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ABSTRACT 

 

The development and acceptance of quality control and assurance techniques for deep foundations in the United States is a relatively 

recent phenomenon, and one whose progress can be attributed to a handful of key individuals who first recognized the early promise of 

these methods, and worked diligently to validate them. 

 

The judicious use of nondestructive testing combined with various methods of full-scale load testing has been a major factor in the 

growth of the drilled shaft and augered, cast-in-place pile industry, by simultaneously allowing engineers to assess and adjust design 

assumptions, and allowing contractors to improve construction techniques and equipment. Such quality management programs have al-

so justified significant increases in the allowable bearing capacities stipulated in building codes, particularly in Chicago and the Mid-

west.  

  

This paper reviews the evolution and acceptance of quality control and quality assurance methods in the United States, and the effect 

they have had on deep foundation design and construction, and building code requirements nationwide.  

 

 

INTRODUCTION

 

The use of driven timber piles for deep foundations can be 

traced back to the days of the Roman Empire. Several Roman 

authors of note described the installation of piles. An article 

published in the Deep Foundations Institute magazine “Deep 

Foundations” in 2005 discussed the Roman technology in 

some detail (Smith, 2005). Quality control consisted of strik-

ing the top of the pile with a drop-weight until it had either 

penetrated the ground to the required depth, or simply stopped 

moving. From Roman times to the 19
th

 century, there was little 

change in the technology of deep foundation construction, oth-

er than the substitution of steel for timber in some 19
th

 century 

cases. In the early part of the 20
th

 century, the advent of sky-

scrapers, with substantially greater loads than had previously 

been encountered, bought about the need for a different ap-

proach to foundation design, and the use of hand-dug shafts, or 

‘caissons’, and mechanically drilled shafts came into play. 

Over time a number of proprietary construction methods were 

developed, using various techniques for excavation stabiliza-

tion and ground water control. No matter which method was 

used, they shared one common need – concrete placement in 

the completed excavation. 

Quality control efforts, however, were still limited, consisting 

primarily of visual observation during construction, and static 

load testing after construction. Although static load testing 

provides the engineer with a reasonably accurate idea of the 

capacity of the shaft tested, the load test set-up takes time and 

money to construct, and limits the construction activity that 

may take place in the vicinity of the test rig while the test is be-

ing performed. These factors make testing large numbers of 
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shafts prohibitively expensive. Added to this is the natural var-

iability of soils. In some geographical areas a single borehole 

may accurately represent soil conditions for an entire construc-

tion site. In other areas, soil conditions, and particularly bed-

rock quality, can vary significantly within a few yards. Thus a 

load test shaft on one part of a construction site may be com-

pletely unrepresentative of the shafts on the rest of the site.  

 

The result of these variable factors is that, for many years, 

deep foundation designers worked with the knowledge that 

very few of the foundations constructed would actually be 

proven to be capable of supporting the loads for which they 

were designed before the design loads were actually applied 

during construction. Naturally, a conservative approach to de-

sign was adopted, and ‘factors of safety’ were often added at 

several stages in the site exploration and design process. In 

some areas this practice persists to this day. The author is 

aware of one relatively recent project where load testing 

proved the test shaft to be capable of supporting at least 10 

times the design load, but the load test jack had reached its 

maximum capacity before any significant shaft movement oc-

curred, so the true load capacity of the shaft remains unknown. 

Despite this, the project owners elected to stick with the origi-

nal design. 

 

Some engineers recognized the costs associated with unneces-

sary conservatism, and strove to quantify the unknowns that 

were at the heart of the problem. Karl Terzaghi, generally re-

garded as the father of soil mechanics, is credited with coining 

the term ‘The Observational Method’, in which careful obser-

vation of all stages of site investigation and foundation con-

struction is coupled with the observer’s past experience and 

any other available relevant data, providing information that 

the engineer can use to modify the design and construction 

process appropriately as the project progresses. The visionary 

engineers of the mid 20
th

 century that saw the value in the ob-

servational method not only applied it in their practice, but 

demanded better tools to help them quantify the variables. A 

seminal paper on the subject by a student and protégé of Ter-

zaghi, Ralph Peck, described the advantages and limitations of 

the observational method (Peck, 1969).  

