q k3 -.299529 E+02 -.530555 E+01 -.112792 E+02 || -.117090 E+02 +.122884 E+01
24 O 1.00 k4 “+.122789 E+01 +.460883 E+01 +.830774 E+01 +.314281 E+01 +.175253 E+02
ga Cy -.214856 E+01 -.638370 E-01 || -.185381 E+01 ~.345899 E+01 =.770582 E+00
o Cp || —.703468 E+01 -.234186 E+01 -.147482 E+01 -.442673 E+01 -.114118 E+01
g C3 || +.195563 E+02 +.101919 E+02 {| +.461482 E+01 +.913903 E+01 +.899118 E+01
o m || -.476605 E+01 -.5988035 E+01 -.101760 E+02 || -.222249 E+02 || -.244900 E+01
k1 -.263609 E+02 || -.105510 E+02 || -.812675 E+01 -.258694 E+01 —.164865 E+02
k2 +.106994 E+02 {| +.323771 E+01 || +.327590 E+01 +.487010 E+00 +.162631 E+01
k3 -.415582 E+02 || ~.101866 E+02 || ~.183711 E+02 || -.708382 E+01 -.359665 E+01
% 0.50 k4 +.391023 E+00 }{ +.579774 E+01 +.434718 E+01 +.155304 E+01 +.138158 E+02
Cy -.734715 E-02 -.691681 E~01 || -.831614 E+00 || -.752538 E+00 || -.786309 E+00
€2 {f -.101477 E+02 || -.475156 E+01 || -.272228 E+01 || -.265221 E+01 -.129218 E+01
€3 |l +.195330 E+02 || +.114226 E+02 || +.507228 E+01 || +.383021 E+01 +.600218 E+01
m ~-.674277 E+01 -.148975 E+02 |} -.147137 E+02 || -.128622 E+02 -.159889 E+01
Ky ff --147108 E+02 [ -.922525 E+01 || -.736535 E+01 -.790274 E+01
ko || +.600489 E+01 || +.187933 E«01 || -.907967 E+00 +.176502 E-01
k1 || -.355109 E+02 || -.788239 E+01 || -. 157724 E+03 ~.179897 E-01
0.00 k4 +.527313 E+01 +.637232 E+01 +.684877 E+01 +.788488 E+01
Cp [ --203850 E+01 || -.425306 E-01 || -. 168579 E+01 -. 128670 E+00
Cy || --830045 E+01 -.368700 E+01 -.114538 E+02 -.263292 E-03
C3 [| +.145304 E+02 || +.682700 E+01 || +.130128 E+02 +.157125 E+01

m || -.200705 E+02 || -.139626 E+02 || -.920928 E+02 -.331649 E-03 {

Basic Lumped-Parameter Model

To represent a cylindrical rigid foundation with embedment
¢ in a soil layer resting on rigid rock (Fig. A-19), a
lumped-parameter model for all degrees of freedom is
described. For the vertical and torsional motions the basic
lumped-parameter model with four springs, three dashpots
and a mass introducing two internal degrees of freedom
(Fig. A-12) is directly applicable (described in Section
A2.2). For the coupled horizontal and rocking motions, a
physical representation (Fig. A-20) exists, consisting of
three basic lumped-parameter models, one of which is
attached with the eccentricity e to take the coupling into
consideration. For various ratios of the radius ry of the
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foundation to the depth d of the layer and lateral contact
ratios e/e, the frequency-independent real coefficients for

all springs, dashpots and masses are specified in Table A-7
(v=1/3).

A3.3 Pile Foundation
Single Pile

The formulation based on disks embedded in a fullspace
with their corresponding double cones and anti-symmetri-
cally and symmetrically loaded mirror-image disks to
model a free surface and a fixed boundary can straightfor-
wardly be applied to the dynamic analysis of a single pile



Fig. A-19 Cylindrical foundation with partial contact over
embedment height embedded in soil layer res-
ting on rigid rock.

COUPLING

HORIZONTAL

ROCKING

Fig. A-20 Basic lumped-parameter model for embedded
foundation with coupling of horizontal and
rocking motions.

(Fig. A-21). The cylindrical soil region between the disks is
not just analytically excavated as for an embedded founda-
tion, but replaced by the difference of the material
properties of the pile and the soil.

