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Behavior of Fine Sand Under Cyclic Rotation of Principal Stresses
Using the Hollow Cylinder Apparatus

Panos Dakoulas
Assistant Professor, Department of Civil Engineering, Rice
University, Houston, Texas

Yuanhui Sun
Graduate Student, Department of Civil Engineering, Rice
University, Houston, Texas

SYNOPSIS:

Results of an experimental investigation on a saturated fine Ottawa Silica Sand subjected to three different

types of cyclic tests are presented in this paper. The effects of principal stress rotation at a constant deviator stress on the
pore water pressure buildup and the deformation characteristics of sand are evaluated in comparison with results from cyclic
triaxial and cyclic torsional simple shear using the hollow cylinder apparatus.

The results presented and discussed in this article, representing a small part of the experimental program, suggest that the
effects of rotational shear are more important than the effects of cyclic triaxial loading or cyclic torsional simple shear
loading (of the same amplitude) in terms of the rate of pore water pressure buildup, the triggering of a liquefaction flow
failure in contractive sand and the rate of accumulation of plastic deformation. Moreover, results from the monotonic test
program on fine Ottawa Silica Sand under drained conditions were found in very good agreement with the failure surface

incorporated in Lade’s constitutive model for frictional materials.

INTRODUCTION

The development of pore water pressures and deformation
in saturated sands subjected to cyclic loading has been the
subject of several investigations during the last fifteen
years. Of particular theoretical and practical interest is the
study of the effects of rotation of principal stresses on the
pore water  pressure buildup and deformation
characteristics. Such studies suggest that the deformation
characteristics of sands under monotonic and cyclic loading
are significantly affected by rotation of principal stresses
(Arthur et al, 1980, 1981; Ishihara and Towhata, 1983;
Yamada and Ishihara, 1983; Symes et al, 1984, 1988).

Although there is generally agreement that the effects of
principal stress rotation are significant and should be taken
into account in modeling of soil behavior, the experimental
procedures for such testing are by no means conventional.
Instead, they are complicated and costly. Thus, usually
there are only limited sets of data for the development of
constitutive  models capable of  predicting such
unconventional stress paths. The need to clarify our
understanding of the phenomena during principal stress
rotation was emphasized at the workshop on “Generalized
Stress-Strain and Plasticity Theories for Soils” held in

Montreal, Canada, in 1980. In this workshop, the
participants were provided with experimental data from
conventional tests and were asked to make “class A”

predictions of new data, including circular rotation of
principal stresses. After evaluating a number of widely
known plasticity models, Poorooshasb and Selig (1980)
concluded that “a comparison of the predictions to test
results showed good agreement for simple, monotonic
loading stress paths, but poor agreement for the severe test
of the circular stress path”. Some progress has been
achieved in understanding these phenomena through
experimental investigations since then, but the level of
understanding is still far less than desirable. There are also
some promising attempts in modeling sand behavior based
on the few sets of existing data. Such is a recent study by
Wang, Dafalias and Shen (1990), who developed a
bounding surface model based on data by Yamada and
Ishihara (1983) in order to simulate the sand behavior
under rotational shear loading (i.e. a circular rotation of a
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constant amplitude of the octahedral shear stress) with
significant success.

This study concentrates on some aspects of the effects of
principal stress rotation during cyclic load. To isolate the
effects of rotation from the effects of loading or unloading,

it is desirable that, the rotation of principal stresses (o,
02, 03) occurs at a constant amplitude of the octahedral
shear stress Toct given by

2

Toct=§ ’\/(01'02)2+(°2'03)2+(°3‘°1) .

The latter requires the use of an experimental system such
as the cubical triaxial apparatus to control properly the

magnitudes of 0}, 02, and 03 so that Toc¢ is kept constant.
An easier and less expensive alternative solution, is the use
of the hollow cylinder apparatus, which can be used to keep

constant the deviator stress To=(0 - 03)/2. Note that in the
latter case, although 0;-03 remains constant, o;-0; and

03-03 vary cyclicly during the rotation of principal
stresses. However, under certain conditions, the cyclic

variation of Toct may be kept small in amplitude. In the test
results presented in this article involving circular rotation
of principal stresses using the hollow cylinder apparatus,

when 1o=(0-03)/2 is kept constant, the oscillation of Toet
is quite small.

In addition to the theoretical interest for understanding the
phenomena and for developing constitutive models, there
are also some direct applications of the continuous rotation
of principal stress directions at a constant deviator stress,
such as the cyclic stresses induced by the waves within the
sea-bed soil studied by Ishihara and Towhata (1983), as
well as (approximately) the cyclic stresses induced by
railways or motor vehicles within the underlying soil.
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Figure 3. Grain Size Distribution of Fine Ottawa Silica
Sand.

