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Dynamical Behavior of a Pile 
Under Earthquake Type Loading 
T. Kobori, Professor 

Architectural Engineering, Faculty of Engineering, Kyoto University, Japan 

R. Minai, Professor 
Disaster Prevention Research Institute, Kyoto University, Japan 

K. Baba, Research Assistant 
Architectural Engineering, Faculty of Engineering, Osaka University, Japan 

SYNOPSIS In order to obtain a theoretical prediction on the seismic response of the soil-pile­
structure systems, the frequency response of the soil-pile system excited by ground incident waves 
may be necessary in addition to the response due to the excitation at the pile head. 

This paper is concerned with a theoretical analysis based on the three-dimensional wave propagation 
theory to find dynamical interaction characteristics of an elastic pile embedded in the viscoelastic 
soil stratum on a rigid bed rock, subjected to a concentrated external force or forced displacement 
at the pile head and to uniformly distributed bed rock motion. In dealing with this complicated 
boundary configuration and exciting condition, the technique of superposition principle associated 
with the auxiliary subproblems is effectively used. And, the governing equations in frequency domain 
reduce to the Fredholm type integral equations of the second kind, whose solutions are expressed in 
terms of multiple summations and integrals. 

INTRODUCTION 

There has recently been an increasing interest 
in the dynamical behavior of soil-pile-structure 
systems during wind and earthquake excitations. 
As far as analytical studies based on the wave 
propagation theory are concerned, this problem 
has been explored by H. Tajimi (1966, 1976) and 
M. Novak (1974,1976,1977). The authors have also 
studied on the dynamical interaction of a pile 
embedded in a viscoelastic half space when 
subjected to a concentrated force excitation at 
the pile head (1975, 1976, 1977). 
The objective of this paper is to present a 
method of theoretical analysis of an elastic 
pile and the surrounding viscoelstic soil 
stratum on a rigid bed rock when subjected to 
the concentrated external excitation at the pile 
head and to uniformly distributed bed rock 
motion. 
General approaches to such dynamical interaction 
problems based on the three-dimensional wave 
propagation theory are to be related to solve a 
class of mixed boundary value problems with 
complex boundary configurations and exciting 
conditions. 
In dealing with these complicated boundary value 
problems, the total soil-pile interaction field 
is separated into the free-field motion without 
a pile and the interacted field due to the 
presence of the pile. And, the latter field is 
further separated into the two sets of fields, 
corresponding to the following subproblems; 
(I) one related to a viscoelastic soil stratum 
enlarged symmetrically with respect to the free­
surface and with an elastic pile inclusion, 
(II) the other is the original viscoelastic soil 
stratum rested on a rigid bed rock. Then, the 
respective stress and displacement components of 
the auxiliary problems are combined to satisfy 
the original boundary conditions. 
By applying the integral transforms and series 
expansions with respect to time and spatial 
variables, the mixed equations composed of the 
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Fredholm type simultaneous series and integral 
equations are derived in the domain of frequency 
and wave numbers. By making use of iterated 
kernel method in solving the above equations, 
the solutions in frequency domain are expressed 
in terms of multiple summations and integrals. 
Finally, numerical results are presented for 
some physical properties of a soil-pile 
interaction system. 

FORMULATION OF THE PROBLEM 

The displacement vector u along the pile, 
consisting ot the components of horizontal 
translation and rotation about the horizontal 
axis, is represented as the following forms; 

u = 

u ro 

SuG + Buro 

= [ (I-K -lK )- 1 -I]S u 
p s o G 

(1) 

where uG is the harmonic displacement uniformly 

distributed on the bed rock, while uro is the 

relative displacement vector associated with the 
harmonic excitation at the pile head, and K , K 

p s 
are the stiffness matrices of a pile and a super­
structure. s, S

0 
are the transfer vectors of the 

displacement along a pile and at the pile head 
to uG, B is the transfer matrix of the displace-

ment along a pile associated with uro' and I is 

the unit matrix. Determination of the stiffness 
and transfer matrix of the pile requires the 
solution of the following mixed boundary value 
problem in the frequency domain, 