 

Over the years, the deep foundations industry, geotechnical 

engineers, and testing practitioners responded to Peck’s chal-

lenge in a variety of ways. The advances brought about by the 

demand for more information fall into three broad categories: 

 

1. Construction monitoring methods 

2. Load-testing methods  

3. Integrity testing methods 

 

Each category will be discussed in this paper, together with il-

lustrative case histories.  

 
 
 
 

CONSTRUCTION MONITORING METHODS 
 

Construction monitoring methods still heavily rely on visual 

observation by a competent and experienced inspector, but 

visual methods are severely limited in deep foundations when 

temporary casing is used, or when concrete is placed under 

water or slurry. Fortunately, there is now a steadily growing 

array of tools to help the inspector during the construction 

phase of the project.  

 

One of the first was a deceptively simple method of plumbing 

the top of the concrete column with a tape measure, plotting it 

on a graph of depth versus volume placed, and comparing it 

with a graph of theoretical volume versus depth (DFI, 2003). If 

concrete is placed in relatively small, controlled increments via 

a skip or bucket in an uncased excavation, this method works 

well. However, when placing concrete by pump, it is less reli-

able, because pumps can develop air-locks or miss strokes. 

Where concrete is placed directly by ready-mix truck, the in-

spector’s judgment becomes critical, because he or she must 

estimate how much of the mixer drum’s volume has been 

placed at any given time.  If temporary casings are used, the 

depth versus volume graph is of minimal value, because soil 

voids may exist behind the casings that allow the concrete to 

slump out when the casing is withdrawn. 

 

At the beginning of the 21
st
 Century, inspection technology in 

common use to assist deep foundation inspectors and geotech-

nical engineers includes underwater cameras, sonic borehole 

calipers to determine the shape of a completed drilled shaft ex-

cavated under water or slurry (Kort et al, 2007), and the Shaft 

Inspection Device (SID) attributed to Schmertmann and 

Crapps in Florida, to permit visual inspection of the bottom of 

a drilled shaft even under slurry or turbid water, and so aid as-

sessment of likely end-bearing performance (Schmertmann and 

Crapps, 2002) 

 

 

LOAD TESTING METHODS 

 

Full-scale load testing of deep foundations has long been the 

accepted method for verifying design assumptions and founda-

tion quality, both at the beginning of a project, and sometimes 

during production, as a quality assurance check. Initially, a 

full-scale load test was accomplished by constructing a large 

reaction mass (Kentledge) over the foundation shaft that was 

to be tested, inserting a jack between the kentledge and the 

shaft, and jacking against the kentledge until the desired load 

was placed on the shaft. For larger shafts, constructing a kent-

ledge of adequate mass was impractical, and the concept of re-

action shafts was born. For this method, one or more pairs of 

foundation shafts, dubbed reaction shafts, are constructed 

around the test shaft, and linked by a reaction beam or frame 

that passes over the top of the test shaft. The load test jack 

pushes against the frame and the resistance provided by the re-

action shafts to apply load to the test shaft. Unlike the kent-

ledge method, which can only be used to assess a shaft in 

compression, reaction shafts can be used in either tension or 
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compression, and so can be used to assess bearing capacity 

and/or uplift resistance of the test shaft. 

 

Both the kentledge and the reaction shaft methods have dis-

tinct disadvantages, in that there are significant costs associat-

ed with preparing and performing them. Not only are there the 

costs of construction and performance, but, in most cases, per-

formance of a static load test requires that construction activity 

in the vicinity of the test be reduced, in order to minimize 

ground vibrations that may affect the validity of the test. This 

can have a significant impact on project schedule and cost. 