Pile Group

For a pile group, pile-soil-pile interaction can be
considered with one dynamic-interaction factor in vertical
direction and one in the lateral direction o(®), defined as
the amplitude ratio of the displacement at the head of a
receiver pile u,m) to the corresponding displacement of the
loaded source pile ug(w) under its own dynamic load (Fig.
A-22).

o) = U@
u (o)
Dynamic-Interaction Factor
vertical (Fig. A-22 a)
| mi —l(l)i
4
o (@) = T e o
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Fig. A-21 Stack of disks to model pile embedded in half-

space with anti-symmetrically loaded mirror-
image disks.

with the radius ry, pile distance d and material damping
ratio L.
lateral (horizontal) (Fig. A-22 b)

of (0) = cos?6af (0°,0) + sin®Bay, (90°,0)

with the angle 0 between the horizontal load and the line
connecting the source and the receiver piles.

d . d

r -Lgo— -io—

0 c cp
€

a,f](90°,(o) = o, ()

The dynamic-interaction factor referred to the free-field of
the soil (at the location of the receiver pile) a{l (®) can be
transformed to the corresponding factor referred to the
head of the receiver pile itself o, (®) based on the concept
of substructuring with replacement (see [49], p. 283).

Matrix Formulation

Dynamic-stiffness matrix for harmonic loading with rigid
pile cap

[S(@)] = [AT'[G(w)][A]



RECEIVER
PILE

d SH - WAVE f
'Z C Ur
/RECEIVER
\PILE
= ‘\
0 //‘;\ t
x (X [\ (09
us J/ / NG
SOURCE P - WAVE
PILE Cp

Fig. A-22 Cylindrical waves emitted from shaft of loaded

source pile and propagating towards receiver
pile determining dynamic-interaction factors.

a) Vertical.

b) Lateral (horizontal).

with kinematic-constraint matrix [A] and dynamic-flexibi-
lity matrix [G(w)] discretized at pile heads. For instance,
for vertical motion (Fig. A-23) and with the dynamic-stiff-
ness coefficient S(w) of a single pile

_ 1
u () = S
*(J"z] ( o0 )p () + P(0) + I a ,(d u,u))Pj((D)]
= j=i+l
i =1,

which is generalized to

{u(@)} = [G(0)] {P(w)}

A4 SIMPLE VERTICAL DYNAMIC GREEN'S
FUNCTION

To calculate the vertical and rocking dynamic-stiffness
coefficients for harmonic loading of an irregular basemat
which cannot by represented by an equivalent disk on the
surface of a homogeneous halfspace, the basemat is modeled
as an assemblage of subdisks.
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Fig. A-23 Plan view of arrangement of piles in group.

SOURCE
SUBDISK

RECEIVER

Fig. A-24 Vertical displacement on free surface from
source subdisk loaded vertically.

A4.1 Dynamic-Flexibility Matrix of Subdisk

For small values of the dimensionless frequency
a, = 0ry / ¢, the amplitude of the vertical displacement

uy(ay) produced by a vertical load with amplitude P(ag)
acting on the source disk of radius ry equals (Fig. A-24)

P(ao)
ug(ao) = K{1+0.747ag)

with static-stiffness coefficient
K = 6Gr, forv=1/3
The Green's function outside the disk is approximated as

u(r,aq) uy(ag )Ae_iq’(a")

The amplitude-reduction factor A equals

A = -2— o for r £ r;r (near field)
nr
2 1

A== for r > 1 far field
T AT P teld)

with (index R for Rayleigh wave)



Fig. A-25 Structure-soil system with rigid base.

rf = 0‘3KR = ljg rO
a9
The phase angle ¢(ag) equals

o(ag) = 116 ao(i - EJ for r — 250 <5y,

T n L

2
P(ag) = T4ro7 ao(—r— - 3) for r ——&>5rf

4 L T T

With the amplitudes of the vertical forces {P(ao )} acting
on the subdisks and of the vertical displacements {u(ao )}

{“(30 )} = [G(ao )]{P(ao )}

where the dynamic-flexibility matrix [G(ag)] is constructed
based on the approximate Green's function of the subdisk.

A4.2 Matrix Formulation

The dynamic-stiffness matrix with respect to the displace-
ment amplitudes of the rigid basemat {uo (ag )} equals

[S(20)] = [AI"[G(ao)] ' [A]

with the kinematic-constraint matrix [A] defined as

{“(ao)} = [A] {uo(ao)}
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- O

9
S00

Fig. A-26 Soil system ground with excavation and rigid
structure-soil interface.

A5 SEISMIC EXCITATION

A5.1 Basic Equation of Motion

Frequency Domain

Basic equation of motion of substructure method for har-

monic loading for analysis of dynamic soil-structure inter-
action for seismic excitation (Fig. A-25)

{[sss(w)][sso(w)]H{ué(m)}}

[Sos (0))][ 0 (co)] {u}) (co)}

{0}

{‘{Po ("))}}

with amplitudes of total displacements in nodes within

structure {u;(m)} and on rigid structure-soil interface

{uz)((o)} and dynamic-stiffness matrix of structure (static-

stiffness matrix [K], mass matrix [M], hysteretic damping
ratio §).

