
Journal of Computer Science and Cybernetics, V.33, N.4 (2017), 289–307

DOI 10.15625/1813-9663/33/4/10835

DESIGNING OPTIMAL FUZZY CONTROLLER FOR MRD-BASED
TRAIN-CAR SUSPENSION SYSTEMS

SY DZUNG NGUYEN1, BAO DANH LAM2

1Division of Computational Mechatronics, Institute for Computational Science,
Ton Duc Thang University, Ho Chi Minh City, Viet Nam

2Faculty of Electrical and Electronics Engineering, Ton Duc Thang University,
Ho Chi Minh City, Viet Nam
1nguyensydung@tdt.edu.vn

�

Abstract. Random time-varying chassis mass, which consists of passenger and cargo mass as well

as the normalized wind force, causes reducing the effectiveness of smart vehicle suspensions. In order

to deal with this, we develop a novel fuzzy-based dynamic inversion controller (FDIC) for the control

of a train-car suspension system using a magneto-rheological damper (MRD) or MRDs. The FDIC

is constituted of three main parts: i) an inverse MRD model (ANFIS-I-MRD) via a measured data

set and an adaptive neuro-fuzzy inference system (ANFIS), ii) a fuzzy-based sliding mode controller

(FSMC) and iii) a disturbance and uncertainty observer (DUO). The FSMC is designed via the two

following steps. The first one is to establish and optimize parameters of a sliding mode controller

(SMC). The next is to design a fuzzy logic system to expand the ability of the SMC to face with the

larger ranges of the load variation. The DUO is used to compensate for disturbance and uncertainty.

By using the ANFIS-I-MRD and the control force estimated by the FDIC, current for the MRD at

each time for stamping out chassis vibration is specified. The stability of the FDIC is analyzed via

Lyapunov stability theory. Surveys have shown that the FDIC could provide the improved control

competence to reduce unwanted vibrations in an enlarged range of the varying chassis load.

Keywords. Fuzzy sliding mode control; Fuzzy control; Sliding mode control; Compensating for

Disturbance and uncertainty.

1. INTRODUCTION

Vehicle suspensions using MRDs have been widely applied as an effective device to im-
prove both ride quality and safety of passenger cars and high-speed railroad vehicles. In
these systems, damping force generated by the MRDs can be controlled by the intensity of
magnetic field [1, 2, 3, 4, 5, 6, 7]. It has been known that in order to enhance performance
in the real field, several issues should be carefully considered, including the solutions for
fast response, easy controllability, robustness against uncertainty and disturbance (UAD)
and accurate identification of the hysteretic dynamic behavior of MRDs [1, 8]. A becoming
control strategy needs to be developed to provide an appropriate time-varying control force
to minimize the vibration of the chassis. Generally, all real suspension systems are always
subjected to UAD. As an essential tool for improving the system effectiveness, compensating
for UAD needs to be also paid attention to. UAD may come from inexactly established
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models of the control plants, the lack of accuracy of the measurement devices, and unknown
nonlinear characteristics of the actuators. It may also derive from the time varying charac-
teristics of the control plants. In [7], the sprung mass was considered as an aspect taking
part in UAD. The chassis mass varies frequently due to many reasons such as the change
of passengers, load mass and wind load. Besides, the unknown influence of environmen-
tal conditions on the system can also affect negatively on control systems. To face with
these, sliding mode control technique (SMCT), fuzzy logic (FL), and artificial neural net-
works (ANN) together with solutions for noise compensation have been widely developed
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

It is well-known that the SMCT owns several benefits such as the ability to adapt itself
to the impact of noise, the insensitivity to the external effects as well as the simplicity of
implementation. The first step to formulate SMC is to build a sliding surface in the state
space domain. For this, the approaching and maintaining phases are performed during the
operating process to establish and maintain a reasonable operating status. In the first phase,
system’s dynamic response expressed via a state space is controlled to direct towards the
sliding surface. Then, in the second phase, when this process reaches the surface, the system
dynamic response is upholden along the surface to keep all of system’s states on the switching
surface [9]. This guarantees the stability of the control system. However, there is an issue
related to the fact that this process, as usual, needs an infinite commutation function working
as an adaptive compensator with a high frequency of the change in the control signal. As
a result, the chattering phenomenon may appear and damage the system [27]. To prevent
the chattering problem, many approaches have been proposed such as building adaptive
structures [7, 16, 28], the integrating FL and/or ANN into sliding mode control system
(SMCs) [9, 25, 27, 29, 30].

