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Syn9psis: In this study, the yield locus of sand being subjected to several cycles of undrained loading was investigated by 
using the triaxial testing device capable of measuring the acoustic emission, AE, of soil. The AE measurement indicates that 
the undrained shear on isotropically consolidated sand changes the shape of yield locus so as to have more kinematic 
hardening type of yield locus. More importantly, a change occurred in the size of yield locus, and the undrained loading has 
reduced the size of yield locus. Subsequent undrained cyclic loadings further reduced the size of yield locus so that there 
were some additional yielding during the cyclic loadings which accompanied gradual accumulations of pore water pressures. 

INTRODUCTION 

Recently, much advances have been made on the numerical 
modelling of soil to simulate the phenomenon of sand 
liquefaction, and the modelling is made usually by 
employing the elasto-plastic type soil models. However, 
some tactical assumptions seem to be needed for these soil 
models to predict practically the accumuiation of pore water 
pressure during undrained cyclic loading, for example some 
recent soil models incorporate some yielding behavior 
within the elastic yielding stress region to simulate the 
accumulation of pore water pressure, for example Prevost 
(1986) and Norris (1986). Although Ishihara and Okada 
(1978) have made some study on this aspect of soil 
behavior, experimental results are very limited. Therefore 
some uncertainty still seems to exist on how to define the 
boundary between the elastic behavior and the plastic 
behavior of actual soil during undrained cyclic loading. 

This paper is concerned with the experimental study on the 
yielding behavior of sand during undrained cyclic loading. 
The difficulty of defining the yield stress in the standarq 
procedure of soil testing, i.e., basing on the stress-strain 
relationship, is reduced by the use of acoustic emission, AE, 
measurement during the test. The technique of acoustic 
emission measurement is widely used in the study of metal 
or rock materials to define the yield stress under uniaxial 
loading. Past study of AE in soil mechanic field has shown 
that the AE measurement is also useful in determining the 
yield stress of sand, for example Tanimoto and Tanaka 
(1986). It is found that the sand with isotropic pre-stressing 
has a elastic region (yield locus) as defined in the three 
dimensional stress space, and loading below the yield stress 
results in minimal deformation response of soil. The 
yielding behaviour of anisotropically consolidated sand was 
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also studied by using AE, Tanimoto et al. ( 1987), and it was 
found that the yield locus of anisotropically consolidated 
sand has a kinematic hardening type of yield locus. Thus in 
this paper the AE technique was used to define the yield 
locus of sand during undrained loading and also to study the 
change of yield locus after subjecting the sand to undrained 
cyclic loadings. 

TEST APPARATUS AND METHOD 

In this study, a triaxial test apparatus capable of measuring 
the Acoustic Emission (AE) of soil was used. The details of 
this test apparatus has been described elsewhere, for 
example Tanaka and Shirakawa (1993), and therefore only a 
brief description of the apparatus is given here. Figure 1 
shows the outline of triaxial testing system used to measure 
AE of sand during undrained cyclic loading. The size of 

AE Sensor 

Pre­
Amplifier +t-tl-+11---l..fflll 

Air Cylinder 

Fig.1 Triaxial Test Apparatus 



specimen is 50 mm in diameter and 120 mm in. height. The 
AE signal is monitored by an AE sensor placed in the lower 
pedestal of the specimen. The sensor has a pre-amplifier and 
detects minute sounds which are emitted from sand particles 
sliding against each other. The vertical deformation and 
axial stress of the specimen are measured directly above the 
specimen to keep the measurement accuracy as high as 
possible. The volume change of specimen was measured 
based on the amount of water expelled from soil by using a 
highly accurate electric balance. 

The soil used in this study is a uniformly graded clean sand, 
known as Souma Sand. The sand has grain size 
characteristics of dmax=0.85mm, dave=0.262mm, and 
Uc=2.036, with the specific gravity of 2.643. The sand 
specimen was prepared by pouring air dried sample into a 
mold and the height of pouring sample was adjusted to 
control the density of specimen. Combination of vacuuming 
and circulation of carbon dioxide gas before inundating the 
soil was carried out to increase the degree of saturation for 
the specimen. The dry density of specimen thus formed was 
1.40 to 1.42 t/m3 which correspond to the relative density of 
45 to 50% approximately. 