  

 In 1987 Jorj O. Osterberg patented a new technique for static 

load testing, wherein a flat cylindrical hydraulic jack known as 

an Osterberg Cell, or “O-cell” is attached to the reinforcing 

cage and lowered into the drilled shaft before concrete is 

placed. Instrumentation attached to the cell and the reinforcing 

cage monitors shaft behavior as hydraulic pressure is applied 

to the cell after the concrete has set, applying load downward 

into the end-bearing stratum, as well as upward, to mobilize 

the side-resistance on the shaft. This bi-directional action per-

mits direct evaluation of rock-socket side-resistance behavior 

versus end-bearing capacity, unlike the top-down loading 

methods. The O-cell and attached instrumentation are sacrifi-

cial, but on completion of testing the jack can be grouted up, 

thus allowing the test shaft to be used as a part of the new 

foundation. For very high loads, the O-cell method is inherent-

ly safer than building massive kentledge structures or risking 

failure of reaction beam/shaft connections. At the time of writ-

ing this paper, the largest recorded O-cell test stands at 36,000 

tons! (Brown, 2010). 

    

A key limitation of all static load test methods is that, for eco-

nomical application the shaft to be tested must be selected in 

advance of the construction program. For this and other eco-

nomic reasons, use of multiple static load tests as a quality as-

surance measure throughout a construction project is extreme-

ly rare. However, since the early 1960’s there has been a grad-

ual acceptance of alternative methods for measuring or pre-

dicting foundation shaft capacity. The first of these was based 

on analysis of the response of a pile head while it was being 

driven by a drop-hammer. The first known reference to meas-

urement of stress waves in a driven pile was by Glanville 

(1938), but the first practical application of the idea was de-

scribed for a project in Holland in 1956 (Verduin, 1956). Fur-

ther development of pile driving analysis in Europe was pri-

marily performed by the Dutch national research center, The 

Netherlands Organization (TNO), as reported by van Koten 

(1967)  

 

In the United States, research led by George Goble at Case In-

stitute of Technology (now Case Western Reserve University) 

in the 1960’s led to the development of the Case-Goble meth-

od for driven pile analysis (Goble, 1967, 1975), and the more 

complex capacity prediction method that is now known as the 

CAPWAP (CAse Pile Wave Analysis Program) method ( 

Rausche, 1972).  

 

Because they were performed using a pile-driving hammer, 

both the Case and the TNO methods were known generically 

as high-strain dynamic load tests, and, until the early 1980s, 

they were used only on driven piles. Major advantages of the 

methods, however, were the relatively low cost and high speed 

of application, which made testing of production shafts eco-

nomically viable. Dynamic load testing also contributed great-

ly to understanding of the complex and opposite phenomena of 

soil set-up, which increased the frictional resistance of a shaft 

after driving, and soil relaxation, which decreased resistance, 

as the effects of soil disturbance caused by pile-driving dissi-

pated.   

 

Several researchers had pondered the application of high-strain 

dynamic testing (HSDT) to drilled shafts and augered, cast-in-

place (ACIP) piles, but found the methods uneconomical be-

cause of the need to modify or build up the head of the test 

shaft to withstand the high stresses generated by the impact of 

the driving hammer, a feature that was necessarily built-in to 

piles destined to be installed by driving. The potential benefits 

of HSDT, however, were attractive enough to motivate some 

of the best researchers in the world, and by the late 1980s, four 

distinct and viable methods had been developed in Canada, 

France, Holland, and the United States, that eliminated the 

need for a specially reinforced shaft head.   

 

These methods have been amply described in the literature, so 

there is no need for great detail here, but the essence of each 

method is given to place their contributions in context. Teams 

from Canada and Holland collaborated on the development of 

the Statnamic method, in which a reaction mass is placed on or 

against the head of the shaft. A charge of propellant fuel gen-

erates thrust between the shaft and the reaction mass. The 

method can be employed axially or laterally, and the stresses 

are controlled by selecting the quantity and combustion rate of 

the propellant (Kusakabe et al., 2000) 

 

A Dutch team developed the Fundex method, which utilizes a 

drop-mass system similar to the original gravity driving ham-

mers, but which controls the impact stresses with an array of 

springs acting between the base of the hammer and an anvil 

placed on the head of the shaft (Presten and Kasali, 2002) 

 

The French national construction research center (CEBTP), 

developed SIMBAT, a version of the drop-mass system that 

utilizes varying and gradually increasing drop height to limit 

the stresses generated in the head of the shaft, and extrapolates 

the data to higher loads by numerical modeling (Baker et al, 

1993) 

 

The American team developed the ‘Apple’ drop mass system, 

named after Sir Isaac Newton’s reported inspiration. The Ap-

ple system utilizes instrumentation to monitor the drop-mass 

and the shaft head and so measure stresses and motion. The 

energy of the impact is controlled by varying the mass of the 

impactor, and/or the drop height (GRL, 2000) 
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Regardless of which method was selected, the overall contri-

bution was similar – when combined with information from the 

construction inspector, and integrity testing results, the data 

gave geotechnical engineers a better understanding of the fac-

tors governing the quality of production shafts, and their effect 

on the capacity of the foundation.  