[s*(@)] = [K])(1+2if) -0’ [M]

[S%O((D)] denotes the dynamic-stiffness matrix of

unbounded soil with excavation (ground, Fig. A-26).
Amplitudes of soil's interaction forces are formulated as

{Po(@)} = [S&(®)] ({ub@)} - {u&(@)})

with the effective foundation input motion {u%(m)} (Fig.
A-26). Defining driving loads as

{P§(@)} = [s% ()] {uf(@)}

ittt

the equation of motion equals

[SSS ((D)]E[SSO((D)]
[Sos ()] Sho (@)]+{So (@)



Time Domain

Basic equation in time domain (viscous damping matrix of

structure)
{[Mssl[Mso]} fut) +[[cssl[csoJH{u‘<t>}}+
[Mo, Moo ] || {86 (0} ] " |[Cos][C {up 0}

{ut v} {o}

[[[K;:]EIIEZ]H{UO(O}} { {Po(t)}}

A5.2 Interaction Force of Soil and Driving Load

Disk on Homogeneous Halfspace Modeled with Cones
(Section Al.1)

translation

K(ub(t) - u§(1) + C(ab(t) - w§(v))
Kuj(t) + Cuf(t) — P§(t)
Ku§(t) + Cuf(t)

Py (t)

with P§(t)

rotation

Mo(t) = Kgo{05()-08(1) + Co(D5(0)-D5(1)
- (J)h,(t—‘c)Cﬁ(l‘)O(‘c)—ﬂg(t))d‘c
= Ky0h(0) + Codh(0) = [hy(t-7) bl (r)de-ME(1)
with

ME(D) = KoB5(0) + Cod30) = [by(t-1)Cy3 (1ae

Disk on Layer on Rock Modeled with Unfolded Layered
Cone (Section A2.1)

translation
k K t . g .
Po(t) = K Zbej (uo(t“JT)— uo(t—JT))
j=
k Kf.t . . g .
+ C Z(,)ej (uo(t—JT)—- Uo(t—_]T))
j=
LS K .t : K K.t : g
= K_Zoej ug(t—jT) + C_E(,)ej ug(t—jT) — PE(t)
j= j=
with
K k
PE(t) = K_Eoefug(t—jT) + C_zoe}(ug(t—jT)
j= j=

analogously for rocking unfolded layered cone
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Embedded Foundation Modeled with Stack of Disks

for vertically propagating free-field motion {uf(t)}

{Po}, = [AI"[s"] [ANub} - [A]"[s] {u},
- Mo} - [ATT[s"] {u'}
AI"[sT] [aKub} -[A]"[s] T},
- Muo}, - {Ps},

Al 10"},

il
—

with

P8, =

AS5.3 Effective Foundation Input Motion

Effective Foundation Input Motion for Harmonic Loading

op@) = s

with dynamic-stiffness matrix [S{)b(m)] and motion of free

field {u{)(m)} in those nodes (disks) b which will later lie

on the structure-soil interface and with kinematic-constraint
matrix [A] (see Fig. A-27).

5 ()] [AT"[S5 (@) [{ul (@)}

Surface Foundation on Homogeneous Halfspace Modeled
with Subdisks (Section A4)

vertical and rocking motions {u(g)((n)} caused by vertical
free-field displacement with amplitude
.
—i—x

Ca

u; (x,0) = ug(w)e

propagating horizontally in x-direction with apparent
velocity c,

"[6(ao)]'A)) [A]

{us@} = ([a)

with {u{,(m)} equal to {ui(x,m)} evaluated in nodes b.

"[6(a0)] {ul (@)}

Surface Foundation Modeled with Distributed Springs
Vertical and rocking motions w§, B§ caused by vertical

free-field displacement propagating horizontally with appa-
rent velocity c,

ug(x,t) =



STRUCTURE

FREE FIELD

GROUND

Fig. A-27 Physical interpretation of basic equation of
motion in total displacements with effective
foundation input motion and driving loads.

for square foundation of length 2a and spring constant k

(Fig. A-28)
+a t+a/c,
wE() = — [k2a uf[t-inx = S o (x)dx
k4a“ _, c, 2a 4/,
+
BE() = - | xk2a uf(t—i)dx
k§a4 -a Ca
2 t+al/c, t+alc,
= Ec—g( ] xuf (R)dR—t | uf(i)diJ
2 t—a/c, t—-a/c,