TEST PROGRAMME 

The test results as presented in this paper can be divided into 
the following two series; 
a) Undrained and drained shear tests on isotropically 
consolidated sand. 
One of the test series was the undrained shear testing of the 
sand with an isotropic pre-stressing. In this series, the 
specimen was first subjected to an isotropic consolidation of 
589 kPa and then unloaded to various confining pressures in 
order to give desired over-consolidation ratios. The 
specimen was then compressed or unloaded axially under 
either undrained or drained conditions. During the shear the 
AE measurements were taken to determine the yield stress 
of isotropically consolidated specimen. 

b) Drained shear test on sand after five full cycles of 
undrained loading 
In the second test series, the specimen was given five full 
cycles of undrained loading, cr1-cr3=+-98.1 kPa in 
compression and extension, after applying the isotropic 
consolidation pressure of 392 kPa. The consolidation 
pressure of this test series was kept lower in this series to 
have test specimens with low undrained shear strength. Such 
specimen has resulted in significant pore water pressure 
build-up under few cycles of undrained loading. After 
subjecting the specimen to this undrained cyclic loading, the 
specimen was unloaded isotropically to various over­
consolidated states and then the specimen was sheared to 
failure under drained condition. During the shear the AE 
measurements were taken to examine the change of yield 
stress which might have occurred due to the undrained 

cyclic loading. 

Drained shear test on sand with a half or full cycle of 
undrained loading----- Tanaka and Shirakawa (1993) 
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In addition to the above test series, presented in this paper 
are the results of triaxial tests on the specimen experiencing 
either a half or full cycle of undrained loading after being 
subjected to the isotropic consolidation. The consolidation 
pressure was 589 kPa, and the deviator stresses, cr1-cr3 , 

applied for the undrained loading are 196 and -98.1 kPa for 
the compression and extension respectively. The details of 
this test series have been presented elsewhere by Tanaka and 
Shirakawa (1993) and therefore only relevant test results 
will be described here to explain the changes of yield locus 
due to the undrained cyclic loading. It may be also noted 
that the Souma sand used in this series had a slightly 
different gradation and therefore the strength and 
deformation characteristics are slightly different from the 
sand in other series. 

TEST RESULTS AND DISCUSSIONS 

Undrained and drained shear tests on isotropically 
consolidated sand 
A typical result from this test series is presented in Fig.2, 
which shows the stress-strain relationships obtained from 
undrained shearing under compression and extension modes 
on isotropically consolidated specimen. As can be seen from 
the figures, the deviator stress, q, increases with axial strain, 
Ea, rapidly at small strain and then after showing a sharp 
curvature the q value increases steadily with Ea. In the 
extension test, the increase of q with Ea is abruptly termi­
nated as the pore water pressure increased rapidly resulting 
in a softening behaviour of soil as shown in the stress-stain 
curves. 
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Fig.2 Stress-Strain Relationships of Isotropically 
Consolidated Sand (Undrained Shear Tests) 
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Fig.3 Typical Test Results of Isotropically Consolidated 
Sand (Undrained Compression, OCR=2) 

The AE measurement was taken during the undrained 
shearing, and a typical test result is shown in Fig.3 (a) and 
(b). Figure 3( a) shows the increases of deviator stress, pore 
water pressure and AE with the axial strain at usual 
magnitude of strain range, while Fig.3(b) shows the same at 
very small strain range. As shown in Fig.3(b) there are 
initially increases of strain and pore water pressure without 
emitting AE as the deviator stress is applied. After the 
deviator stress reaches some level, the AE starts to be 
counted indicating some slippages of sand grains. With the 
initiation of AE, the stress-strain and pore water pressure 
start to show non-linear responses with the application of 
load. Since the start of AE represents the starting of 
irrecoverable deformation, the stress corresponding to the 
start of AE may be regarded as the yield stress of soil. The 
pore water pressure responses near the starting of AE are 
depicted in Fig. 4 which summarizes the undrained test data 
of extension sides. As can be seen from the figure, the 
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Fig.5 The Yield Locus of Isotropically Consolidated Sand 

increase of pore water pressure before the yield follows 
nearly the u=q/3 line indicating the isotropically elastic 
response, and after the yield as defined by the AE the pore 
water pressure increases more rapidly deviating faster from 
the elastic response. 

