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(\ Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 
""' April2-7, 1995, Volume I, St.Louis, Missouri 

Predicting Seismic liquefaction Using Neural Networks Paper No. 3.31 

A.T.C. Goh 
Senior lecturer, School of Civil & Structural Engineering, Nanyang Technological University, Singapore 

SYNOPSIS Neural networks have emerged as a powerful computational teclmique for modeling nonlinear multivariate 
relationships. The neural network is a product of artificial intelligence research. Tllis paper examines the feasibility of using neura.I 
networks for assessing liquefaction potential, from actual field records. The paper starts with a brief overview of the basic 
architecture and concepts of neural networks. The application of the neural network methodology to evaluate seismic liquefaction 
potential is then presented. 

INTRODUCTION 

Neural networks have emerged as a powerful computational 
technique for modeling nonlinear multivariate relationships. 
The neural network is a product of artificial intelligence 
research. A neural network is a "computational mechanism 
able to acquire, represent, and compute a mapping frpm one 
multivariate space of information to another, given a set of 
data representing that mapping" (Garrett 1994 ). This paper 
examines the feasibility of using neural networks for assessing 
liquefaction potential, from actual field records. The paper 
starts with a brief overview of the basic architecture and 
concepts of neural networks. The application of the neural 
network methodology to evaluate seismic liquefaction 
potential is then presented. 

ARCHITECTURE OF NEURAL NETWORKS 

The basic architecture of neural networks has been covered 
widely (Rumelhart and McClelland 1986; Lippmann 1987; 
Flood and Kartam 1994). A neural network consists of a 
nuniber of interconnected processing elements, commonly 
referred to a~ neurons. Each neuron receives an input signal 
from neurons to which it is c01mected. Each of these 
connections has numerical weights associated with them. The 
neurons are logically arranged into two or more layers as 
shown in Fig. 1, and interact with each other via these 
weighted connections. These . scalar weights determine the 
nature and strength of the influence between the 
interconnected neurons. Each neuron is connected to all the 
neurons in the next layer. There is an input layer where data 
are presented to the neural network, one or more intennediate 
layers also known as hidden layers, and an output layer that 

holds the response of the network to the input. Each hidden 
and output neuron processes its inputs by multiplying each 
input by its weight, summing the product and then passing the 
sum through a nonlinear transfer function to produce a result. 
A sigmoid curve is commonly used as the transfer function. 
The sigmoid function modulates the weighted sum of the 
inputs so that the output approaches unity when the input gets 
larger and approaches zero when the input gets smaller. 

Neural networks essentially "learn" from a set of example 
patterns, through the adaptation of their connection weights. 
A number of these learning strategies are described in detail 
in Rumelhart and McClelland (1986) and Lippmann (1987). 
The most popular learning strategy is the back-propagation 
algorithm (Rumelhart et al. 1986). 

BACK-PROPAGATION ALGORITHM 

The neural network paradigm adopted in most civil 
engineering applications is the back-propagation learning 
algorithm (Rumelhart et al. 1986). The basic mathematical 
concepts of the back-propagation algoritlun are found in the 
literature (Caudill and Butler 1990; Eberhart and Dobbins 
1990). Training of the neural network is carried out through 
the presentation of a series of example patterns of associated 
input and target (expected) output. The neural network 
"learns" by modifying the weights of the neurons in the 
hidden and output layers in response to the errors between the 
actual (predicted) output and the target (expected) output. 
This is carried out through the gradient descent on the sum of 
squares of the errors for all tl1e trainipg patterns (Rumell1art et 
al. 1986). The changes in weights are in proportion to the 
negative of the derivative of the error term. One pass through 
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Fig. l. Typical Neural Network Architecture 

the set of training patterns along with the updating of the 
weights is called a cycle or epoch. Training is carried out by 
repeatedly presenting the entire set of training patterns (with 
the weights updated at the end of each cycle) until the average 
sum squared error over all the training patterns are minimized 
and within the tolerance specified for the problem. 

At the end of the training phase, the neural network 
predictions should correctly approximate the target output for 
the training data provided the errors are minimal. The 
associated trained weights of the neurons are then stored in 
the neural network memo1y In the next phase, the trained 
neural network is fed a separate set of data. In this testing 
phase, the neural network predictions (using the trained 
weights) are compared to the target output values. This 
assesses the ability of the neural network to detect the distinct 
features of the training patterns and to generalize correct 
responses for the testing patterns that only broadly resemble 
the data in the training set. No additional learning or weight 
adjustments occur during this phase. Once the training and 
testing phases are found to be successful, the neural network 
can then be put to use in practical applications. The neural 
network will produce almost instantaneous results of the 
output for the practical input provided. As with any empirical 
or statistical regression technique, the neural network 
predictions are safe to apply only in the context for which 
they were formulated i.e. the input values fall within the 
bounds of the training set. 

