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(\ Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soli Dynamics, W March 11-15, 1991 St. Louis, Missouri, Paper No. 11.36 

On Predictions and Performance of Machine Foundations 

George M. S. Manyando 
Teaching Associate, Department of Engineering Management, Uni
versity of Missouri-Rolla, USA 

Shamsher Prakash 
Professor of Civil Engineering, University of Missouri-Rolla, USA 

SYNOPSIS: A model for predicting the amplitude versus frequency response for surface footings under vibrations is presented. The 
model considers the effects of soil nonlinearity and confining pressures on soil modulus and has been verified by comparing model 
predictions with performance field tests. 

The elastic half space analog solutions have been used to 
develop a computer program for this prediction model (Manyando, 1990). Soil nonlinearity has been accounted for by incorporating 

an iterative procedure in the computer program. The computer program was used to predict the footing response in vertical, torsional 
and coupled rocking and sliding vibrations. Predicted resonant amplitudes, resonant frequencies and the total sweeps have been 
compared with the measured values. 

It has been found that predictions by this model closely match the measured data. Vertical and coupled rocking and sliding 
vibrations predictions closely match measured data when material damping is neglected. Predictions for torsional vibrations are 
observed to be satisfactory when 10 percent material damping is used and the slip at the base of the footing is neglected. 

INTRODUCTION 

The design of a machine foundation requires the 
determination of its natural frequency and amplitudes of 
vibration at the operating frequency. Very little information is 
currently (1991) available on the comparison of predicted and 
measured response of surface footings under dynamic loads. The 
most comprehensive study on the subject was carried out by 
Richart and Whitman (1967) who used the clastic half space 
analog approach and analyzed the data reported by Fry (I 963). 
Other previous analyses include those by Novak (I 970), Novak 
and Beredugo (I 971, 1972), Moore ( 1971, 1985), Stokoe and 
Richart (1974), Vijayvargiya (1981), and Prakash and Puri 
(1981). 

The results obtained by Richart and Whitman (1967) have 
shown that the elastic half space analog predicts the footing 
response well enough to justify its usc for all practical purposes. 
Novak ( 1970) suggested that, when the parameters used in the 
predl\;tions are derived directly from field experiments, the tests 
should be evaluated considering soil nonlinearity. In addition, it 
has been recognized that soil modulus is dependent upon strain 
amplitude (Ishihara, 1971, and Prakash, 1981) and the mean 
effective confining pressure (Hardin and Black, 1968). Therefore, 
a realistic analysis should take into account the effects of soil 
nonlinearity and confining pressures on soil modulus. 

All the studies cited above used the elastic half space analog 
for their predictions and did not consider soil nonlinearity. 
Prakash and Puri (1981) also used the same method but 
accounted for these factors. They concluded that not enough 
tests had been used in their comparisons to warrant realistic 
conclusions. 

A prediction model that takes into account the effects of soil 
nonlinearity and confining pressures on soil modulus is presented 
below. 
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PROPOSED PREDICTION MODEL 

This prediction model is also based on the elastic half space 
analog approach. Vertical vibrations are predicted using the 
analog by Lysmer and Richart ( 1966). Torsional vibrations are 
predicted using the equations presented by Richart, Hall, and 
Woods (1970) and coupled rocking and sliding vibrations by 
Hall's analog (1967). A computer program for the prediction 
model has been developed by using appropriate analog equations 
for vertical, torsional, and coupled sliding and rocking vibrations. 

SHEAR MODULUS 

The quality of any response prediction depends upon the 
accurate determination of the soil parameters to be used in the 
equations. The most important parameter for this analysis is the 
shear modulus of the soil. In the analog solutions, the spring 
constant and the damping ratio are expressed in terms of the 
shear modulus, G. Therefore, the determination of the 
appropriate value of shear modulus is of paramount importance 
in any realistic analysis. In order to obtain a reasonable estimate 
for shear modulus, it is neccessary to consider the main factors 
that affect it. Shear modulus has been studied in detail by many 
investigators, Hardin and Black (1968), Seed and Idriss (I 970), 
and Vucetic and Dobry ( 1991 ). Hardin and Black (I 968) listed 
several factors that affect shear modulus and those that have 
been considered here are (!) soil type, (2) strain level, and (3) 
confining pressure. 