Similar to the results of undrained testing, the test data from 
the drained testing have indicated the yield stresses of soil at 
various states of over-consolidation. The yield stresses thus 
defined are used to examine the yield locus of isotropically 
consolidated sand. Figure 5 shows the yield locus as defined 
by the AE measurement and the yield loci from undrained 
and drained loadings are depicted in the p' -q stress space. 
The yield loci from the two types of test are almost identical 
and the shape of yield locus is symmetrical about the p' axis. 
Similar shape of yield locus has been obtained from 
different soil type as reported by Tanimoto and Tanaka 
(1986). 
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Fig.7 The Yield Locus after a Half Cycle of Undrained 
Loading 

Drained shear test on sand with a half or full cycle of 
undrained loading 
Before presenting the test results of five cycles of undrained 
loading, presented herein are the yielding behaviours of 
specimens which are subjected to either a half or full cycle 
of undrained loading after an isotropic consolidation as 
reported by Tanaka and Shirakawa (1993). When applying 
the half of undrained cyclic loading, the specimen was 
loaded under undrained condition to the compressive side 
after the isotropic consolidation, while for the full cycle of 
undrained loading the specimen was loaded first to the 
compressive side and then to the extension side after the 
isotropic consolidation. After this undrained loading, the 
specimen was sheared under drained condition. 

Figures 6 and 7 present the typical AE measurement data of 
a specimen (i.e., OCR=2 and compressive shear) with a half 
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Fig.9 The Yield Locus after a Full Cycle of Undrained 
Loading 

cycle of undrained loading and the resulted yield locus as 
obtained from the specimens with the same undrained 
loading. The application of undrained loading has resulted 
in the changes of soil structure from the isotropically 
consolidated soil, and the deformation response after the 
undrained loading is different from the isotropically 
consolidated case. The difference in soil structure has 
resulted in the diffe'rent shapes of yield locus, and Fig. 7 
shows clearly that the yield locus has been skewed to the 
direction of undrained shear. 

Figures. 8 and 9 show similar AE measurement data of a 
specimen (i.e., OCR=2 and shearing in extension) with a full 
cycle of undrained loading and the resulted yield locus 
respectively. The difference of deformation response 
between the specimens with a half and a full cycle of loading 
is shown in Fig.8, and the higher stiffness is resulted for the 
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soil with a full cycle of loading as compared with the soil 
with a half cycle of undrained loading. The changes in the 
shapes of yield locus as shown in Fig.9 are more striking. 
Although the shape of yield locus becomes more symmetric 
after a full cycle of undrained loading, the size of yield 
locus along the p' axis is greatly reduced as compared with 
the one for isotropically consolidated case. 

Drained shear test on sand after five full cycles of 
undrained loading 
In this test series, the specimen was given five full cycles of 
undrained loading after being subjected to isotropic 
consolidation. The yielding behaviour of sand during this 
undrained cyclic loading is discussed firstly in the 
following. Figure 10 presents the sequence of cyclic 
loadings as applied with time (i.e., loading versus time), and 
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on the same figure the AE measurement results are shown. 
As can be seen from the figure, the yielding starts shortly 
after the initial application of compressive load, but the AE 
stops when the load is started to decrease. However the AE 
starts again during unloading at the extension side of 
loading. As the number of cyclic loading increases, the yield 
stress level at which the AE starts to emit tends to increase 
as shown in the figure. 

In order to illustrate how effective stresses, axial strain and 
pore water pressure show the changes at the yield stresses, 
Figs. 11, 12, 13 are produced. These figures present the 
relationships among the deviator stress, q, versus the axial 
strain, E3 , the pore water pressure, u, versus the axial strain, 
E3 , and the deviator stress, q, versus the effective mean 
principal stress, p', respectively. As can be seen from these 
figures, the relationships among q, E3 , u, and p' seem to 
show some signs of non-linearity at the yield stress. The 
relationship between u and E3 in particular does show a good 
agreement between the yield stress and the start of non­
linear pore water pressure response. 

