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pile-raft foundation (Wang and Wang 2007; Xu 2007). The 
piles are bored piles, 0.9m in diameter, and around 60m in 
length. The whole project covers an area of about 7856mଶ, 
and the excavation area is around 6200mଶ. The excavation is 
14.2m deep on the west side, and 12.2m deep on the east side. 
The project is situated in the downtown area of Shanghai, 
surrounded by 15 densely distributed buildings of which 8 are 
historical buildings with high protection standard, as well as 
some aged pipelines. 

 

 
 

Fig. 1, Plan view of the deep excavation 
 
Fig. 2 shows the section view of the excavation and the 
supporting structures. The excavation is retained by a 1m thick 
diaphragm wall which is supported by horizontal beams and 
slabs, as shown in Fig. 3.  
 

 
 

Fig. 2, Section view of A-A 
 

 
 

Fig. 3, First floor underground beams and slabs 

The 60m deep piles provide vertical support to the whole 
structure. The excavation is constructed with top-down 
methods, and the above buildings can be constructed to the 3rd 
floor at the same time with the excavation. This excavation 
was carefully measured during construction. 
 
Geotechnical Conditions and Soil Properties 
 
The city of Shanghai is situated at proximately 70km from the 
sea shore, in the large coastal plain limited by the East China 
Sea and the Yangtze River which is designated as the 
‘Yangtze River Delta’. The subsoil of Shanghai is composed 
of Quaternary sediments of the Yangtze River estuary which 
consist of clay, loam, silt and sand, the different deposits being 
the final result of the variation from an estuarine to fluviatile 
sedimentation process (Dassargues, Biver et al. 1991). The 
elevation of the ground surface is typically from 2.2m to 4.8m 
above sea level (Xu, Shen et al. 2009). 
 
According to the site investigation report, the site is on a flat 
coastal plain, with ground elevation between 4.80m to 3.87m, 
and ground water table 0.5 to 1m below the ground surface. 
Based on the differences of soil characteristics, physical and 
mechanical properties, the soil profile can be divided into 7 
sub layers, as shown in Fig. 4, with the corresponding soil 
properties. 
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Fig. 4, Geotechnical profile and soil properties 
 
Some of the soil parameters for numerical modelling are 
derived from Fig. 4. The unit weight generally increases with 
depth, but it is convenient to take its average value, roughly 
18.5kN/mଷ. For the undrained shear strength s୳, the data in 
Fig. 4 is not sufficient for numerical modelling. Therefore, a 
more complete S୳ profile is collected from Dassargues, Biver 
et al.(1991), and Equation (1) is derived by linearizing the data. 
 
 s୳ ൌ ሺ20 ൅ 2z ሻkPa (1) 
 
The small-stain stiffness of the soil is missing from the site 
investigation report, but it could be collected from 
publications about Shanghai clay. Stiffness at very small strain 
G଴  can be measured using dynamic methods. Cai, Zhou et al. 
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from the field measurements is compared with numerical 
results, as shown in Fig. 11.  
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Fig. 11, Field instrumentations 
 
The comparison is focused on one wall deflection at wall 
centre (P9) and one at wall corner (P8), and the ground 
settlement along Line 1, Line 2 and Line 3. And it is believed 
that the data can reflect a complete picture of the excavation 
behaviour. 
 
In this section, results from two sets of calculations are 
presented, in order to demonstrate the influence of soil models 
and thermal shrinkage of concrete on the excavation behaviour. 
  
Influence of soil models 
 
To investigate the effect of different soil models, besides the 
central analysis which considers the small-strain stiffness of 
the soil using the nested yield surface model, three other runs 
are conducted with simpler soil models, as shown in Table 1. 
The results are compared with the filed data. 
 