APPLICATION TO SOIL LIQUEFACTION 

The prediction of soil liquefaction is difficult because there 
are many critical factors influencing liquefaction, including 
the magnitude and intensity of the earthquake, the properties 
of the soil, the depth of the soil deposit, the distance from the 
source of the earthquake, and the seismic attenuation 

262 

properties. One common method of evaluating liquefaction· 
potential uses the Standard Penetration Test (SPT) value as an 
index of soil liquefaction resistance. The method of Seed et 
al. (I 985) was developed by analyzing field records, an_d 
establishing empirical correlations between the SPT and 
seismic properties, and the occurrence or nonoccurrence of 
liquefaction at the site. 

Neural Network Modeling 

The back-propagation neural network algorithm was adopted 
in this study (Goh 1994). The neural network training and 
testing patterns were obtained from the case records of 
Tokimatsu and Yoshimi (1983). A total of 85 case records 
was considered. This represented 42 sites that liquefied and 
43 sites that did not liquefy. 59 of these case records were 
used for the training phase and 26 for the testing phase. The 
testing records are shown in Table 1. 

F is the% fines content and D50 is the mean grain size of the 
soil. The following expression from Tokimatsu and Y oshimi 
(1983) was used to determine the equivalent dynamic shear 
stress ( -c.)cr0') at depth z. 

ta; = O.l~(M-lr';(l- 0.015z) 
cro Cfo 

(1) 

cro is the total vertical stress, cro' is the effective vertical stress, 
M is the earthquake magnitude, and alg is the peak horizontal 
acceleration at ground surface. The standardized SPT (N,)60 

values were used for all the cases (Seed et al. 1985). N, is the 
SPT N value normalized for effective overburden pressure 
(Seed et al. 1979). (N,)60 is N, standardized for the driving 
energy in the drill rods of 60% of the theoretical free-fall 
energy of the SPT hammer. 

The output consisted of a single neuron, representing the 
liquefaction potential. The desired output was given a binary 
value of 1 for a liquefied site and a value of 0 for a 
nonliquefied site. The number of input variables in the neural 
network models was varied, to detennine the most reliable 
model. The optimal solution was deduced as the model giving 
the least number of errors. A single hidden layer was found to 
be sufficient for this study. The optimal number of neurons in 
the hidden layer were detennined throtwh trial and error 
Training was carried out until the average "'sum squared erro; 
over all the training patterns were minimized. This occurred 
after about 30,000 cycles of training. Training time on a 
80486-33 J\.1Hz personal computer was less than 10 minutes. 

RESULTS 

The neural network's accuracy improved as more input 
variables are provided. For brevity, only the most successful 



model MS, is described. The model consisted of S input 
variables. The variables were: cr , cr ', M (N) a/g 1 jcr ' F 0 o , I 60, ' a O) ' 

and D,.. The convergence of the neural network during the 
training phase is shown in Fig. 2. The results of the 
predictions for the testing phase, using this model have been 
tabulated in Table 1 alongside the actual field performance. 
The results from the testing phase suggests that although the 
neural network models was not explicitly trained for these 
data, it was capable of generalization and gave reasonable 
predictions. Altogether there were 2 errors in the training data 
and 2 errors in testing data, for MS. Overall, 95% of the 
predictions were correct. In comparison, the Seed et al. 
(19S5) procedure gave 14 errors or a S4% success rate. 
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Fig. 2. Convergence ofModel MS 

PARAMETRIC STUDIES 

Parametric studies can be carried out using the generalization 
capabilities of the neural network, on the successful 
completion of the testing phase. Fig. 3 shows the results of a 
typical parametric study using model MS. The parameters a/g 
and (N1) 60 were varied to extract indicators for determining the 
boundary curves separating liquefaction and nonliquefaction. 
The soil was assumed to be at a depth z = 7 m, with unit 
weight y = 1S kN/m3 and the water table at the ground 
surface. -rajcr0 ' was calculated using eqn. (1). The neural 
network predictions for D50 . = 0.35 mm and 0.5 nun, with M = 
7.5 and F = 5%, indicate that the critical SPT values for 
liquefaction increase with an increase in D50. The results 
exhibit the same trends as the solution proposed by Seed et al. 
(19S5). 