After subjecting the specimen to five cycles of undrained 
loading, the specimen was unloaded isotropically to various 
over-consolidated states and then sheared under drained 
condition to determine the yield locus. The effective paths 
applied during the shear are shown schematically in Fig. 14. 
Figures 15(a) and (b) shows a typical result during shear 
testing which was taken from a specimen with initial 
confinig stress of p'=147 kPa. Similar to the shear test result 
on isotropically consolidated specimen, the AE starts to 
initiate after some deformation has taken place. It is also to 
be noted from the figure· that the volumetric strain before 
the yielding of soil shows a sign of expansion while the p' is 
kept constant for this test. The test on isotropically 
consolidated sand has shown that the volumetric strain 
before the yield is almost zero during shear as long as the p' 
is constant. Thus this behaviour is that of isotropic and 
elastic material. However, the volumetric strain data of Fig. 
15(b) indicates that the sand is behaving anisotropically 
before the yield. The anisotropic behaviour of sand will be 
discussed further in the next section. The yield stresses has 
been determined from all the specimens, and these are 
plotted on the p' -q stress plane to illustrate the yield locus. 
Figure 16 presents the yield locus of soil after being 
subjected to five full cycles of undrained loading, and it can 
be seen clearly that the size of yield locus decreased very 
much as compared with the one for isotropically 
consolidated case. 

Changes of Yield Locus during Undrained Cyclic Loading 
The preceding test results all show that there is a definite 
effect of undrained cyclic loading on both the shape and size 
of yield locus. To examine this effect it is necessary to 
compare the shapes and sizes of yield loci as obtained from 
the preceding test series. However, as described earlier, the 
maximum consolidation pressure and also the strength 
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properties of sands among the three test series vary 
somewhat. Therefore it was decided to normalize both the 
consolidation stress and the strength, and by doing so Fig. 
17 was produced. As can be seen from the figure, the p' 
values of each test are divided by their maximum 
consolidation stress and, for the q values, the stress ratio, 
q/p' max' is used and this has been divided by their maximum 
values, Mr=(qmaxlp'), (i.e. the value at failure). Figure 17 
clearly shows how the shape and size of yield locus change 
with the application of undrained cyclic loadings. During 
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the undrained cyclic loading, it seems that the yield locus 
constantly reduces its size and changes .its shape according to 
the direction of undrained loading. Such changes of yield 
locus would impose that the part of undrained loading path 
moves from the elastic zone to the plastic zone during cyclic 
loading, thus generating always positive pore water 
pressures for contractive soils. The AE and pore water 
pressure data as indicated in Figs.lO to 13 supports this 
hypothesis. 

In addition to the changes of yield locus during undrained 
cyclic loading, the changes of deformation characteristics 
may be important for the sand to accumulate pore water 
pressure during the cyclic loading. As noted in the previous 
section, the drained deformation characteristics as in Fig.15 
(b) showed a sign of anisotropic behaviour. These defor­
mation data during the drained shear are used to caluculate 
the soil strains before the yield in vertical and horizontal 
directions as shown in Fig. 18 (a) and (b) for compression 
and extension tests respectively. The figures clearly show 



that the sand behaviour is the one typical for anisotropic and 
elastic material and it tends to deform easily in horizontal 
direction than the vertical. This type of changes in defor­
mation characteristics during the undrained cyclic loading 
needs to be studied further. 

CONCLUSIONS 

In this paper, the yield locus of sand being subjected to 
several cycles of undrained loading was investigated by 
performing the undrained triaxial cyclic tests with the mea­
surement of the AE. The test results indicate the followings; 
1) During the undrained cyclic loading, it seems that the 

yield locus of sand constantly changes its size and shape. 
It is important to note that the undrained loading has 
reduced the size of yield locus and changes its shape 
according to the direction of undrained loading. 

2) The AE measurement during the cyclic loading indicated 
that the yielding occurs constantly during the loading and 
there is a good agreement between the yield stress and 
the start of non-linear pore water pressure response. 

3) The deformation characteristics of sand changes during 
the undrained cyclic loading, and the isotropic elastic 
properties of isotropically consolidated sand seem to 
change to one typical for anisotropic and elastic material. 
This aspect of soil behaviour needs to be studied further. 
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