L(u) = 0 X £ v 

sl (u) 0 X £ rl 
(2) 

s2 (u) 0 X £ r2 

S3 (u) f X £ r3 
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in which x and u are the position vector and the 
displacement vector in a viscoelastic soil 
stratum on a rigid bed rock, and (i) the three­
dimensional wave equation of a viscoelastic 
stratum V given by the vector differential 
operator L, (ii) the stress-free condition 
associated with the operator B1 at the surface r 1 
of the soil stratum outside the region of a pile, 
(iii) the welded contact condition associated 
with the operator s2 at the interface r 2 of the 

stratum and the rigid bed rock, (iv) the 
condition of equilibrium of the pile, the 
boundary conditions at the tips of pile and 
non-deformability with respect to the circular 
section of the pile r 3 , as well as the welded 

contact condition between a pile and its 
surrounding soil stratum, associated with the 
operator 63 • In addition, the radiation 

condition in the infinitely far field is required 
to be satisfied. 
In the other hand, for the determination of the 
transfer vector S of the pile for the harmonic 
bed rock motion, it is convenient to write the 
soil-pile interaction field in the absolute 
coordinate system as follows; 

u == ui + ur (3) 

where ui is the free-field motion of the soil 

stratum without a pile and ur is the interacted 

field due to the presence of the pile foundation. 
It is required that the free-field motion 
satisfies 

L (ui) = 0 X E v 

61 (ui) 0 X E rl (4) 

62 (ui) UG X E r2 

in which the displacement field ui is obtained 

in the following form, 
wH wz 

ui ~ uGsec(c*)cos(c*) (5) 

where w is the frequency of the harmonic 
excitation, c* and H are the phase velocity and 
thickness of the viscoelastic soil stratum. 
The equations requested for the interacted 
field u have the same form as in the case of 
the field excited at the pile head in absence of 
the bed rock excitation, namely, eq. (2), but the 
inhomogeneous term f in this case is determined 
by using the free-field motion, whereas the one 
due to the excitation at the pile head is given 
in term of the external excitation. 
The displacement vector field u presented in 
cylindrical polar coordinates (r,8,z), as shown 
in Pig. l, in which the pile-axis coincides with 
the z-direction, can be expressed in terms of 
potentials of dilatational and distortional 
components as follows; 

(6) 

where V and k denote the gradient operator and 
the unit base vector along the z-axis, ¢, ~ and 
x are particular solutions of the associated 
scalar Helmholtz equations; 

[V2+(w*l2l¢==[V2+(w*l2l~==[V2+(w*l2lx=O (7 ) 
cl c2 c2 

in which ci and c2 are the phase velocities of 

dilatational and distortional waves. 
This field is separated into the two sets of 
displacement fields ui and uii' which correspond 

to the subproblems mentioned previously, and 
given in the following potential forms; 

¢I AmnKm(anr) 

~I=m~-= n!-= EmnKm(Bnr)expi(pnz+m8) 

X I Amn Km ( 6 n r) 

xJm(qr)exp(im8) 

(8) 

where pn and q are the parameters of wave number, 

and their associated parameters are; 

a = /p z_hz B = hp z_kz a = /cqz-hz' 
n n ' n n ' 

Q = /cq 2 -k 2 
I h I * k I * ~ = w c 1 , = w c

2
, 

P n = ( 2 n -1) TI I 2 H, n= 1, 2 , 3 • • • • • 

and Jm(x), Km(x) are the Bessel and modified 

Bessel functions of integer order m, both of 
which are zero at infinity. 
The stress and displacement components derived 
from the potentials of the subproblems (I), (II) 
are superposed to satisfy the boundary 
conditions. 
In order to derive the boundary equations in the 
domain of wave numbers, the Hankel transform 
with respect to r is applied to the potentials 
of the subproblem (I), which are multiplied by 
the cutoff operator U(r-a) to avoid the 
singularity of the modified Bessel functions, 
for the boundary surfaces perpendicular to the 
z-axis. Similarily, for the boundary surface 
along the pile, the finite Fourier transform 
with respect to z is applied to the potentials 
of the subproblem (II) and the inhomogeneous 
terms, f, which are extended symmetrically or 
anti-symmetrically in the image domain of the 
soil stratum of the subproblem (II). 
The similar procedures of the superposition and 
the integral transform techniques have been used 
by H. Tajimi (1974) and T. Kobori, et al. (1977). 
As regards to 8, the finite Fourier transform 
is operated by considering the periodicity 
condition. 
In consequence, all terms of each boundary 
equation are arranged to have the same transform 
operator, and any spatial variable disappears, 
so that the mixed equations composed of the 
Fredholm type simultaneous series integral 
equations of the second kind determining the 
unknown coefficients of the potentials are 
obtained in the form, 

G
11 

(w,pn)x
1 

(w,pn)+fdqG12 (w,pn,q)X 2 (w,q) 

=f(w,pn) 

G
21 

(w,q)X 2 (w,q)+~G 22 (w,q,pnlX 1 (w,pn)=O (9) 
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By making use of the reciprocal kernel method in 
solving the above series integral equations, any 
frequency response of this interaction system is 
expressed in terms of multiple summations and 
integrals as follows; 

Y(w)=A0 (w)+LA1 (w,p )f(w,p) 
n n n 

+AfdqA 2 (w,pn,q) f (w,pn) +· • · · (10) 