Embedded Foundation Modeled with Stacks of Disks
(Section A3.1)

for vertically propagating free-field motion with amplitude

' (@)}

{u§(@)} = [s

5 ()] AT [s" (@)]{u’ (@)}

AS5.4 Foundation Represented by Lumped-Parameter Model

When a lumped-parameter model for the soil is used, the
effective seismic input motion {u(g)(t)} is in a first step

applied at the base (where the structure will later be
connected) of the soil model, leading to the reaction forces

(driving loads) {Pg(t)}. The latter are then applied to the
total dynamic model in the second step, yielding the total
dynamic response. The procedure is summarized in Fig. A-

27. As an example the rocking motion of a rigid block on a
homogeneous halfspace modeled with the lumped-
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a

PANY

Fig. A-28 Effective foundation input motion for vertical
component of horizontally propagating wave
acting on rigid square basemat with distributed

springs beneath.

parameter model (discrete-element model) of Fig. A-2¢ is
addressed in Fig. A-29.

A6 DYNAMIC SOIL-STRUCTURE INTERACTION

A simple coupled dynamic model (Fig. A-30) consisting of
a vertical rigid bar with the horizontal and rocking springs
and dashpots with frequency-dependent coefficients Kk(ayp),
(ro/cs) Ke(ag) and Kgkg(ag), ro/cs) Kycy(ag) representing
the soil attached at one end and at the other one, at a dis-
tance equal to the height h, a spring with coefficient k
connected to a mass m, which models the structure, cor-
rectly captures the essential effects of soil-structure interac-
tion for a horizontal seismic excitation us. The dynamic-
stiffness coefficients of the soil are calculated with cones
for a halfspace (Section Al.l) and with unfolded layered
cones for a layer resting on rigid or flexible rock (Section
A2.1).

The coupled system can be replaced by an equivalent
one-degree-of-freedom system (Fig. A-31) enforcing the
same structural distortion u as in the coupled dynamic

system with the same mass m, the effective natural
frequency @®, the effective damping ratio { and the

effective input motion .

11 . L
~2 - 7 ~ 2 =
@® o  oi(i,) o(5)
~2 ~2 ~2 ~2
z [0) ® ® - ® <
¢ = =0+ 1‘*2‘) PRIER ——&n(80) + 78 (30)
Wy o @ (d,) o (ap)
~2
us = (D_2u8
(‘Os
with the natural frequencies
k
o, = .= fixed — base structure
m
3 Kk(3,) rigid structure and rocking
oy (3) = m motion prevented



ug +u

M2 lo h

R AS

M3 g
7~ R
C C
19?\:/ —Cs Y R \:/ —Cs A °

Fig. A-29 Rigid structure on soil halfspace. Lumped-
parameter model of soil with applied effective

l—»ﬁg m

Equivalent one-degree-of-freedom system lea-

foundation input rotational motion yielding .
. . L Fig. A-31

reaction moment, which as driving moment acts dine to same structural distortion with s

on total dynamic system leading to total Ing 1o same Sruc jistortion With same

mass, effective input motion, effective damping

ratio and effective natural frequency determi-

rotation.
ning effective spring.

—_—
m ut
us u ﬁﬁ u
—5 T % 9. 5% Yl
1
i
]
1
1]
iy
h k ll;
I’,l
/’,'
o 130//
] B Kk (a ;
r (0) //
 _ - us lug

Figs. A-30 Coupled dynamic model of structure and soil ,
’ P izon Koko (a0 o/ 0T (a0), g ™
(ro/cs) Kscs(ag) 0

for horizontal and rocking motions.

Fig. A-32 Redundant coupled dynamic model of structure
with zero rotation of mass and of soil for hori-

Kgkg(dy) rigid structure and horizontal ( L
zontal and rocking motions.

o (3) = .
’ ) mh? motion prevented

the damping ratios

Cu(do) = 201:((;0)) horizontal radiation
\40 1 1 1 3
- - - = = 4+
£(5) = 32—‘)1:’3(—;‘))) rocking radiation @’ o’ HERY o} +1207 (3,)
930 . ®° <
z = g—mﬁ(éoz) [f—cg—ch(ao)]

and the hysteretic material damping of the structure { and

of the soil L.
For a redundant coupled structure-soil system where the s
mass of the structure can only displace horizontally but not ~2
ﬁ 8 —_ (_o._ ug
)
0‘)5

rotate (Fig. A-32), the equivalent one-degree-of-freedom
system for horizontal seismic excitation is defined by the

parameters
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