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Abstract. A comparison between three methods applied to parallel robot control namely: com-

puted torque controller, sliding mode control and sliding mode control using neural networks is

presented in this paper. The simulation results show that PD control method is only accurate when

model parameters are precisely identified. In case of uncertain parameters, sliding mode and neural

network sliding mode control methods are applied instead. Three controllers are implemented in

Matlab for simulation. The results show that the control quality is improved by using the neural

network sliding mode control method in comparison with two others.

Keywords. Delta parallel robot, computed-torque control, sliding mode control, neural network

control.

1. INTRODUCTION

Today, parallel robotic manipulators are used widely in industrial applications owing to light compact

structure, high stiffness and accuracy. Delta robot is one of the most successful parallel robots, with

thousands of versions created around the world for several applications such as in food factories and

medical field. Invented by Reymond Clavel in the early ’80s, this parallel robot uses the parallelogram

structure to create three translational degrees of freedom by three revolute actuators.

In most applications, the robot must move rapidly from one position to another position or

follow a desired trajectory in three dimensional spaces with high precision. In order to perform

this task, recently, several control methods have been investigated such as computed torque with

PD controller [17], sliding mode controller [14,15,16]. The computed torque controller is easy to

implement, but it cannot meet the control quality due to uncertainties in the system model and

disturbances. The sliding mode controller is robust and can improve control quality. However, due to

a discontinuous part, this control method can lead to chattering phenomenon, which makes difficulty

to control and reduces quality control [14,15]. Another drawback of the sliding mode controller is that

it requires the bounds of uncertainties and disturbances being available. The sliding mode control

with online learning neural networks has been applied to serial robotic manipulators, in which the

system uncertainties and disturbances are estimated by a function approximation technique [8,19-25].

In this paper, three control algorithms including inverse dynamic based, sliding mode and neural

network based controllers are implemented for the delta spatial parallel robot. The simulation results

show the outstanding features of the neural network based controller to the two others.
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2. DYNAMIC MODEL

The equations of motion of a parallel robot can be obtained by either sub-structural method, Newton-

Euler equations [1- 4] or Lagrangian multiplier equation [5,6,7]. These equations are written in matrix

form as follows:

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) =Bu + ΦT (q)λλλ

φφφ(q) =0
(1)

where M(q),C(q, q̇)q̇,Dq̇,g(q), and u are mass matrix, Coriolis and centrifugal forces, damping

forces, gravitational forces, and control inputs, respectively; φφφ(q), Φ(q) = ∂φφφ(q)/∂q, and λλλ
are constrained equations, Jacobian matrix and vector of Lagrangian multipliers, respectively; q =
[θθθT ,ΨT ,xT ]T is generalized coordinate vector which includes actuated and auxiliary angles, and

position of the mobile platform.

Using the method of coordinate separation and Lagrangian multipliers elimination [10-13] yields the

motion equations in the form of minimum generalized coordinates as follows

Mθ(θθθ)θ̈θθ + Cθ(θθθ, θ̇θθ)θ̇θθ + Dθ(θθθ, θ̇θθ)θ̇θθ + gθ(θθθ) = u. (2)

In dynamics (2) the following properties hold: Mθ(θθθ) - positive definite and symmetric matrix,

N = [Ṁθ(θθθ)− 2Cθ(θθθ, θ̇θθ)] - skew-symmetric matrix, and Dθ(θθθ, θ̇θθ) - semi-positive definite matrix.

In the next section, Eq. (2) will be used for designing controller.

3. REVIEW OF THREE CONTROL METHODS FOR PARALLEL ROBOTS

The objective of the control problem is to find control forces u acting on the robot to drive the mobile

platform to track the desired motion xd(t). This means to control the actuated coordinates θθθ(t) to

follow its desired motion θθθd(t) corresponding to the desired motion of mobile platform xd(t). Three

control algorithms are shown in this section.