Only in the case of bed rock excitation, the 
first term in the right hand side of this 
equation appears, showing the contribution of 
the field without a pile. The second term 
represents the f~equency response of the pile 
bedded in the enlarged soil stratum, and the 
remaining terms may show the effects of the 
surface waves propagating along the free-surface. 
In this study, the following systems are 
analyzed; (1) the one subjected to the forced 
horizontal displacement u 0 and the forced 

rotation eo about the horizontal axis at the pile 

head, (2) the other subjected to the uniformly 
distributed horizontal bed rock motion. 
For the brevity of expressions, the following 
dimensionless parameters and dimensionless 
components with superscript (-) are introduced, 
though the letter will be suppressed throughout 
the analysis, unless otherwise noted; 

P- =p H q-=qH a =a H s =S H, a=aH, S=SH, 
n n ' ' n n ' n n 

k=kH, h=hH, k
0
=Re(k), d=a/H, z=z/H, 

- lJ* 
lJ Re (lJ*)' D 

Im (;\, *) Im (lJ *) _ * 
ReO.*) Re()J*)' lJ-Re(lJ ) ' 

EPIP __ Pp 
EPIP=~, pp-p-' 

u=u/a, uG=uGja, 8=8, Q=Q/)Ja 2
, M=M/)Ja 3

• 

(11) 

where E I and a are the bending stiffness and p p 
radius of the pile, p and p are the densities 

p 
of the pile and soil medium, respectively. 
In order to constract the model of soil-pile­
structure systems and to obtain the dynamical 
responses of the pile and its surrounding soil, 
the degrees of freedom of the pile head are to 
be at least two in translational and rotational 
directions. 
For instance, in the case of the soil-pile 
systems subjected to both concentrated external 
excitations at the pile head and uniformly 
distributed bed rock motions in the horizontal 
direction, the stiffness matrix associated with 
the horizontal and rotational displacement, 
uo and eo at the pile head, and the displacement 

transfer vector for the bed rock motion are 
expressed as follows; 

(12) 

where KIJ and SI are the stiffnesses and 
amplification functions of the systems, 

respectively, and KHR is equal to KRH in 
consequence of reciprocity theorem. For instance, 

one of the elements KHH of the dimensionless 
stiffness matrix of the soil-pile system can be 
analytically determined by using the following 
quantities; 

in which 

1 2 "2 2 
UO-rrdD (p ) [k YB+(l+SndYB) (pnYS-anSnYS)], 

n 

2 2 13 nq 2 
0 0 rrdD(pn)F(q) (2+SndYB) [qdJO(qd)-Jl(qd)]uO(pn,q}, 

d
2
-- 4- 2 D=(--E I p -p k )x 

1T p p n p 0 

x [k
2

Y
8

+ (l+S dY
13

l (p 2Y
8
-a s Y ) J n n n n a 

~6n 2 2 
+-a-[k (4+SndYS)+Snd(pnYS-anSnYa)], 

2 2 2 F=4ai3q (2q -k )sech(a)sech(S) 

-aS[ (2q2-k2)2+4q4] 

+q
2

[(2q 2-k 2
J

2+4a2 B2 Jtanh(a)tanh(i3), 

2 n 2 
u 0=(-l) k p i3(E; 0 -E; ) [2ai3sech(a)tanh(B) 

n 1-' a2 2 
-(2q -k )tanh(a)sech(S)] 

+[ (2a2+k2 )E; -2p 2 E;
0

Jx n a n .., 

x[ai3(4q 2-k 2 ) {sech(a)sech(S)-1} 

+{q
2

(2q
2
-k2 )+2a 2S2 }tanh(a)tanh(i3)], 

Ko(Sn) SnJO(qd)YS+qJl(qd) 
Ys K (S l' ~;s 2 2 

1 n q +Sn 

The complete stiffness matrix is constructed by 
adding the relevant terms to the above basic 
elements to satisfy the elastic support 
condition for the rotation at the lower end of 
the pile. 
It can be shown that the rectifying term to 
satisfy the elastic support condition of the 
lower end of the pile is determined through the 
similar procedure to that in this analysis. 
As to the convergence of the solution associated 
with higher order differential operators with 
respect to spatial variables, the higher terms 
than the third may be necessary in the series 
integral representation of the solutions, 
as qiven by eq. (10). 

