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PROBABILISTIC ASSESSMENT OF LIQUEFACTION
OVER LARGE AREAS

A. Rodriguez-Marek
Washington State University
Pullman, WA 99 165

L. X. Luccioni
GeoSyntec  Consultants
Huntington Beach, CA

K.O. Cetin
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Since the 1964 Niigata, Japan, earthquake, damages attributed to earthquake induced liquefaction phenomena have cost society hundreds
of millions U.S. dollars. Most procedures developed so far predict the potential for earthquake induced liquefaction at the “point” or over
the small area, where the soil strength is evaluated. This paper describes a technique to estimate the probability of earthquake induced
liquefaction over arbitrary large areas. The proposed technique may be of special interest to both large corporation and insurance company
risk management departments, which are looking at estimating earthquake damages over a large area. The area of interest is meshed
forming a grid of individual cells, for which the probability of liquefaction is estimated. The probability of liquefaction for a given
percentage of the total area is then computed as a system reliability problem.

INTRODUCTION

Earthquake induced liquefaction is defined as a loss of strength
in loose saturated soils that exhibit contractive  response to
loading. The 1964 Niigata, Japan, the 1964 Alaska, and most
recently the 1999 Kocaeli, Turkey, and Chi Chi, Taiwan,
earthquakes highlighted the devastating effects of liquefaction.
Damages attributed to the earthquake induced liquefaction
phenomenon have cost society hundreds of millions of U.S.
dollars (Seed and Idriss 1982). The most widely used procedure
for prediction of liquefaction triggering was developed by Seed
et al. (1975). In this empirical procedure, a judgmental curve is
plotted in a space of cyclic stress ratio normalized for a
magnitude 7.5 earthquake, (CSRN), a measure of earthquake
loading, and overburden and energy corrected standard
penetration resistance (N,)60,  a measure of the soil strength, to
divide case histories where surface manifestation of liquefaction
was or was not observed. Liao et al. (1988) and Cetin et al.
(1999) expanded the work by Seed et al. (1975) into a
probabilistic framework to account for the variability and
uncertainty inherent to the problem. Given the load and
resistance terms, these models predict the probability of
liquefaction at the point of interest. There is, however, a need for
a rigorous methodology that will integrate the risk at a point to
a risk over an area of interest incorporating the uncertainties
inherent to the problem. In recent years, especially among
insurance companies and corporations, there has been a growing
interest in estimating the liquefaction initiation risk of a given
percentage of the total surface area. This paper presents a
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structural reliability approach to estimate the probability of
earthquake-induced liquefaction over a finite surface area.

PROPOSED APPROACH

The first step consists of meshing the area considered to form a
grid of individual cells. The size and consequently the number
of cells depend on the micro-scale adopted, which is problem and
application specific. The next step consists on choosing a
“point” probabilistic liquefaction model to compute the
probability of liquefaction at any given cell. For each cell, the
parameters used in the “point” probabilistic liquefaction model
are defined as random variables. The collection of these random
variables over the entire mesh is represented as a random field.
Finally, simulation or system reliability approaches are used to

compute the probability of liquefaction of k cells out of n, which
represent the spatial extent of liquefaction.

“Point “probabilistic liquefaction ntoa’el

Herein, the methodology developed by Cetin et al. (2000) is
adopted to predict the probability of liquefaction at any given
point. The limit state function is given by

,g(N,,,,,CSR,FC,M,)  = N,,,,(l+  5.3e-5FC)-13.221n(CSR)-

28.471n(M,)+  .145FC  + 20.23 +y

(1)



where (N& is the overburden and energy corrected standard 
penetration blowcount, CSR is the cyclic stress ratio induced by 
the earthquake, FC is the fines content of the soil, M, is the 
earthquake moment magnitude, and 0, the random model 
correction term, is normally distributed with zero mean and 
standard deviation equal to 3.95 1. For a given set of random 
variables (N&,, CSR, FC, and M,, the probability of 
liquefaction is given by 

p, = cD _ g((N,),,i,csR,‘M,‘FC’,Jy) I l Ou I (2) 

where CD(.) is the cumulative normal distribution function, and cry 
is the standard deviation of the limit state function y(.). 