3.1. Computed-torque controller

The computed-torque controller has been applied to serial robotic manipulators [16, 17]. This ap-

proach can also be applied to parallel manipulators. By applying this approach, the control input is

computed as following

u = Mθ(θθθ)a + Cθ(θθθ, θ̇θθ)θ̇θθ + Dθ(θθθ, θ̇θθ)θ̇θθ + gθ(θθθ) (3)

with

a = θ̈θθd −Kd(θ̇θθ − θ̇θθd)−Kp(θθθ − θθθd), (4)

where Kd,Kp are positive definite matrices:

Kp = diag (kp1, kp2, ..., kpna), kpi > 0,Kd = diag (kd1, kd2, ..., kdna), kdi > 0.

Substituting (3) and (4) into Eqs. (2) results in

Mθ(θθθ)(
¨̃
θθθ + Kd

˙̃
θθθ + Kpθ̃θθ) = 0, θ̃θθ = θθθ − θθθd. (5)
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Note that Mθ(θθθ) is a positive definite matrix, it can be eliminated from Eq. (5):

¨̃
θθθ + Kd

˙̃
θθθ + Kpθ̃θθ = 0. (6)

Based on the dynamics of error shown in Eq. (6), the controller parameters are chosen as

kpi = ω2
i , kdi = 2δiωi, with 0 < δi < 1, ωi > 0. (7)

Then, the solution to Eq. (6) will converge exponentially to zero resulting in θ(t) → θd(t) and

x(t)→ xd(t).

Remark 1. This control algorithm is simple, but it requires high accuracy in system model
and parameters. Matrices and vectors Mθ(θθθ), Cθ(θθθ, θ̇θθ), Dθ(θθθ, θ̇θθ), and gθ(θθθ) are required
available and exact. However, in practice these can be obtained approximately only. In order
to overcome this issue, the controller needs to be robust or adaptive. In the next subsection
a sliding mode controller will be considered.

3.2. Sliding mode control

Sliding mode control is robust and insensitive to the change of system parameters and disturbances.

This can be applied to a nonlinear problem. By using sliding mode control [14, 15] the system response

is divided into two phases: in the first phase the state variable is forced to the sliding surface then it

slides on the surface to the origin in the second one.

Here the sliding surface is chosen as the following:

s(t) = ė(t) + Λe(t) = θ̇ − θ̇d + Λe(t), (8)

where e = θ̃ = θ − θd and Λ is a diagonal matrix with positive elements

Λ = diag (λ1, λ2, ..., λna), λi > 0, i = 1, ..., na.

To find a control law, a Lyapunov candidate function is chosen as

V =
1

2
sTMθ(θ)s. (9)

Differentiating of V with respect to time, one gets

V̇ = sTMθ(θ)ṡ +
1

2
sTṀθ(θ)s (10)

Putting θ̇θθr = θ̇θθd − Λe and from (8) it yields

ṡ = ë + Λė = θ̈θθ − θ̈θθd + Λė = θ̈θθ − θ̈θθr, θ̈θθr = θ̈θθd − Λė (11)

and

θ̇θθ = s + (θ̇θθd − Λe) = s + θ̇θθr, (12)

Putting (11) under consideration of dynamic model (2) into (10) results in

V̇ =sT
[
Mθ(θθθ)θ̈θθ −Mθ(θθθ)θ̈θθr

]
+

1

2
sTṀθ(θθθ)s

=sT
[
u−Cθ(θθθ, θ̇θθ)θ̇θθ −Dθ(θθθ, θ̇θθ)θ̇θθ − gθ(θθθ)−Mθ(θθθ)θ̈θθr

]
+

1

2
sTṀθ(θθθ)s

(13)
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Substituting (12) into (13) and noting the skew-symmetric property of [Ṁθ(θθθ)− 2Cθ(θθθ, θ̇θθ)] yields

V̇ = sT
[
u−Cθ(θθθ, θ̇θθ)θ̇θθr −Dθ(θθθ, θ̇θθ)θ̇θθr − gθ(θθθ)−Mθ(θθθ)θ̈θθr

]
− sTDθ(θθθ, θ̇θθ)s (14)