NUMERICAL ANALYSIS AND CONCLUSIONS 

In evaluating the basic dynamical characteris­
tics of the soil-pile systems, it is assumed 
that the soil is composed of the linear 
hysteretic type viscoelastic medium, and its 
generalized Lame's constants are expressed by 

]1* 

A.* 

].J(l+iD) 

A. (l+iD) 
(14) 
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The numerical values of dimensionless system 
parameters for the pile and its surrounding 
soil stratum are chosen as; 

p = 1 
p 

E"I p p 
500, 1000, 1500 

d 0.025, 0.05, 0.075 

D 0.1, 0.2, 0.3 

v 0.25, 0.333, 0.45 

(15) 

In the numerical integration and summation to 
obtain the frequency responses according to 
eq. (10) or (13), there are no singular points 
such as poles and branch points as long as the 
real-valued wave number parameters are concerned, 
because of the presence of dissipative damping 
in the soil stratum. Therefore ordinary methods 
of computation can be applied while an 
appropriate interpolation technique is necessary 
in evaluating multiple integrals. 
The following remarks can be made on the results 
of numerical analysis; 
{1) As shown in Table 1, the convergence of the 
series expansions of the frequency response is 
rather rapid in the parameter ranges considered 
here. 
(2) As found from Figs. 2 to 7, the complex­
valued stiffness functions show the considerable 
reduction in the real parts, accompanied by a 
sudden increase in the imaginary part when the 
frequency parameter increases across the 
natural frequencies of ~he soil stratum. 
For zero material damping, the dimensionless 
natural frequencies of the soil stratum of 
horizontal vibration are given by 

k
0 

= (2n-l)TI/2, n=l,2,3· • • · · 

In the range below the first resonant frequency, 
the real part decreases with frequency whereas 
the imaginary part is very small mostly caused 
by material damping. In the frequency range 
between the first and second resonance, both 
real and imaginary parts of the stiffness 
function almost increase but the rotational 

components KRR show relatively smooth variations. 
(3) As for the effect of the slenderness ratio 
of a pile, the real part of the stiffness 
function shows somewhat complicated variations, 
whereas the imaginary part decreases signifi­
cantly in the frequency range above the first 
resonance. 
(4) As the stiffness ratio of pile to soil 
medium or Poisson's ratio of soil increases, 
the stiffness function becomes large particularly 
for the real part and for the imaginary part 
in the range above the first resonant frequency. 
(5) The effect of material damping of soil is 
remarkable on the imaginary part almost all 
frequency range considered here, but not so 
significant for the real part. 
(6) As shown in Figs. 8 to 9, the displacement 
amplification functions of the pile head to the 
horizontal bed rock motion show very marked 
variations around the resonant frequencies of 
soil stratum. The real parts change rapidly 
their sign and the imaginary parts have extremal 
points near the resonant frequencies of the soil 
stratum. As the order of the resonant frequency 
increases, the values near the resonant 
frequencies of the horizontal component of the 

amplification function remain to be in the same 
magnitude, whereas those of the rotational 
component show remarkable increase in its 
magnitude. 
(7) In Figs. 10 and 11, the transfer functions 
of bending moment along the pile to the 
horizontal displacement excitation at the pile 
head and to the uniformly distributed bed rock 
motion are shown, respectively, at the 
dimensionless frequencies k 0=1,2,3. 

It is noted, however, that the boundary condition 
associated with the rotation at the lower end of 
t'he pile are not yet completely satisfied in 
these figures. About the general trend of Fig. 
10, the distribution characteristics of the 
bending moment are rather different in the 
frequency ranges below and above the resonant 
frequency of the soil stratum, especially for 
the imaginary part. In Fig. 11, it is shown 
that the general trend of the distribution 
characteristics do not change in the frequency 
range below the second resonance of the soil 
stratum. 
In conclusion, it can be mentioned that the 
stiffness matrix and amplification vector 
associated with the pile head and the transfer 
functions of relevant outputs along the ~ile 
both to excitations at the pile head and on the 
bed rock as well as those for the super­
structures are necessary to obtain the seismic 
responses of soil-pile-structure systems. 
And in determining the stiffness matrix and 
the transfer functions of soil-pile systems, 
the superposition and integral transform 
techniques are shown to be effective to the 
formulation as the Fredholm type simultaneous 
series integral equations. 
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Table 1. 

Convergence of series expanded solution 

in eq. (13) 
- - 5 0 333 Im()J*)=O.l) (EPIP=lOOO, pp=l, d=O.O, V=. , Re()J*) 

0 

ilo/Oo 

k
0
=1. 2 

2.4 

3.6 

lm(JJ") =01 
Re(JJ") · 

Re 

Im 

Re 

Im 

Re 

Im 

1T 

2 

to ul 
n=l 0 

t;o "' 2 
n=lfodq u 0 

0.08069 -0.00019 

-0.00801 0.00044 

0.06343 0.00010 

-0.03114 0.00012 

0.05820 -0.00008 

-0.02782 -0.00018 

1T 

Fig. 3. Dimensionless stiffness function KHH 
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