EXPERIMENTAL PROGRAM: MONOTONIC TESTS

The entire experimental program includes a series of
monotonic and cyclic tests on loose sand of relative density
Dr=30% and on dense sand of relative density Dr=75%.
Due to space limitations, only small part of the results is
presented in this paper, while the rest of the results will be
published elsewhere.

Failure Surface of Loose Sand (Dr=30%)

A series of monotonic tests was performed at various stress
levels using solid and hollow cylinder specimens in order
to establish the failure surface under more general stress
conditions, by considering the influence of the intermediate
principal stress, 0;. These tests were performed by
consolidating isotropically each specimen from the initial
effective confining stress of 20.7 kN/m2 to the desired

level of effective confining stress o.”. Then the specimen
was sheared by applying axial, torsional or a combination
of axial and torsional loads under the condition that the
stress point (0", 02", 03") transversed on the same
octahedral plane, i.e. the effective mean stress p'=(0;" +

02" + 037)/3 = 0.” remained constant. This was achieved
by applying small changes of the confining pressure, while
the axial and torsional loads were automatically adjusted to
keep constant p° and the angle P between the major

principal stress direction and the vertical direction. This
angle is expressed by

21
m2ﬁ=_—‘lh__
ov-oh

(2)
as shown in Figure 4. For B=0°, the test is a triaxial

compression test with constant p°, for $=90° the test is a

triaxial extension test with constant p°, while for B=45° the
test becomes a torsional simple shear test. The principal
stresses are computed by

(3a)

(3b)

(3c)

where oy and op are the vertical and horizontal (radial and

cicumferential) normal stresses, and Typ is the torsional
shear stress.

Figure 4 plots failure points on the octahedral plane with an
effective mean p”’= 300 kN/m2. The open circles correspond
to the test results, while the solid curve represents the
failure surface according to Lade’s model for frictional
materials (1978, 1990). The failure surface in Lade’s model
is shaped as an asymmetric bullet with a pointed apex at the
origin of the stress axes and is expressed by

G
P (4)

where I] = 01"+ 03" + 03",

I3= 01" 02" oy,

pa = the atmospheric pressure
and

m and n, are material constants.

For the data in Figure 4, m=0 and nl-12.48. Notice that

Lade’s model is in very good agreement with the
experimental data.

o Experimental Data
—_ Lade’s Model

Figure 4. Fine Ottawa Silica Sand: Comparison of
Experimental Failure Data on the Octahedral Plane (p =
300 kN/m2) with Lade’s Model Failure Surface.



CYCLIC TESTS

Results from three different types of cyclic tests are
presented and discussed in this article. The performed tests
are: (a) a cyclic axial test performed on a solid specimen
(b) a cyclic torsional simple shear test performed on a
hollow cylinder specimen and (c) a circular rotation of
principal stresses with constant deviator stress 0}-03,
performed on a hollow cylinder specimen. The specimen
preparation techniques and the initial density and stress
state are identical in all three tests. Note that although test
(a) was performed for convenience on solid specimen,
while (b) and (c) on hollow cylinder specimens,
comparison of monotonic tests results from solid and
hollow specimens showed excellent agreement.

All specimens were initially isotropically consolidated to a

confining stress o =p =300 kN/m2, where they had the
same void ratio equal to e=0.819.

Test (a) was performed in undrained conditions by applying
a sinusoidal vertical stress resulting into a sinusoidal shear

stress of amplitude To=(0y-0n)/2=45 kN/m2. Figure 6a
depicts the change of axially imposed shear stress and the

sudden 90° rotation of principal
whenever the stress point reaches the origin (01"=03"=0.").

stresses o1 and O3

Test (b) was performed in undrained conditions by
applying a sinusoidal torsional shear stress Thy of the same
amplitude with the shear stress in test (a), i.e. Thy = To =45
kN/m2. Figure 6b shows the sudden 90° rotation of
principal stresses o1 and o3, whenever the stress point
reaches the origin (i.e., T,y =0 and 01"=03"=0.").