Table 1 FEM Runs and Description 
 
Run ID Description 
Central 
analysis 

Soil Model: Nested-yield surface model, stiffness 
and strength increase linearly with depth; 
Wall Model: anisotropic elastic, E୭୳୲ E୧୬⁄ ൌ 0.1,  
Beams  and Slabs: elastic, α ൌ 10 ൈ 10ି଺/Ԩ , 
∆T ൌ െ35Ԩ 

SME Same as central analysis except that the soil model 
is linear elastic with constant soil parameters 
ܩ ൌ ,ܽܲܯ9 ߤ ൌ 0.49 

SMTC Same as central analysis except that the soil model 
is Tresca with constant soil parameters; 
ܩ ൌ ,ܽܲܯ9 ߤ ൌ 0.49, ܵ௨ ൌ 50݇ܲܽ 

SMTV Same as central analysis except that the soil model 
is Tresca and soil stiffness and strength increases 
linearly with depth; 
ܩ ൌ 180ܵ௨, ߤ ൌ 0.49, ܵ௨ ൌ ሺ20 ൅  ሻ݇ܲܽݖ2

 
To make these analyses comparable, some assumptions of the 
soil parameters are adopted. For linear elastic analysis and 
Tresca soil model with constant soil properties, the stiffness G 
is adopted as Gହ଴ (stiffness at 50% of the shear strength) from 

Fig. 5, and the strength S୳  is taken at the depth of  15m , 
roughly half of the wall depth. For Tresca soil model with 
variable soil parameters, Gହ଴ ൎ 0.180G଴, and G଴ S୳⁄ ൌ 1000  
is used here, so Gହ଴ ൎ 180S୳.  
 
The results of calculations in Table 1 are shown in Fig. 12 - 
Fig. 16, together with the field data.  
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Fig. 12, Wall deflection at P9 and P8 
 
From Fig. 12, it is shown that the central analysis agrees well 
with the field data. Tresca soil model with variable stiffness 
and strength soil parameters could also capture the pattern of 
wall deflection very well. But the linear elastic model and 
Tresca soil models with constant soil parameters perform 
rather poorly, and therefore they are not suitable to use for 
prediction purposes. 
 
The ground settlement along Line 1 is shown in Fig. 13. Again, 
the results indicate that the central analysis with the nested 
yield surface model captures the ground movement very well 
because it considers the small-strain stiffness of the soil. But 
the other three, even the Tresca soil model with variable soil 
properties which could predict the wall deflection well, fail to 
produce both the pattern and magnitude of the ground 
movement. For the linear elastic and Tresca soil model, the 
ground movement around the excavation is upward which 
contradicts with the field data. If they were used for the 
prediction of the adjacent infrastructures around the 
excavation, the result would be misleading. Therefore, in order 
to get reasonable results for ground movement, the small-



 

Paper No. 3.28b              6 

strain stiffness must be considered in the analysis. 
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Fig. 13, Ground settlements along Line 1 
 
The ground settlement along Line 2 and Line 3 is shown in 
Fig. 14. Again, it demonstrates that when the small-strain 
stiffness of soil is considered the numerical result can capture 
the ground settlement. Otherwise, the results are disappointing 
when compared with the field data. 
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Fig. 14, Ground settlements along Line 2 and Line 3 
 
Influence of concrete thermal shrinkage 
 
To investigate the influence of thermal contraction of concrete 
and different temperature change on the excavation behaviour, 
results from another two runs, as shown in Table 2, are 

compared with the central analysis as well as the field data. 
The results are presented as below. 
 

Table 2 FEM runs and description 
 

Run ID Description 
Central 
analysis 

Soil Model: Nested-yield surface model, 
stiffness and strength increase linearly with 
depth; 
Wall Model: anisotropic elastic, E୭୳୲ E୧୬⁄ ൌ 0.1, 
Beams  and Slabs: elastic, α ൌ 10 ൈ 10ି଺/Ԩ , 
∆T ൌ െ35Ԩ

ANE1T30 Same as central analysis except ∆T ൌ െ30Ԩ 
ANE1T40 Same as central analysis except ∆T ൌ െ40Ԩ 
 
The results of the analyses listed in Table 2 are shown in Fig. 
15~Fig. 16, together with the field data.  
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Fig. 15 Wall deflection at P9 and P8 
 
The results show that the wall deflection is sensitive to 
temperature change inside the concrete during curing process. 
When the concrete cools down by 5Ԩ, the beams and slabs 
shrink and the wall deflections increase around 3mm. But the 
wall deflection increment at P8 is slightly smaller than that at 
P9 due to the corner effect. Therefore, this effect should not be 
neglected in the analyses.  
 
The ground settlement behind the wall along Line 1 is plotted 
in Fig.16, together with the field data.  
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