If the system model and its parameters are known exactly, the control law will be chosen as follows

u = Mθ(θθθ)θ̈θθr + Cθ(θθθ, θ̇θθ)θ̇θθr + Dθ(θθθ, θ̇θθ)θ̇θθr + gθ(θθθ)−Kpds. (15)

By choosing Kpd being positive definite matrix results in

V̇ = −sTKpds− sTDθ(θθθ, θ̇θθ)s < 0, ∀s 6= 0. (16)

Because the exact parameters of the systems are not available, so the control law (15) is modified as

u = M̂θ(θθθ)θ̈θθr + Ĉθ(θθθ, θ̇θθ)θ̇θθr + D̂θ(θθθ, θ̇θθ)θ̇θθr + ĝθ(θθθ)−Kpds−Kssgn(s) (17)

in which the last term is added to ensure that V̇ is negative. Assuming that the difference between

the system and the model used for controller is defined by

h = ∆Mθ(θθθ)θ̈θθr + ∆Cθ(θθθ, θ̇θθ)θ̇θθr + ∆Dθ(θθθ, θ̇θθ)θ̇θθr + ∆gθ(θθθ), (18)

with

∆Mθ(θθθ) = [Mθ(θθθ)− M̂θ(θθθ)], ∆Cθ(θθθ, θ̇θθ) = [Cθ(θθθ, θ̇θθ)− Ĉθ(θθθ, θ̇θθ)],

∆Dθ(θθθ, θ̇θθ) = [Dθ(θθθ, θ̇θθ)− D̂θ(θθθ, θ̇θθ)], ∆gθ(θθθ) = [gθ(θθθ)− ĝθ(θθθ)]

is bounded, means |hi| ≤ h0,i.
The last term in (17) is chosen as

usld = −Kssgn(s), usld,i = −Ks,i,isgn(si),Ks,i,i = h0,i + η, η > 0.

With (17) and (18) Eq. (14) becomes

V̇ ≤ sT [−h−Kpds−Kssgn(s)] = −sTKpds− sT (h + Kssgn(s)) . (19)

Due to sisgn(si) = |si|, Eq. (19) becomes

V̇ ≤ −sTKpds + Σ|si|(h0,i −Ks,ii) ≤ −sTKpds− ηΣ|si| (20)

So, the controller (17) with Kpd > 0 and diagonal matrix Ks having Ks
i,i > |h0i| guarantees V̇ < 0,

then s(t)→ 0 and e(t)→ 0.

Noting that, the controller (17) has a non-continuous part Kssgn(s). It causes unwanted fluctu-

ations with high frequencies around the sliding surface, which is called ”chattering” phenomenon. In

order to reduce chattering, the discontinuous function sgn(·) will be replaced by a smooth function

of arctan(cs), c� 1.
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3.3. Sliding mode control with RBF neural networks

In the previous section, the uncertainty h defined by (18) is suppressed by the discontinuous part

usld = −Kssgn(s). The diagonal elements of the matrix Ks are chosen depending on the maximum

value of each element hi. In this section, it is assumed that the function h defined in (18) can be

approximated by a function depending on generalization error h(s). The unknown function h(s) is

the main reason to reduce the control quality. If this effect is compensated, the control accuracy can

then be improved. According to Stone-Weierstrass theorem [18] an appropriate Artificial Neural
Network (ANN) can be chosen with a limited number of neurons that can approximate an unknown

nonlinear function with a given accuracy. For approximating function h(s) the following simple

structure ANN is selected

h(s) = Wσσσ + εεε = ĥ(s) + εεε (21)

where W is the weight matrix, σσσ = σσσ(s) = [σ1, σ1, ..., σn]T , with σi(s) being the Radial Basis

Function (RBF), where the Gaussian RBF function is

σi = exp
(
−(si − ci)2/λ2i

)
, (22)

where ci is the center and λi the deviation parameter that are freely chosen.

In Eq. (21) the output of an ANN

ĥ(s) = [ĥ1, ĥ2, ..., ĥn]T = Wσσσ (23)

is the approximation of h(s), εεε is the approximation error. With ‖ h(s) ‖≤ h0, there is a bound for

εεε as ‖ εεε ‖≤ ε0.