 

 

INTEGRITY TESTING METHODS 

 

Nondestructive integrity testing of deep foundations has been a 

practical technology in some parts of the world since the early 

1960’s, and so much has been written about the methods since 

then that young engineers entering the deep foundations indus-

try today tend to treat them as something to be taken for grant-

ed. In reality, however, their acceptance by industry and, par-

ticularly, by state agencies in the United States did not become 

widespread until the late 1990’s and early 21
st
 century. Their 

acceptance is due, in very large part, to the visionary attitude 

of key experts in deep foundation design and analysis. As far 

as the United States is concerned, probably the document that 

most influenced the acceptance of nondestructive test (NDT) 

methods was the report “Drilled Shafts for Bridge Founda-

tions”, published by the Federal Highway Administration 

(FHWA) in 1993, and made freely available to all state de-

partments of transportation (Baker et al, 1993). The authors of 

that report supervised the construction of several sets of drilled 

shafts with deliberate but undisclosed anomalies in them, and 

invited any interested practitioner of NDT to test the shafts 

with their preferred method(s) and report their interpretations. 

The test results were collated and graded in the FHWA report. 

  

The authors of the FHWA report concluded that crosshole son-

ic logging (CSL) was the most reliable method for detecting 

anomalies in drilled shafts, and decided that the Impulse Echo 

and Impulse Response methods were only capable of detecting 

anomalies that affected more than about 40% of the shaft 

cross-section. However, it must be noted that the report was 

based on work performed in 1989, and some of the very few 

practitioners of NDT for deep foundations at that time had lim-

ited experience with the methods. Since then NDT techniques 

evolved rapidly as the practitioners gained experience, and 

took advantage of increases in computing power and miniatur-

ization of electronics, which allowed the creation of more 

powerful and portable testing systems. A similar program of 

deliberate anomaly creation and blind testing was run at the 

University of Massachusetts National Geotechnical Experi-

ment Site (NGES) site in Amherst, MA, in 2000, with several 

of the same participants, together with several new entrants to 

the practice. The Amherst report indicated a significant im-

provement in the accuracy of all tests, including Impulse Echo 

and Impulse Response (Iskander et al, 2001). 

 

In addition to the FHWA and Amherst reports, the NDT meth-

ods currently available for integrity testing of new foundations, 

and for assessment of existing deep foundations that are being 

considered for re-use, have been well publicized in the tech-

nical literature, so this paper refers to them only by name or 

brief description. The reader who requires more detailed de-

scriptions is referred to American Concrete Institute Report 

No.228.2R (ACI, 1999) or the book “Nondestructive Testing 

of Deep Foundations” (Hertlein and Davis, 2006). 

 

Although this paper advocates the use of NDT methods in 

programs designed to assess deep foundations, it must be 

stressed that it is very rarely appropriate to use NDT methods 

as stand-alone techniques for deep foundation acceptance or 

evaluation programs.  In most cases, some additional explora-

tion or testing is necessary to obtain or validate all of the in-

formation that is required by the engineer, as the following 

case histories show. 

 

  

CASE HISTORIES 

 

FOUNDATION FAILURE AND REMEDIATION – LES-

SONS LEARNED 

 

One of the most significant events in the evolution of deep 

foundation quality control was the failure of an eight-foot di-

ameter drilled shaft during the early stages of construction of 

the John Hancock Tower, in Chicago, Illinois. Excessive set-

tlement of the steelwork above grade caused such concern that 

work on the project was halted until the cause was identified. 