Liquefaction of k cells out of n 

The estimation of the spatial extent of liquefaction is equivalent 
to the problem of estimating the probability of liquefaction of k 
cells out of a total of N cells. Let Y be a discrete random 
variable that takes the value of the number of cells that 1iquefL on 
a given earthquake. The spatial extent of liquefaction is thus 
represented by the probability mass function of the random 
variable Y. The probability that the random variable Y takes an 
exact value k is the sum of all possible combinations of exactly k 
cells liquefying while the other N-k cells do not liquefy. Assume 
that the probability of liquefaction of each cell is pf The two 
extreme cases are: (a) liquefaction at each cell is independent of 
liquefaction in all other cells and (b) liquefaction of all cells is 
fully correlated. For the first case, Y has a binomial distribution, 
while for latter, Y takes the value 0 with probability (1 -pf), or N 
with probability p,, These two cases are illustrated in Figure 1. 
In reality, however, the liquefaction potentials of two cells are 
neither independent nor fully correlated. As a result, the 
calculation of the probability distribution of Y is more 
cumbersome and can not be represented by a single formula. 
Symbolically, the probability mass function of Y can be written 
as: 

f,(k) = c P 
(k cells liquefy) n 

(all other N - k cells do not 1 liquefy) (3) 
where the sum is over all possible combinations of k cells chosen 
out of N. In this paper, system reliability approach is presented 
to obtain this probability and simulations are used to verify the 
procedure. 
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Fig. 1. Probability Mass Function of K 

System reliability approach 

The limit state function representing the probability of 
liquefaction of a cell i is given by Equation 1. Each limit state 
function gi can be viewed as a component of a system defined by 
the collection of limit state functions gi, i=l, . . ..N. These limit 
state functions are mutually correlated because of the underlying 
correlation of the parameters used in defining gi. Observe that 
the parameter representing model uncertainty, y, is assumed to be 
independent for each limit state surface. This assumption does 
not hold if the contribution to model uncertainty arises mainly 
from inadequate representation of a parameter that is common to 
all cells, such as moment magnitude (M,). This issue is relevant 
and merits further research. Figure 2 shows a sample system 
where N = 2 and where all the variables are deterministic with 
the exception of the Standard Penetration Resistance (N&K,. By 
convention, negative values of the limit state function define 
failure. Figure 2 also indicates the regions in which liquefaction 
occurs in both cells, in either cell, or there is not any liquefaction 
at all. 

1 fails ~ El 2 fails 

c- 

1 safe 

I 2 fails 

Fig. 2. Illustration of a System with Two Components 

The probability inside the summation sign in Equation 3 can be 
defined as the probability of failure associated with the following 

Paper No. 4.24 



failure domain: 

I 

(g,,l < o)n(g,,, < o)n....n(g,,, < o)n 
(g,,l > o)n(g,,, > o)n...n(g,,,-, > 0 )I 

where the index 1 corresponds to the indices of the k cells that 
liquefy, and the index j corresponds to the indices of the n-k 
remaining cells. The solution to the system reliability problem 
consists in finding the probability that the random variables 
defining the problem are in the failure domain defined by 
Equation 4. This probability can be found either through a 
simulation approach or by the linearization ofthe failure surfaces 
(Der Kiureghian 1999). The structural reliability program 
CALREL (Liu et al. 1989) was used to solve the systems 
problem. The failure domain in Equation 4 can be rewritten as 

I (glzl < o)n(g,=, < o)n....n(h < oh7 
(-gj=l <o)n(-g,,, <o)n...n(-~~=~-~ ~0) I 

(5) 