Soil Type and Confining Pressure. Hardin and Black (1968) 
proposed a relationship between low strain shear modulus (Gmax) 
and simple soil properties that can be reduced to 

(1) 



in which F is a factor which depends on the soil type, previous 
stress history, void ratio, e, and the plasticity index of the soil. 
Hardin (1978) recommended that this equation be used for an 
anisotropic state of stress by taking the mean effective confining 
stress Uo as 

(J = 
0 (2) 

In this analysis the stresses have been determined at a depth 
equal to one-half the footing diameter and a correction to Gmax 
has been applied accordingly. 

Strain Level: Seed and Idriss (1970), Ishihara (1971), 
Prakash and Puri (1981), and Vucetic and Dobry (1991) have 
presented data that show that shear modulus is dependent upon 
strain level. As a matter of convenience a plot of normalized 
shear modulus (defined as the value of shear modulus G at a 
particular strain, divided by Gmax at a strain of J0-6

) versus she~r 
strain is normaly used. A plot of that type has been shown m 
Figure I . 

~ 0.60 
E 
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Figure I. 

CLAY 

Modulus reduction with strain for sands, :" N 

placiticity silts, and Clays* (after Seed and Idriss, 
1970). 

* This curve has been revised in subsequent publications (Vucetic 
and Dobry, 1991) and therefore has not been used in subsequent 
publications. 

Shear strains that occur in soil depend mainly upon the 
amplitude of vibration or settlement, which in turn depends upon 
superimposed loads, foundation geometry, and soil 
characteristics. These factors are accounted for Prakash and Puri 
(1981) approximated the shear strain in vertical vibration, Yz. to 
be equal to the ratio of the amplitude of vibration or settlement 
of the footing to the width of the footing. This assumption leads 
to the approximation of shear strain by normal strain and has 
been shown to give reasonable results (Manyando and Prakash, 
1989). For the current model this definition of shear strain will 
be used for vertical vibrations. Shear strain for torsional 
vibrations has been considered to be equal to the rotational 
displacement at the edge of the base of a surface footing divided 
by the radius of the footing; this is equivalent to pure shear when 
the resulting geometrical relationship is considered. The shear 
strain for coupled rocking and sliding vibrations has been 
considered to be equal to the rotation about the lateral axis of the 
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combined center of gravity; this is approximated by the ratio of 
the horizontal displacement at the top of the footing to the height 
of the footing. 

The relationships between shear modulus and shear strain 
for different types of soil have been obtained by fitting equations 
of the form reported by Ishihara (I 971) to normalized shear 
modulus versus shear strain curves. The equations are then 
incorporated into the computer program as callable subroutines. 
Currently ( 1991) the relationship can be conveniently obtained 
by fitting equations to the curves reported by Vucetic and Dobry 
(199I). 

DAMPING IN SOILS 

Damping of the system affects the response predictions at 
near resonance frequencies. Damping is also strain dependent as 
is the shear modulus. There are two kinds of damping in soils: 
(I) the loss of energy due to interparticle friction, i.e., material 
damping and (2) the dissipation of energy associated with the 
geometry of the foundation-soil system, i.e., geometrical 
damping. 

Geometrical damping: In the elastic half space analog 
solutions, geometrical damping ratio has been derived for each 
vibration mode. Figure 2 shows the equivalent damping ratio for 
rigid circular footings oscillating on the elastic half space. 
Analog damping values have been used for geometrical damping 
in these analyses. 

I.Oc----.----.---.,.-.---r---~---, 

e •. e •. e •. o, e+ 

Figure 2. Equivalent damping ratio for rigid circular footings 
oscillating on the surface of the elastic half space. 
(Richart, Hall, and Woods) 

Material damping: The nature of the material damping of 
soils has been accepted to be hysteretic rather than viscous, 
meaning that most of the energy loss is attributed to friction 
between soil particles (Dobry, I 989). The variation of material 
damping ratio with shear strain for different soils as reported by 
Vucetic and Dobry, (1991) is shown in Figures 3. These figures 
have been used in this study to estimate material damping ratio 
at a given strain. 
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Figure 3. Variation of material damping ratio with shear strain 
for saturated soil. (after Vucetic and Dobry, 1991) 

