
_____AN EXAMINATION OF TECHNIQUES FOR
RASTER-TO-VECTOR PROCESS AND IMPLEMENTATION

OF SOFTWARE PACKAGE f o i l AUTOMATIC MAP
DATA ENTRY-MAPSCAN

B a c h H u n g K h a n g , N g o Q u o c T a o , P h a m N g o c K h o i , L u o n g C hi M a i ,
D o N a n g T o a n , N g u y e n D u e D u n g , V u V a n T hinh

The majority of com m only used manipulative techniques in computer-assisted cartography continue to
require that the data be in vector format. This situation has recently precipitated the requirement for fast
techniques for converting digital cartographic data from raster to vector form at for processing. This article
concerns with examining the states in theses conversion techniques. In part one, algorithms to perform all
phases o f the raster-to-vector process are systematically outlined, and then com pared in the general term.
Part two will describe the package for automatic m ap data entry MapScan, the algorithms implemented in
which are based on the fast techniques for converting map raster data to vector format. W ith MapScan users
are able to move printed maps or drawing into a mapping system much more quickly and easily compared
to using traditional digitizer techniques.

I. TECHNIQUES FOR R A SR E R -TO -V E C TO R PROCESS

Almost all data manipulation in computer cartography today requires that the data
be in vector format prior to theire manipulation. This format is necessary because the
existing manipulation algorithms are heavily dependent upon the vector data structure.
The dependence on vector format is not an optimal situation, but it is one that has been
heavily mandated by both cartographic tradition and human intuition. The major diffi
culty encoutered at present is that the algorithms for performing the various components
of raster-to-vector conversion have never been systematically analyzed as parts of an inter
grated process. Although individual algorithms are well known, the variouse combinations
of algorithms for converting raw, scanned map data into vector form have never been de
scribed nor have the interrelationships of the various factors affecting execution times been
adequately quantified.

1.1. Algorithms for raster-to-vector conversion

The task of converting raster-formatted map or other line data into vector format
can be devided into three basic operations. First is Skeletonization or line thinning,
the process of reducing lines to unit thickness at a given resolution. The second oper
ation is Line Extraction or vectorization - the process of identifying a particular series
of data entities or coordinates that constitute an individual line segment as portrayed on
the input document. The third operation is Topology Reconstruction - the process of

determining the adjacency relationships among all the lines. The individual line segments
are joined into whole lines if disired, and maps may be joined together into a continuous
areal representation.

Two other operations ancillary to the basic raster-to-vector process are line smooth
ing and spike and gap removal. These operations are frequently requried to eliminate
inaccuracies either present in the input map data or induced by the specific algorithms
employed in skeletonization or line extraction.
1.1.1. Skeletonization

There are curently three basic approaches for the skeletonization of arbitrarily shaped
lines. The first approache involves ’’ peeling” the sides of a line in an interactive process.
The second approach involves expanding the spaces between the lines, as if one where
blowing up a bunch of ballons inside a boxe. The third involves canculating the center, or
medial axis, of each line directly.

The Peeling Approach. The most commoly used algorithm for skeletonizing line data
in raster of matrix form is a ” peeling” process whereby each thick line is reduced by one
resolution unit at a time on each side of the line until only one unit of line width demain.
For the purpose of discution, it is assumed that all data are represented as a binary matrix
of a 0 and 1. An 0 represents background and a 1 represents a location occupied by a
portion of a line. In the general term, this process examines the surounding pixels of each
non-zero pixel or location cell to determine whether or not the location of interest is on
the edge of a line. The central pixel and its 8-adjacent cells are examined (see Fig.l). The
central pixel must satisfy all of the following criteria or it is removed (i.e., changed to 0)
as part of the line.

1. it is not the only occupied cell in the matrix
2. it does not connect neighboring cells

3. the removal of that cell could not alter the continuity of the line (i.e., not a line
junction).

6 7 8
5 0 1
4 3 2

Fig. 1. An 8-adjacent matrix

This logic is best implemented as a lookup table containing a "retain” or ’’ delete”
answer for each o f the 256 possible 8-neighbor configuration of a 3 x 3 matrix.

There are several advantages to this algorithm. First, it is a parallel process, and such
, can be implemented utilizing a scan-line approach, i.e. pixels are handled on a raster-
by-raster instead of a line-by-line basis. Second, line junction are deleted as an intergral
part of this process and can also be indentified by type with only a minor extension o f the
algorithm. Third the total line length, or line density, has a minimal effect on execution
time.

Several disavantages are also associated with this algorithm. First, since it "peels”
the line two pixels at a time, the thickness of the original heavily impacts the speed of
the algorithm. The number of times each portion of a line needs to be thinned (and
the subsequent number of passes through the data) is equal to one-half the width of the
thickness line, measured in resolution units. Execution speed is thus a linear function of
line thickness. If the width of a line varies by more than one pixel on either side of the
original line, the line needs to be smoothned beforhand to avoid local waves, or ’’ kinks” ,
in the thinned line. Third disavantages all result from an inherent characteristic - the
algorithm is highly sensitive to overall line quality on a scanned map.