Test (c) was performed by applying initially a shear stress

of amplitude To=(0y-0nL)/2=45 kN/m2? under drained
conditions, leading to a change of void ratio from e=0.819
to e=0.809 for this specimen. Then, the valves of the pore
water were closed and a circular rotation of the shear stress

To was performed (at constant amplitude), by using a
combination of cyclic vertical shear stress

(oy-0n)/2 cos(2nf t)= 1o cos(2mf t) (5)
and cyclic torsional shear stress
Thy sin(2nf t)= 1, sin(2nf t) (6)
resulting to a constant amplitude total shear stress of
(7

where f is the frequency of cyclic loading, being equal to
f=0.1 Hz for all three cyclic tests. Figure 6c shows the

circular rotation of the constant amplitude shear stress T,
and the continuous change of the angle § from 0 to 180°.
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RESULTS AND DISCUSSION

Figures Sa and 5b plot the void ratio versus the effective

mean stress p~ and the shear stress (o-03)/2, respectively,
at the steady of deformation (Poulos, 1981) for the tested
sand. The three results at the right of the two plots were
obtained from independent monotonic tests, while the three
data points on the left correspond to the three cyclic tests.
Note that, with . void ratios e=0.809 and 0.819 and p =300
kN/m?2, the initial consolidation states (e-p”) in Figure 5a of
the cyclic tests lie in the upper right side of the steady state
line (SSL). Moreover, the amplitude of the imposed shear

stress 1,=45 kN/m2 is larger than the undrained shear
strength at the steady state of deformation. In other words,
the three specimens are contractive, and, therefore, the
accumulation of excess pore water pressure could lead to
either a liquefaction flow failure or at least to a limited flow
failure (Mohamad and Dobry, 1986).

Figure 7 plots the effective stress path q-p° for the three
tests, while Figures 8 and 9 plot the shear stress, q, and
the pore water pressure, u, versus the octahedral strain

Yoct, respectively, where yoc¢ for the case of the hollow
cylinder is given by

toar 2] e e e+ 20,

(8)

in which €y, €4, € are the normal strains in the vertical,

horizontal (circumferential) and radial directions, and yvp is
the shear strain from torsion.
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Figure 5. Steady State of Deformation of Fine Ottawa Silica
Sand: (a) Void Ratio versus Mean Effective Stress; (b) Void
Ratio versus Shear Strength.
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Figure 6. Orientation and Amplitude of the Shear Stress

1o=(01-03)/2 for the Three Cyclic Tests (After Ishihara and
Towhata, 1983)

The most important conclusion derived by comparison of
the results in Figures 7a, 7b and 7c, is that cyclic rotation

of principal stresses with a constant deviator stress 01-03
may induce excess water pressures, which appear to be
more significant than those developed in the cyclic axial
and torsional simple shear tests. For the presented test
results, the pore pressure buildup in the test (c) occurs at a
faster rate than for the other two tests. In all three tests the
development of excess pore pressure led to a liquefaction
flow failure, which occurred in about 1.5 cycles for the
cyclic axial test, 2.25 cycles for the cyclic torsional simple
shear test, and 0.75 of a rotation of a constant shear stress
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Figure 7. Effective Stress Paths during (a) Cyclic Triaxial
Test; (b) Cyclic Torsional Simple Shear Test; and (c)

Circular Rotation of Principal Stresses under Constant
Deviator Stress.
amplitude 1,=(01-03)/2. (Note that, although the

application of cyclic load continued after the occurrence of
the liquefaction flow failure, for clarity, the presented
results end at the steady state of deformation, which can be
easily defined from the significant deformation occurring
at constant stresses during the sudden liquefaction flow
failure.)

The above conclusion is in complete agreement with results
from a similar study by Ishihara and Towhata (1983). In
this study, Ishihara and Towhata performed the same three
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Figure 8. Stress-Strain Curve for (a) Cyclic Triaxial Test;
(b) Cyclic Torsional Simple Shear Test; and (c) Circular
Rotation of Principal Stresses under Constant Deviator
Stress.

types of tests on Toyoura sand with Dsgo = 0.17 mm and a
coefficient of uniformity Cy = 2 consolidated at 294 kN/m2
at a void ratios e=0.800 for the cyclic triaxial, e=0.784 for
the torsional simple shear, and e=0.811 for the test with the
circular rotation of the principal stress. For an

amplitude of cyclic stress equal to To=(01-03)/2=55.5

kN/m2, the corresponding numbers of cycles sufficient to
cause liquefaction were 6 for test (a), 38 for test (b) and 2
for test (c). Although these numbers of cycles or rotations

of T, are higher than those in the present study, the trends
are consistent for the two sands. (The significantly higher
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Figure 9. Pore Water Pressure Buildup during (a) Cyclic
Triaxial Test; (b) Cyclic Torsional Simple Shear Test; and
(c) Circular Rotation of Principal Stresses under Constant
Deviator Stress.

number of cycles for the case of the torsional simple shear
test was attributed by Ishihara and Towhata, partly to the
smaller value of void ratio of this specimen.)