FORMULATION OF PREDICTION MODEL 

The major considerations in this model are: 

1. The model is based on elastic half space analog solutions, 

2. The model accounts for soil nonlinearity (variation of 
modulus with shear strain), 

3. The model corrects for effects of confining pressures on soil 
modulus, and 

4. The model accounts for nonlinearity of material damping 
(variation of damping with shear strain). 

Based on the above, the prediction model formulation is 

presented below: 

I. Estimate the maximum allowable amplitude of vibration 

(Amax). 
2. Compute shear strain y by using the definition of strain 

proposed for each case. 
3. Obtain the value of shear modulus corresponding to the 

strain obtained in step 2 using the normalized modulus vs. 

shear strain relationship (incorporated in the computer 

program). 
4. Correct this value of G for confining pressure by using the 

simplified equation by Hardin and Black (1968) as follows: 

G u o.s 
(-' ) = ( _ol ) 

G2 O'o2 
(3) 

in which G 1 and u0 , arc the shear modulus and the mean 
effective confining stress at a depth equal to half the width 
of the footing or the equivalent radius of the footing before 
the foundation and machine are placed, and G 2 and U02 are 
the corrected shear modulus and the mean effective confining 
stress at a depth equal to half the width of the footing during 
the dynamic test. 

5. Usc the corrected shear modulus to obtain the system spring 
constant and damping using the analog solutions. 

6. Compute the maximum amplitude of vibration using the 
lumped parameters solutions. 

7. Perform an iteration process by comparing the computed 
amplitude in step 6 to the estimated amplitude in step I. If 
the difference between the two amplitudes is within an 
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allowable range, proceed to step 8. If not, take the average 
of the two and use it as the new estimate for step I and 
repeat steps 2 through 7 until successive computed 
amplitudes converge to within a desirable range. (A desired 
convergence between the first estimated (measured) 
amplitude and the final computed value may not be 
obtainable in some typical cases). 

8. Compute the vibration amplitudes for the required frequency 
range using the appropriate analog solutions to obtain the 
total response. 

By using this formulation, computer programs have been 
written for predicting the footing response for vertical, torsional 
and coupled rocking and sliding vibrations. The formulation for 
each mode is as follows: 

VERTICAL VIBRATIONS 

I. Estimate the maximum amplitude of vibration (Azmax). The 
peak amplitudes from the measured response curves were 
used for this study. The allowable amplitude specified by the 
machine manufacturer could be used. 

2. Compute shear strain y = Azmax/footing diameter (Prakash 
and Puri, 1981) 

3. Obtain the value of normalized shear modulus (modulus 
ratio) corresponding to the strain from Figure I and multiply 

it by Gmax to obtain the shear modulus for this strain level. 
4. Correct this value of G for confining pressure using Equation 

3. 

(3) 

5. Use the corrected modulus to compute the vertical spring 
constant and damping ratio in the lumped parameters 
equations, (Equations 4 and 5 ). 

and 

4Gr0 k =-
z I - .U 

2 JGP 
cz = 3.4r 0 -

1
---- . -.u 

(4) 

(5) 

where p is the mass density of the soil, ro is the equivalent 
radius of the footing, and .u is Poisson's ratio for the soil. 

6. Compute the maximum amplitude of vibration using 
Equation 6 

(6) 

in which Pz is the magnitude of the vertical excitation force, 
m is the total vibrating mass and w is the excitation 
frequency. 

7. Perform an iteration process by comparing the computed 
amplitude in step 6 to the estimated amplitude in step I. If 
the difference between the two amplitudes is within an 
allowable range, proceed to step 8. If not, take the average 
of the two and use it as the new estimate for step I and 
repeat steps 2 through 7 until successive predicted amplitudes 
converge. 

8. Compute the total response over the required frequency 
range using Equation 6 for the final iteration strain level. 



TORSIONAL VIBRATIONS 

A similar procedure has been followed for developing the 
prediction model for torsional vibrations. The solution for this 
mode is as follows: 

I. Estimate the maximum amplitude of vibration (A.; max). The 
peak amplitudes from the measured response curves were 
used for this study. The allowable amplitude as specified by 
the machine manufacturer can be used. 