The problem identified above are avoided if the initial data consist of crisp lines
with sharp junction that are no more than four pixels wide in either the horizontal or
the vertical direction (i.e., the lines are thin to begin with) In this case, the data can be
thinned in two passes.

The Ballooning Approach. A variation of the peeling approach to thinning line data
is known as the ” ballooning” algorithm. In this approach the area between the lines are
expanded until the line separating them can not be reduced futher without causing a
break in the boundary. The open area between thick lines in the image (are expanded
interatively by following the inside edge of each open area, always in the same direction,
using the 4-adjacent test, see Fig.2. This test uses the three criteria as the peeling approach
but does not take diagonal neighborss into account (i.e., 4 neighbors instead of 8). As
the inside edge is folloed, each ’’ expanded” pixel is deleted from the line (i.e., changed
to 0). A separeted pass is then needed to locate nodes in the thinned line network for
subsequent topology reconstruction by using 8-neighbor (i.e., full 3 x 3 cell) matrix to chek
for interserctions.

4

3 o 1

2

Fig.2. A 4-adjacent matrix

The ballooning approach is the dual or logical "minor image” of the peeling approach.
The ballooning algorithm deals with the spaces between the lines instead of the lines
themsels. The primary disavantage of the ballooning approach is that it can dislocate
node position because the sequential processing of open areas can only ” see” one side of
a line at a time. This particular approach gains speed by utilizing the faster but less
accurate 4-neighbor matrix the bulk of the processing and then utilizing the 8-neighbor
matrix for more accurate node extraction. This technique can also be used in the peeling
algorithm to gain speed.

The Media.} Axis Approach. Each pixel in the original line (i.e., 1) is given a value equal
to the number of pixels from its nearest non-line (i.e., background) pixel. All 1 are assigned
a distance value in only two passes. The basic algorithm is as follows: first, all pixel are
processed in foward raster order (left to right), from the top left corner, processing each
complete raster in turn. Each occupied pixel is assigned a value equal to the minimum
value of its neighbors directly above and immediately to the left, plus 1. In the second
pass, the resulting matrix is processed in the reverse order, assigning to each pixel the
minimum value among itself, the neighbor to the right plus 1, and the neighbor below
plus 1. Fig.3a and Fig.3b show the results of passes 1 and 2 respectively. The skeletion
of the resulting matrix consists of all locally maximum-valued ceels after the second pass.
The binary skeletion can be derived by reversing the above logic for an additional two-step
process, making the entire skeletonization algorithm a four-pass procedure regardless of
the original line thickness. Thes additional two passes can be avoided if the maximum
value matrix can be used directly by the line extraction algorithm.

The medial axis algorithm to be the fastest among all the above skeletonization
approaches. It is sequential, scan-line oriented process that never requires more than four
passes through the data. Overall efficiency is primarily affected by the number of pixels
that must be ’’ looked at” (i.e., the number of occupied cells, and thus the overall original
thickness of the lines). Speed is not as severely affected by line thickness as in the peeling
approach. The primary drawback of the approach is that errors can results from very
thick nodes. However, this problem seems to be universal with existing skeletonization
algorithm^. Another drawback is that this algorithm is sequential in nature. Thus, the
strict order in which pixels are processed prohibits streamlining techniques employed in
the implementation of parallel algorithm.
1.1.2. Line Extraction

1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1 1 2 1

1 2 1 1 1 2 3 2 1 2 1 1 1 2 2 1
1 2 2 1 2 3 4 3 1 2 1 1 2 1 1 1

1 2 1 1 2 3 1 2 I 1 2 1
1 2 2 3 4 1 2 2 1 1

1 2 3 3 1 2 2 1
1 2 3 4 1 1 2 2 2 1

1 2 2 3 4 5 2 1 2 1 1 2 1
1 2 3 1 2 1 1 2 1 1 2 1
1 2 3 1 2 1 1 2 1 1 2 1
1 2 3 1 2 1 1 2 1 1 2 1
1 2 3 1 2 1 1 2 1 1 2 1

1 2 3 1 2 1 1 2 1 1 2 1
1 2 3 1 2 1 1 2 1 1 2 1
1 2 3 1 2 1 1 1 1 1 1 1

(a) (b)

Fig.3. a. Distance values of pixels after first pass
b. Distance values of pixels after second pass

Currently, two approaches exist for line extraction. The first approach is line fol
lowing or line tracking, in which each individual line is followed from pixel to pixel, in
any direction, until the end of the line is reached. Each line is reconstructed sequentially
and ereased in the input file as it is followed so that it is traced no more than once. The
second approach involves simultaneous tracking of all lines within each scan line.

The Line-Following Approach. The primary advantage of the line-following approach is
that it is conceptually simple. It also takes care of the topology automatically. However,
many disavantages are associated with this approach. First, when a node or junction in a
line network is encountered, a decision must be made about which branch is to be followed
and a marker kept to trace the remaining branches. This complication can be avoided by
marking a preliminary pass through the data to detect and remove all junction points,
leaving only separated line segments. Second, the execution time is a linear function of
the total line length to vectorized. This approach produces a large amount of temporal

overhead when implemented on a computer if the lines tend to wander over a larger number
o f scan lines, because repeated input and output of the same scan lines is frequently
requied. This overhead quickly becomes overwhelming as the size of the map area or the
density of the map line increase.