DISCUSSION 

The neural network modeling approach is simpler to apply 
than the method by Seed et al. (1985). Only minimal 
processing of the data is required, essentially to obtain values 
of (N1) .. and -r.}cr,', for a given peak horizontal acceleration 
and earthquake magnitude M. ln comparison, as the method 

of Seed et al. (19S5) is essentially applicable only for M = 

7.5, further calibration of -c.) cr.' is required for earthquakes of 

Table 1. Summary of Testing Data 

Field Neural 
cro cr' 

0 SPT Dso record network. 
Earthquake M (kPa) (kPa) N a/g -c.Jcr; F (%) (mm) Liquefaction? 

Miyagiken-oki 7.4 118.7 66.7 10.0 0.20 0.21 0.0 0.60 Yes Yes 
(1978) 7.4 61.8 38.3 19.0 0.32 0.31 4.0 0.28 No No 

7.4 61.8 34.3 5.0 0.32 0.35 5.0 0.70 Yes Yes 
7.4 61.8 41.2 7.0 0.32 0.29 4.0 0.28 Yes Yes 
7.4 80.4 47.1 11.0 0.24 0.25 0.0 0.40 Yes Yes 
7.4 97.1 66.7 20.0 0.24 0.21 0.0 0.60 No No 
7.4 80.4 54.9 4.0 0.24 0.21 10.0 0.40 Yes Yes 
7.4 61.8 41.2 13.0 0.24 0.22 7.0 1.60 Yes Yes 
7.4 80.4 41.2 8.0 0.24 0.28 12.0 1.20 Yes Yes 
7.4 136.4 77.5 17.0 0.24 0.24 17.0 0.35 No No 
7.4 103.0 83.4 9.0 0.24 0.17 5.0 0.34 Yes Yes 
7.4 108.9 70.6 8.0 0.24 0.21 4.0 0.36 Yes Yes 
7.4 59.8 56.9 11.0 0.28 0.18 5.0 0.53 Yes Yes 
7.4 109.9 80.4 23.0 0.28 0.22 0.0 0.41 No No 
7.4 111.8 77.5 10.0 0.24 0.20 10.0 0.30 No Yes 
7.4 74.6 59.8 6.0 0.24 0.18 10.0 0.25 Yes Yes 
7.4 130.5 86.3 21.0 0.24 0.21 5.0 0.35 No No 
7.4 93.2 68.7 9.0 0.24 0.19 20.0 0.15 Yes No 
7.4 83.4 63.8 10.0 0.24 0.19 26.0 0.12 No No 
7.4 111.8 77.5 12.0 0.24 0.20 3.0 0.35 Yes Yes 
7.4 106.9 71.6 15.0 0.24 0.21 11.0 0.30 No No 
7.4 124.6 91.2 17.0 0.24 0.19 12.0 0.30 No No 
7.4 74.6 49.1 4.0 0.20 0.18 10.0 0.15 Yes Yes 
7.4 111.8 66.7 15.0 0.20 0.20 10.0 0.18 No No 

Chibakenchubu 6.1 105.9 56.9 5.0 0.10 0.09 13.0 0.18 No No 
(1980) 6.1 247.2 105.9 4.0 0.10 0.09 27.0 0.17 No No 
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Fig. 3. Results ofParametric Study 

different magnitudes. In addition, the boundary curve 
separating the liquefaction and nonliquefaction zones needs to 
be calibrated for different fines content of the soil. 

When the back-propagation neural networks are trained on 
actual field data, they are trained to deal with inherent noisy 
or imprecise data. As more field data become available, the 
back-propagation neural network can be readily retrained and 
refined with patterns that include these additional data. The 
main criticism of the neural network methodology is its 
inability at present to trace and explain the step-by-step logic 
it uses to arrive at the outputs from the inputs provided. This 
is expected to be a temporary drawback that will be overcome 
with further research. 

SUMMARY AND CONCLUSIONS 

Neural networks have been successfully used to model the 
complex relationship between the seismic and soil 
parameters, and the liquefaction potential. Actual field 
records were used in the analysis. Comparisons indicate that 
the neural network model is more reliable than the method by 
Seed et al. (1985). As with any empirical or statistical 
regression technique, the neural network predictions are safe 
to apply only in the context for which they were formulated. 
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