2. Compute shear strain using Equation 7 proposed in this 
study 

(7) 

in which A.; is in radians. 
3. Obtain the value of normalized shear modulus (modulus 

ratio) corresponding to the strain from Figure I and multiply 
it by Gmax to obtain the shear modulus for this strain level. 

4. Correct this value of G for confining pressure using Equation 
3 

G a o.s 
(-l)=(_ol) 

G2 uo2 
(3) 

5. Use the corrected modulus to obtain the torsional static 
spring constant k.; and damping ratio c.,. using the lumped 
parameters equations, Equations 8 and 9 . 

16Gr! 
k.t,=-3-

The damping term is given by the expression 

where B.; is the modified inertia ratio. 

(8) 

(9) 

6. Compute the maximum amplitude of vibration using 
Equation 10 

(10) 

in which Mz is the magnitude of the twisting moment about 
the z axis, and m is the total vibrating mass. 

7. Perform an iteration process by comparing the computed 
amplitude in step 6 to the estimated amplitude in step I. If 
the difference between the two amplitudes is within an 
allowable range, proceed to step 8. If not, take the average 
of the two and use it as the new estimate for step I and 
repeat steps 2 through 7 until successive predicted amplitudes 
converge. 

8. Compute the total response over the required frequency 
range using Equation 10 for the final iteration strain level. 
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COUPLED ROCKING AND SLIDING VfBRA TIONS 

The solution to the equations of motion for coupled rocking 
and sliding have been obtained by solving the following 
equations of motion, (Prakash and Puri, 1988). Equation of 
motion for sliding: 

(II) 

and the equation of motion for rocking 

in which m is the total vibrating mass, kx is the horizontal static 
spring constant, Cx is the horizontal damping constant, Px is the 
magnitude of the horizontal excitation force, x is the 
displacement in the horizontal direction, 4> is the rotational 
displacement about the combined center of gravity, Mm is the 
mass moment of inertia of the footing about the center of gravity, 
~ is the rocking static spring constant, Cq, is the rocking damping 
constant, My is the moment about the y axis, and L is the 
distance from the base of the footing to the combined center of 
gravity. 

Assumimg the following: 

X = A ei(wt -«) 
X 

A--A i(wt-«) 
'I'- ,pe 

P = P eiwt 
X X 

M = M eiwt 
y y 

(13) 

(14) 

(15) 

(16) 

and taking the first and second derivatives of x and 4> and 
substituting for these terms in Equations II and 12 results into 
4 equations with 4 unknowns. Hence a solution can be obtained. 
The resulting 4 simultaneous equations can be expressed in 
matrix form as follows: 

in which 
A =kx-mw2 

B=c.w 
C=Lkx 
D = Lc.w 

[ 

A-B-C Dl[Ax1
] [ Pxl B A-D-C Ax2 _ 0 

-C D E -F A,p1 - My 
-D-C F E A,p2 0 

£ = Vkx + kq,- Mmw2 

F= c,pw + Vc.w 

(17) 



The matrix in Equation 17 has been solved to obtain the natural 
frequencies and amplitudes of vibrations. 

Coupled Natural Frequencies: The coupled natural 
frequencies are obtained by equating the right hand side of the 
matrix in Equation 17 to zero and solving the Eigen value 
problem that results. An iteration subprogram has been 
developed and used to obtain the coupled natural frequencies 
(Manyando, 1990). 

Coupled Amplitudes of Vibrations: The amplitudes of 
motion have been predicted by using the Gauss-Jordan 
elimination method (James, Smith, and Wolford, I 985) with 
partial pivoting. A computer program based on Gauss-Jordan 
elimination procedure has been written and used to compute the 
response (Manyando, I 990). The amplitudes of vibrations are 
obtained from Equations I 8 and 19 for the horizontal and 
rocking components, respectively. 

(18) 

(19) 

The phase angles are obtained as 

(20) 

for sliding and 

(21) 

for rocking. 

The formulation for coupled rocking and sliding is as 
follows: 

I. Estimate the maximum amplitude of vibration (Aq, max). The 
peak amplitudes from the measured response curves were 
used for this study. The allowable amplitude as specified by 
the machine manufacturer can be used. 