Denoting wi the i-th column vector of matrix W yields

ĥ(s) = [ĥ1, ĥ2, ..., ĥn]T = Wσσσ =
n∑
i=1

σiwi (24)

and

ĥi =
n∑
j=1

wjiσj , i = 1, ..., n (25)

where the weights wji will be updated for the approximation of neural network.

The chosen ANN is a RBF neural network having one hidden layer as shown in Figure 1. This

structure has been proved to satisfy the Stone-Weierstrass theorem [18]. The control problem is now

to find the control input u and the learning algorithm of wji of neural network according to Eq. (25)

so s(t) → 0 and the position error e will converge to zero, that guarantees θθθ(t) → θθθd(t). For that

the following theorem [23, 25] is available.

Theorem 1. The trajectory θθθ(t) of dynamic system defined by Eq. (2) with RBF neural
network according to Eqs. (24) and (22) and sliding surface in Eq. (8) will track the desired
trajectory θθθd(t) with error e = θθθ(t) − θθθd(t) → 0 if the control input u and the learning
algorithm ẇi are applied as follows:

u = M̂θ(θθθ)θ̈r + Ĉθ(θθθ, θ̇θθ)θ̇θθr + D̂θ(θθθ, θ̇θθ)θ̇θθr + ĝθ(θθθ)−Kpds− γ
s

‖ s ‖
+ (1 + η)Wσσσ (26)

ẇi = −ησis, (27)

where matrix Kpd is a freely chosen symmetric positive definite matrix, and η > 0, γ > 0.
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Fig. 1. RBF Neural Network used to approximation uncertainties of the robot 
Figure 1: RBF Neural Network used to approximation uncertainties of the robot

The theorem can be proved by Lyapunov direct method guaranteeing the asymptotic stability,

V =
1

2
sTMθ(θ)s +

1

2

n∑
i=1

wT
i wi. (28)

The mass matrix Mθ(θθθ) is symmetric positive definite, so V (t) > 0 is for all (sT ,wT
1 , ...,w

T
na

)T 6= 0
and V (t) = 0 if and only if (sT ,wT

1 , ...,w
T
na

)T = 0. Taking the derivation of function V (t) with

respect to time yields

V = sTMθ(θθθ)ṡ +
1

2
sTṀθ(θθθ)s +

n∑
i=1

wT
i ẇi (29)

Using Eqs. (2), (11) and (12) in Eq. (29) results in

V̇ = sT
[
u−Cθ(θθθ, θ̇θθ)θ̇θθr −Dθ(θθθ, θ̇θθ)θ̇θθr − gθ(θθθ)−Mθ(θθθ)θ̈θθr

]
− sTDθ(θθθ, θ̇θθ)s +

na∑
i=1

wT
i ẇi (30)

Noting that in Eq. (30) the skew-symmetric property of [Ṁθ(θθθ)− 2Cθ(θθθ, θ̇θθ)] has been used.

Substituting Eq. (26) and Eq. into Eq. (30) resulting in the following

V̇ = sT
[
−h−Kpds− γ

s

‖ s ‖
+ (1 + η)Wσ

]
− sTDθ(θθθ, θ̇θθ)s +

na∑
i=1

wT
i ẇi (31)

By using the approximation (21) it yields

V̇ = sT
[
−Wσ − εεε−Kpds− γ s

‖s‖ + (1 + η)Wσ
]
− sTDθ(θθθ, θ̇θθ)s +

na∑
i=1

wT
i ẇi

= −sTDθ(θθθ, θ̇θθ)s− sTKpds− γsT s
‖s‖ + sTεεε− sT ηWσ +

na∑
i=1

wT
i ẇi

(32)

Note that with the adaptation law defined by (27), the last term of Eq. (32) can be rewritten in the

form
n∑
i=1

wT
i ẇi = −η

n∑
i=1

wT
i sσσσi = −ηsTWσσσ. (33)
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Finally, inserting Eq. (33) into Eq. (32) results in