An investigation led by Clyde N. Baker, Jr., discovered a 14-

foot long void in the caisson. Removal of a temporary casing 

was believed to be the cause. The problem was remedied, and 

the project was successfully completed, to give Chicago one of 

its first iconic high-rise buildings (Baker and Khan, 1971). As 

a result of the failure investigation and successful remediation, 

Chicago city engineers began encouraging the use of perma-

nent casing on drilled shafts. 

 

This event also illuminated the benefits of continuous monitor-

ing of key structural and geotechnical parameters during con-

struction, such as structural settlement, foundation loads, verti-

cal and horizontal soil movement and ground water table ele-

vation. Such monitoring programs are now standard practice 

on most major construction projects, and are mandated by 

some city building codes. Current technology is able to pro-

vide real-time data streaming and instant notification of a mon-

itor data stream that moves outside acceptable limits. 

 

 

FREE-FALL CONCRETE PLACEMENT 

 
A sometimes contentious deep foundation construction process 

is the placement of concrete by free-fall, or ‘back-chuting’ di-

rect from the ready-mix truck. Many engineers still believe 

that if concrete is allowed to simply fall into place from a 

height of more than a few feet, it is likely to segregate because 

the momentum of the heavier coarse aggregate will cause it to 

‘punch through’ the sand/cement matrix and gather at the bot-

tom. Some also argue that concrete striking the reinforcing 

steel cage will also be more likely to segregate at a result of 

the impact, and may damage the cage.  
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A research program, funded by the Association of Drilled 

Shaft Contractors (now known as the International Association 

of Foundation Drilling, or ADSC-IAFD), was performed on a 

site in Northbrook, Illinois, where four 900 mm (36-inch) di-

ameter drilled shafts were constructed in a square group, to a 

depth of 60 feet. Partial-depth corrugated steel liners were 

placed in the excavations, and access tubes were installed for 

CSL testing. Concrete was placed by free-fall, using a variety 

of common practices, including directing the concrete with a 

tapered hopper, or ‘elephant trunk’, and guiding it with a 

shovel placed against the end of the ready-mix truck chute. In 

at least one shaft, the concrete was placed as poorly as possi-

ble, creating the scenarios commonly cited by the opponents of 

free-fall placement. The shafts were subsequently investigated 

by CSL and Impulse Response testing, core-drilling, and by 

drilling a large diameter access shaft down through the center 

of the group, to allow personnel to access the full depth of 

each shaft. Windows were cut in the corrugated casings to al-

low visual review and sampling of the concrete inside. 

 

The research report concluded that the results of this program, 

coupled with core sampling data from deeper shafts placed by 

free-fall on projects in the City of Chicago, showed that ap-

propriately proportioned concrete could be placed by free-fall 

to depths of at least 120 feet in appropriately sized shafts 

without risk of significant ill effects (STS, 1994). 

 

 

RE-USE OF EXISTING FOUNDATIONS 

 

In an era when sustainability has become a watchword in con-

struction, the reuse of existing large foundations when rede-

veloping a previously-used site makes a great deal of econom-

ic and environmental sense. A new high-rise building was be-

ing planned in Chicago, Illinois, on the site of a former 10-

story structure. Dozens of hand-dug caisson foundations with 

diameters ranging from about 2.0 to 2.5 m (6 to 8 feet) re-

mained from the previous structure. As the site was cleared, it 

became evident that many of the existing shafts conflicted with 

the planned locations of foundations for the new structure.  

 

Chicago soils at the project location have two different bearing 

strata, the glacial hardpan and the deeper limestone bedrock. 

The difference in bearing capacity of these to strata made it 

necessary to know the shaft lengths accurately in order to de-

termine which stratum they were founded on, and estimate 

their capacity. Full depth cores were taken from two of the 

shafts, both to confirm length and to allow laboratory analysis 

of the concrete strength. The laboratory tests included meas-

urement of ultrasonic pulse velocity (UPV). Impulse response 

tests were then performed on all the shafts that were exposed. 

Shaft depth was calculated from the impulse response data, us-

ing a stress wave velocity derived from the UPV measured in 

the laboratory. The data from these laboratory and field tests 

were combined with data from an extensive in-house database 

of local soil-borings, pressure-meter tests and load test results 

in the same general soil conditions. This information was used 

by the engineers to assess the capacity of the existing shafts, 

and incorporate them into the design of the new foundation 

system.  