The probability of failure associated with this failure domain can 
be identified as the probability of failure of a parallel system 
defined by the limit state functions gr=r,gt=r,. . .,gr+,-gjZl,-gjZ2,. . . ,- 
gjq-k. The probability of failure and the associated generalized 
reliability index is found by CALRFL first by transforming all 
the variables into the standard normal space. Directional 
simulation or Monte-Carlo simulation approaches are then used 
to find the corresponding probabilities of failure in the 
transformed domain (Liu et al. 1989). The determination of the 
probability mass function fY (Equation 3) requires the re- 
definition of the failure domain for each combination of k cells 
chosen out of n. Thus, the program CALREL must be executed 
each time for each combination of k cells chosen out of n. To 
reduce the computational effort, a first order approximation 
(FORM) may be used. 
A first order approximation is constructed by first transforming 
all the random variables into the standard normal space. Let the 
set of random variables defining the liquefaction problem (i.e. 
(Nr)hoi, CSRi, FCi, Mi, yi, for i=l;..,n) be denoted by the random 
vector x, and the transformed variables be denoted by the vector 
u. The component limit state surfaces are thus denoted by gi(x), 
i=l, . . . n. Let the transformed limit state surfaces be denoted by 
the functions Gi(c), i=l, ... n. The component limit state 
surfaces Gi(u) are linearized at the points of maximum likelihood 
(design points) within the failure domain defined by each Go < 
0 (Der Kiureghian 1999). Ideally, the linearization should be 
done at the points of maximum likelihood defined by the system 
failure domain (Equation 4). This approach, however, will 
require a different linearization for each combination of k cells 
chosen out of n. However, when the surfaces are not strongly 
nonlinear, linearization at the design point may be sufficient. 
The effect of nonlinearity has been investigated but is not 
reported in this paper because of the limitation on space. After 
linearization, each limit state surface G,(u) is replaced by the 
hyper-plane 

where pi is the distance form the origin and G = AGi/ IJAG, 11 is 

the unit normal vector (Der Kiureghian 1999). Define Vi = & u 

and vectors y = [vr ... v,] and B = [PI ... on]. The vector y is a 
vector of normal variables with zero mean, unit variance, and 

correlation matrix giVen by & = [pkl], where pkl = & aI. The 
first order approximation of the probability associated with the 
failure domain in Equation 4 is then given by: 

P/M PI=2 &, --a0 -02 
~/=~,“‘,v~,k,v~=~,” 
,Vj=,-k ;R r k I=] . . . 

The integrand in Equation 7, (I)(.), is the n-dimensional standard 
multinormal probability density function. The subscript I 
corresponds to the k cells chosen out of n, and the subscript j to 
the remaining n-k cells. General closed form solutions for this 
integral exist only for n=2. For larger dimensions, the integral in 
Equation 7 is solved using simulations with a sequential 
conditioned importance sampling algorithm (Ambartzumian et al. 
1998). The advantage of the linearization approach is that the 
vector B and the correlation matrix R are constant for all the 
combinations of k chosen out of n cells. The proposed approach 
is implemented using the algorithm shown in Figure 3. 

/ 

Choose k cells out of n 

(Eq. 7). Subscripts I take the values of the k chosen 
cells, and subscnptsj take the values of the 

remaining cells. 

f,(k) = f,(k) + P 

pi- CXTLJ'O (6) 
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Fig. 3. Algorithm to Determine fv 



APPLICATION 
CONCLUSIONS 

A sample problem was solved for illustration purposes. The 
problem consists of 10 cells arranged in a line. The distances 
between cells are normalized to one. The correlation hmctions 
for the random fields (N&J and CSR is defined as following: 

p(h)=l-(c, +c,)+c, exp 

P(O) = 1 
for h >o 

(8) 

where h represents the distance between two points in the random 
field and parameter, a, describes the correlation scale. The 
parameters cl and c0 can be evaluated using the limit case as h 
approaches zero and infinity. By imposing that the correlation 
vanishes for very large distances, the condition co + c, = 1 must 
be satisfied. On the other hand, co controls the maximum 
correlation that is permitted. LogNormal marginal probability 
density functions are used for both random fields. The 
parameter, a, in Equation 8 is varied to illustrate the effect of 
variations in the auto-correlation function. Larger values of 
parameter a correspond to a larger correlation of equally spaced 
points. Results are shown in Figure 4. Observe that the 
simulation and the structural reliability approaches render equal 
results. The length of the correlation structure has a marked 
effect on the results. In the limiting case where parameter, a, is 
equal to zero and infinity the results coincide with those of 
Figure 1. This illustrates that spatial extent of liquefaction is a 
function of the spatial auto-correlation of variables that 
determine liquefaction. Hence, “point” probabilistic liquefaction 
models are not sufficient to render good estimates of spatial 
extent of liquefaction. 

0.3 

The approach presented herein constitutes a methodologically 
simple and sound approach to predict the spatial extent of 
liquefaction that accounts for the complete stochastic 
representations of the parameters affecting liquefaction. A 
simple example illustrated that “point” probabilistic liquefaction 
models alone alone are inapt to compute the spatial extent of 
liquefaction. 
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