V̇ = −sTDθ(θθθ, θ̇θθ)s− sTKpds− γsT
s

‖ s ‖
+ sTεεε. (34)

By choosing γ = δ + ε0 with δ > 0, it yields

V̇ = −sTDθ(θθθ, θ̇θθ)s− sTKpds− δ ‖ s ‖ −(ε0 ‖ s ‖ +sTεεε) (35)

Given ‖ εεε ‖≤ ε0 so V̇ (t) < 0 for all s 6= 0 and V̇ (t) = 0 if and only if s = 0. According to the

Lyapunov direct stability theorem, s→ 0 is available, and therefore, from Eq. (8) e = θθθ(t)−θθθd(t)→
0 is derived. So the theorem as well as the stability of the overall sliding mode control system using

neural network has been proved.

4. NUMERICAL SIMULATION

In this section, some simulations in universal software Matlab are implemented to compare the results

of three presented algorithms. For simulation, the numerical methods are applied to obtain the

actuated coordinates [9]. The model of the Delta robot is given in Fig. 2 and the robot parameters

are as follows:

L1 = 0.3; L2 = 0.8; R = 0.266; r = 0.04;[m],

αA = 0;αB = 2π/3;αC = 4π/3,[rad],

m1 = 0.416; m2 = 2× 0.195; mP = 0.3, [kg],

I1 = 0.0125 diag (0, 1, 1)[kg.m2],

I2 = 0.0208 diag (0, 1, 1)[kg.m2].
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Fig. 2: Delta robot model 
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Figure 2: Delta robot model.

It is assumed that the disturbances are summarized to the actuating coordinates as

dθ = [ sin(20t) cos(20t) sin(20t) ]T .

The parameters of three controllers are chosen as:

1. Computed-torque with PD controller

Kp = 100 diag (1, 1, 1); Kd = 50 diag (1, 1, 1);
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2. Sliding mode controller

Λ = diag(20, 20, 20); Kpd = diag (10, 10, 10); Ks = diag (30, 30, 30);

3. Neural network based sliding mode controller

Kpd = 10 diag (1, 1, 1); Λ = diag (20, 20, 20);
η = 1; γ = 20;
λ1 = 1;λ2 = 2;λ3 = 3;
c1 = 0.01; c2 = 0.02; c3 = 0.03.

In all simulations, the mobile platform will be forced to track the given trajectory defined by

xP = 0.3(1− cos 2πt) [m],
yP = 0.3 sin 2πt [m],

zP = 0.7 [m].

In simulations, the parameters of the controllers are chosen being about 30% different to those of the

robot. Simulation results are shown in Figures 3, 4 and 5.
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robot. Simulation results are shown in Figs. 3, 4 and 5.  
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Fig. 3. Simulation results by computed-torque + PD controller Figure 3: Simulation results by computed-torque + PD controller

The simulation results show that with large model errors and disturbances, the system responses to

controllers are different. The control inputs by computed-torque control method are smooth curves

(Fig. 3c), but its tracking errors are greater than those by two other controllers. From Figs. 4c and

5c it is clear that the control inputs of sliding mode with neural networks are better than those of

sliding mode.
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Fig. 4. Simulation results by sliding mode controller 
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Fig. 5. Simulation results by neural network-sliding mode controller 
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Fig. 5. Simulation results by neural network-sliding mode controller Figure 5: Simulation results by neural network-sliding mode controller
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5. CONCLUSION

This paper presents three control algorithms applying to Delta spatial parallel robot. Firstly, the

dynamic model of the closed loop system is transformed to the minimal driven coordinates by us-

ing constrained equation. Then, the controllers are designed based on this model. The computed

torque with PD controller is simple for implementation, but it can not compensate for the system

uncertainties and disturbances. Meanwhile, sliding mode controller and sliding mode controller using

neural networks are robust against the system uncertainties and disturbances. According to the sim-

ulation results, sliding mode controller and neural network sliding mode controller compensate for

uncertainties, and reduce tracking errors.
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