The Scan Line Approach. The scan-line approach to line extraction uses the same
basic logic as the line-following approach, but is implemented in scan-line order. Here, all
lines intersecting a given scan line are processed simutaneously and each scan line reads
only once. The entier map is processed from top to bottom (or bottom to top) in an
” eating-down-the sheet” fashion. Individual convoluted lines are detected as multiple line
segments that eventually must be connected together, as shown in Fig.4. These segments
can either be joined at the time the line junction are detected, or recorded so that all line
segments can be reconstructed as a separate step after all scan-lines have been processed.

Line "A" detected

Line "B" detected

Line "B" joined to
line "A"

Fig.4. Line extraction via the scan-line algorithm

The price paid for this scan-line approach, however, is a greatly increased level of
bookkeeping activity required to keep track of many line segments simutaneously. The
volume of bookkeeping overhead neccessary is directly related to the same factors affecting
1/0 in the line-following algorithm - overall line-density and the range of scan lines covered

by individual map lines.
I.1.3. Topology Reconstruction

Topology reconstruction is normally performed partially as a byproduct of either
line thininng or line extraction. Since line junctions must be recognized and treated as
special situations, particularly in the line extraction process, the common practice is to
record the type and location of all line junctions in a separate table when they are first
encountered. This information is later used to reconstruct the topology without needing
to make an additional pass through the map data itself.

In the peeling and ballooning algorithms for skeletonization, junctions can be located
when a lines is reduced to unit thickness. Junctions can then be recognized as ” T ” , ” X ” ,
” + ” , or ” Y” type intersections and recorded in a separate table for use during the topology
reconstruction phase. Junctions can similarly be recognized during line extraction, and
junction identification in fact an integral part of any line extraction process.

II. IM PLEM ENTATION OF SOFTW ARE PACKAGE FOR A U TO M A TIC M A P
DATA ENTRY - M APS CAN

MapScan is a software package that accepts various formats of scanned maps or
drawing, reads and converts scanned images into vector maps with text references of
different formats that can be used by popular mapping systems. With MapScan users
are able to move printed maps or drawing into a mapping system much more quickly and
easily compared to using traditional digitizer techniques. Information flow of MapScan is
shown in Fig.5.
MapScan fuatures

• Raster Image Editing. Some linework editing is much more efficiently accomplished
at this stage than after automatic vectorization. Problems more efficiently addressed at
this stage include removal of unwanted linework, eliminate unnecessary items, connect
broken lines, rotate an image, merge multiple pages to form the entier map image, ...

• OCR (Optical Chracter Recognition). Text in the raster images is specified as
polygons to allow separation from line elements. It is possible also to identify batches of
text references and perform OCR processing, generate text references files with appropriate
format for other specific mapping and GIS software.

• Vectorization. MapScan performs raster-to-vector conversion, used algorithms are
based on the fast techniques for converting map raster data to vector format. The process
has two steps:

(1) MapScan reads the raster image and performs a thinning process to reduce the
width of all lines to only one pixel. This process of skeletonization used the peeling aproach
by contour tracing algorithm.

(2) MapScan reads and vectorizes the thinned lines by producing and connecting
all the nodes and generate a map coordinate file in DXF or appropriate format for other
specific mapping and GIS software. Algorithms used here belong to the first approach of
line extraction, i.e. the approach of line following or line tracking.

Mapscan Innformation Flow

/scanned raster\
image V

0and.pt

pditpd
I raster image

<JaM.pc2t)

S 'raster
f wo reference text j—

{land, pcx) /

raster edit

reference
text

recognition

veciori-
zation

reference
text

(land.ref:

vector map
{iaud.inap:

vectoredit
<--------- / edited

vector map
(land.map:

Fig.5. Information Flow of MapScan

• Vectorized Image Editing. To complete the raster-to-vector translation, some post-
vectorization editing will be required. Specifically addressed during this step is the problem
level of the file which contains elements the system was unable to interpret. Checks and
corrections will be required at some intersections, and proper line attribute translations
will also be verified during this step.

The MapScan versions supports input of PCX, TIF and IMG formats and output
of DXF and PopMap (PopMap is a United Nations intergrated software package for geo
graphical information, maps and geographies databese) formats.

REFERENCES

1. A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press, New York,
1976.

2. T.Pavlidis, A thinning algorithm for discrete binary images, Comput. Graphics and
Image Processing 13, 1980, 142-157.

3. A.Rosenfeld, A characterization of parallel thinning algorithms, Iform. Contr.29, 1975,
286-291.

4. Donna J Peuquet, An examination of techniques for reformating digital cartographic data,
Cartographica, Vol 18, N o.l, 1981, 34-48.

5. T.Pavlidis, Filling algorithms for raster graphics, Comput. Graphics Image Proc. 10,
1979, 126-141.

6. U. Montanari, Continous skeletons from digitized images, J.ACM 16 1969, 534-549.