Of special interest is that the amount of pore water pressure
buildup during the first quarter of a cycle (compression
loading) is the same for both the axial and torsional simple
shear test (Au=27 kN/m2). Perhaps surprisingly, the pore
pressure during the first quarter of the test involving
rotation of principal stresses with a constant shear stress

To=(01-03)/2=45 kN/m2 shown in Figure 7c, induces the



same amount of pore pressure buildup (i.e. Au=27 kN/m2).
A comparison with the results by Ishihara and Towhata

shows for the three tests, respectively, Au=28 kN/m2,
Au=22 kN/m2 and Au=25 kN/m2, but some of the

differences in Au may by attributed to changes in the initial
void ratio in the three specimens.

Notice also that the pore pressure development in the cyclic
axial test is more pronounced during extension loading than
during compression loading. Indeed, during the first cycle
the extension loading induced a pore pressure Au=52
kN/m2, i.e. 92% larger than the pore pressure developed
during the compression loading, as shown in q-p” plot in
Figure 7a. This is also observed in the case of the torsional
simple shear test in Figure 7b, where the part of simple
shear which approaches more the extension loading

produces Au=42 kN/m2 (about 55% larger pore pressure

increment than the Au occurring during the opposite
loading, approaching towards the compression loading).
Similar findings, regarding the difference between
compression and extension loading, have been also reported
by Ishihara and Towhata (1983), Yamada and Ishihara
(1983), Mohamad and Dobry (1986), etc. The
corresponding unloadings from the compression and
extension during the first cycle yield for both tests (a) and

(b) a pore pressure increment Au=8 kN/m2.

If one considers the rotation of the constant shear stress
To=(01-03)/2=45 kN/m2 as a superposition of a cyclic
triaxial shear stress and a cyclic torsional shear stress, the
pore pressure buildup must be the combined effect of a
simultaneous application of the two cyclic waves. In
practice, this is of little significance because the pore
pressure buildup is not a linear phenomenon and therefore
it is not possible to predict the results of test (¢) from the
results of tests (a) and (b). Probably due to the mainly
elastic response of the sand during the first and second
quarter of the first cycle or simply by coincidence, the pore
pressure increment during the second quarter of the first
rotation of T5 is Au=60 kN/m2 which is equal to the sum of
Au=52 kN/m?2 from extension loading of test (a) and Au=8
kN/m2 from shear unloading of test (b). However during
the third quarter of the rotation, the induced Au is 79
kN/m2 which is much higher than the sum of the extension
unloading with Au=8 kN/m2 and the loading in test (b)

with Au=42 kN/m2. This may be attributed to the faster
rate of accumulation of the excess water pressure in test (c)
resulting in a faster rate of yielding and ultimately in an
earlier liquefaction flow failure.

With respect to the strains developed in each of the three
tests during the first cycle of loading (not shown in Figure
8 due to the improper scale of the octahedral strain), it was
found that during the first quarter of the cycle, test (a)
induced y5ct=0.065% (almost all of which is elastic strain),
test (b) induced yoct=0.110% (of which 0.085% is elastic
and 0.025% 1is plastic strain) and test (c) induced
Yoct=0.220% (of which 0.150% is elastic and 0.070% is
plastic strain). Again, the rate of plastic deformation is
faster during the rotation of a constant deviator stress than
during the cyclic triaxial or cyclic simple shear tests of the
same amplitude. The difference becomes even more
pronounced during the third quarter of the first cycle,
where test (a) induced a change of yoct=0.125% (of which
0.060% is elastic and 0.065% is plastic), test (b) induced a

change yoct=0.190% (of which 0.100% is elastic and
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0.090% is plastic strain) and test (c) induced a change of

Yoct=0.658% at which strain the sand reached the “phase of
transformation” and a liquefaction flow failure was
triggered.

Note that the above findings are preliminary and based on
the evaluation of a limited set of data. More tests were
performed using different amplitudes of cyclic load and
different types of stress paths. A more detailed analysis
and assessment of all obtained results will soon follow and
be published elsewhere.

CONCLUSIONS

From the experimental study described above, the following
conclusions may be drawn:

1.The experimental results presented here confirm previous
findings that the circular rotation of a constant amplitude

deviator stress gj-03 has a significant effect on the
development of excess pore water pressures and
deformation characteristics of saturated sands.

2.The results showed that the rate of excess pore water
pressure buildup is faster during the rotation of a constant
amplitude deviator stress than during a cyclic triaxial test or
a torsional simple shear test of the same amplitude.

3.The rate of accumulation of plastic deformation is faster
in the rotational shear test than in the other two cyclic tests.

4. Also, the number of cycles to trigger a liquefaction. flow
failure in contractive saturated sand is smaller during a
rotational shear test than during the other two cyclic tests.

5. The failure criterion provided by Lade’s constitutive
model for frictional materials is in very good agreement
with the experimental data obtained for the loose fine
Ottawa Silica Sand used in this study.
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