2. Compute shear strain using Equation 22 proposed in this 
study 

(22) 

in which Ah is the horizontal displacement at the top surface 
of the footing and H is the total height of the footing. 

3. Obtain the value of normalized shear modulus (modulus 
ratio) corresponding to the strain from Figure 1 and multiply 
it by Gmax to obtain the shear modulus for this strain level. 

4. Correct this value of G for confining pressure using Equation 
3 

G u o.s 
(-1 ) = ( _ol ) 

G2 (J o2 
(3) 
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5. Use the corrected modulus to obtain the system spring 
constants and damping constants using the lumped 
parameters. Equations 23 and 24 are used for sliding and and 
Equations 25 and 26 for rocking as follows: 
Sliding 

and 

Rocking 

and 

(1 - ~) 
kx = 32Gr0 ( 7 _ 8~) 

2 ~ (1 -~) 
ex= 18.4r0 ...;Gp (7 _ 8~) . 

0.8r:JGP 
C,p = ----=:....,==-=-

(1- ~)JI+B; 

where Bq, is the modified inertia ratio for rocking. 

(23) 

(24) 

(25) 

(26) 

6. Compute the maximum amplitude of vibration using 
Gauss-Jordan elimination method with partial pivoting. 

7. Perform an iteration process by comparing the computed 
amplitude in step 6 to the estimated amplitude in step 1. If 
the difference between the two amplitudes is within an 
allowable range, proceed to step 8. If not, take the average 
of the two and use it as the new estimate for step 1 and 
repeat steps 2 through 7 until successive predicted amplitudes 
converge. 

8. Compute the total response in terms of horizontal amplitudes 
versus frequency over the required frequency range using 
Equation 27 . 

(27) 

in which A, and A!l!. are obtained from Equations 18 and 19 
, respectively, and h is the distance from the combined center 
of gravity of the system to the top surface of the footing. 

Typical predictions have been compared with measured 
results. The results are shown in Figures 4 and 5 for vertical 
vibrations, Figures 6 and 7 for torsional vibrations and Figures 
8 and 9 for coupled rocking and sliding vibrations. 
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Figure 4. Measured and predicted response of vertical 
vibrations for different values of eccentricity (a) e 
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Figure 5. Measured and predicted response of vertical 
vibrations for different values of eccentricity (c) e = 

0.314 and (d) e = 0.418 inches, Vicksburg, base 3. 
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Figure 6. Measured and predicted response of torsional 
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Conclusions 

A prediction model that accounts for the effects of soil 
nonlinearity and confining pressures on soil modulus has been 
formulated. A computer program based on the new prediction 
model has been developed. The validity of the prediction model 
has been verified by comparing predictions with measured data. 
Predictions by this model are within a factor of 1.5 times the 
measured values as compared to a factor of about 2.0 reported 
by Richart and Whitman (1967). 

Vertical vibration predictions by this model match the 
performance quite well for a footing size and loading conditions 
giving a mass ratio greater than 1.0. That is, predictions closely 
match the measured results when the effects of strain and 
confining pressures on soil modulus are included. However, it still 
appears that there is a need to reevaluate the analog damping 
expressions to cover a wider range of footing size and loading 
conditions. Material damping may be neglected in the analysis 
of vertical vibrations. 

In the case of torsional vibrations material damping should 
be considered in the analysis. The value should be selected with 
respect to the following: (I) the strain level, (2) inertia ratio, (3) 
footing geometry, and (4) soil type. For the data analyzed, 10 
percent material damping is recommended for use. This value 
has been shown to provide good predictions by Weissmann 
(1971) who considered slip at the base of the footing and 
Manyando (1990) who neglected the slip. The current analysis 
shows that torsional vibrations may be predicted satifactorily by 
ignoring the base slip of the footing. 

For coupled rocking and sliding vibrations, the best match 
between predictions and performance is obtained when material 
damping is neglected. The amplitudes of vibration at the first 
resonant frequency are much larger than those at the second 
natural frequency and therefore the former are more critical for 
design. The strain calculated using the total horizontal 
displacement rather than the vertical displacement at the edge 
of the footing has been found to give better predictions. 
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