 

As a result of this program, a total of 26 shafts were re-used. 

The estimated economic savings generated were more than 

$570,000. The reduction in the carbon footprint of the project 

is harder to calculate, but approximately 2,500 cubic yards of 

soil did not need to be drilled and trucked out of the city, and 

about 2,500 cubic yards of concrete did not need to be mixed 

and hauled to the site. 

 

 

PREDICTION OF SETTLEMENT IN HIGHLY VARIABLE 

GEOLOGIC CONDITIONS 

 

Construction of the Petronas Twin Towers in Malaysia pre-

sented engineers with a number of challenges that pushed the 

boundaries of current practice. Apart from the 88-story (452m) 

height of the towers themselves, a key design feature was a 

bridge that linked the towers near mid-height, joining both the 

41
st
 and 42

nd
 floors. Thus, in addition to the usual concern 

about foundation settlement, differential settlement between 

the two towers would also have to be very closely controlled 

(<13mm across the base of the towers was the goal!). 

  

Investigation of the geology at the site revealed 20 m of allu-

vium overlying variable thickness strata of residual soils, 

weathered from sandstone, siltstone, shale, and philite. Be-

neath this was the Kuala Lumpur limestone, which varied sig-

nificantly in elevation, and contained a variety of solution fea-

tures. A number of foundation options were considered, but 

site conditions and economics finally determined that friction 

barrettes would be the most cost-effective solution to the set-

tlement control requirement. More than 200 soil borings, 200 

cavity-location probes and 260 in-situ Pressuremeter tests were 

backed up by two fully instrumented 3,500-ton pile load tests 

to provide data for the final design, which included soil im-

provement by fluid grouting of cavities and compaction grout-

ing in selected zones 

 

Construction of the foundations was closely monitored using 

the inspection techniques discussed in the foregoing, plus a 

program of non-destructive testing using the cross-hole sonic 

log method to verify the as-built condition of the barrettes. 

Predicted foundation settlement was 73 mm, with less than 12 

mm across the tower foundation mats. Measurement during 

construction of the towers superstructure showed actual set-

tlement values to be about half the predicted values (Baker, 

2006). 

 

 

CONCLUSIONS 

 

Quality management of deep foundation construction today 

begins with the observational method, supported by a judicious 

mix of geotechnical exploration techniques, effective construc-

tion inspection and quality control, appropriate integrity test-
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ing techniques, practical load-testing methods, post-

construction monitoring, and engineering judgment. Its effec-

tiveness is amply illustrated by the changes that have been 

made to the Chicago Building Codes (CBC) in the last 50 

years or so. Ralph Peck once described Chicago as the longest-

lived soils laboratory in the country. An article in Engineering 

News Record (ENR, 2008) confirms Peck’s statement by 

summarizing the significant changes to the CBC that have re-

sulted from the evolution and consistent application of the ob-

servational method: 

 

 Allowable bearing pressure on the Chicago hard-

pan increased from 12 ksf to 60 ksf. 

 Allowable bearing pressure for shafts founded on 

top of rock was not originally addressed by the 

CBC, but is, at the time of writing, 90 tsf. 

 Allowable bearing pressure for rock-socketed 

shafts increased from 200 tsf to 300 tsf. 

 

The savings created by these code changes extend beyond the 

economic costs of the project by substantially reducing the en-

vironmental impact and carbon footprint that results from deep 

foundation excavation, spoil transportation, and concrete man-

ufacturing and delivery.  

 

The combined effect of the observational method and im-

provements in deep foundation construction quality manage-

ment programs across the United States varies according to lo-

cal preferences, customs and codes, but the benefits are wide-

spread and well documented. Proactive contractors have used 

the information generated by these programs to improve con-

struction methods and equipment. Engineers have used them to 

improve foundation efficiency by optimizing design and con-

structability, and major agencies such as State Departments of 

Transportation and Railroad companies have begun to make 

wider use of foundation construction techniques previously 

considered problematic, such as drilled shafts and augered, 

cast-in-place piles, particularly in areas with cohesionless 

soils, or high groundwater tables. 
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