The ability to reach the sliding surface and keep the system states on it without chattering
reflects the SMCs quality. Reality shows that an appropriate combination of SMCs and the
other models may create novel capabilities for SMCs to get the target. The well-known
combination of SMCs and FL in the model named FSMC brings the control system the
essential strong points together with the arisen disadvantages. In this model, the FL can
provide useful solutions for function approximation with a high degree of flexibility along with
a vigorous tool for information inference [8, 12]; while the sliding mode approach can create
adaptive control laws based on its thorough stability analysis capability [7, 9, 10, 18]. In
this tendency, optimization methods such as the Evolutionary Algorithm (EA), Differential
Evolution (DE) [31, 33] or the algorithm rank-DE [34] could be employed to improve the
system performance. Such advantages of the FSMC model have been effectively exploited
in many fields, including suspension systems [15, 16, 20]. FSMC owns the advantages, this,
however, may increase the time delay due to the high calculating cost in some cases [23].

In [15], an adaptive SMCs based on the Takagi–Sugeno (T–S) fuzzy approach was pre-
sented. The varying of sprung and unsprung masses in the given ranges was viewed as
uncertainty aspects. The T–S fuzzy system described the system in the presence of UAD.
Relied on this fuzzy model, the adaptive FSMC was built to set up the control law. Although
the method can exploit the advantages of both SMCs and FL, the T-S model with various
parameters needing to be estimated online takes part in expanding time delay. In real-time
control systems, this is one of the main causes of reducing the control quality [9, 23]. An-
other FSMC-based control strategy can be referred in [16]. An adaptive FSMC for vehicle
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suspension systems subjected to the system time-varying and nonlinear uncertainty behav-
iors was shown. It combined an adaptive fuzzy rule structure (AFRS) with SMCs. In the
AFRS, the sliding surface was employed as a one-dimensional fuzzy input variable. Being
viewed as a becoming solution for improving calculating cost, this however could not fully
exploit the varying tendency of the sling surface to adjust appropriately the control law. In
[20], a FSMC for an active suspension system was presented. In this, the sliding surface and
its change were employed as input variables of a traditional fuzzy controller to update the
control law. This can partly overcome the issue related to the one-dimensional fuzzy input
variable of [16] as mentioned above, however the effectiveness of the method become worse
quickly if the UAD amplitude varied fast. More recently, in [7] the authors introduced a
SMCT-based controller for active suspension system of train vehicles subjected to UAD. In
this work, adaptive adjusting the slope of the sliding surface was performed to provide a
smooth control signal without the chattering phenomenon. Designed via the ideal operating
condition corresponding to the normal load, the method, hence, does not match well with
the change of the load amplitude. Consequently, the technical originality of this work is to
propose a new controller for MRD-based train-car suspensions subjected to random time-
varying chassis mass in enlarged ranges, which is a fuzzy-based dynamic inversion controller
named FDIC. It is constituted of an inverse MRD model using an ANFIS (ANFIS-I-MRD), a
fuzzy-based optimal sliding mode controller, FSMC, and a nonlinear disturbance and uncer-
tainty observer, NUO. First, in the presence of the normal load, by using Lyapunov stability
theory and the algorithm rank-DE [34], an optimal structure of the sliding mode controller
(SMC) is built. An optimal FL system (FLSop) is then designed to expand the ability of the
SMC to deal with the larger varying ranges of the chassis mass. The NUO presented in [1] is
then used to calculate the compensating force for UAD. The ANFIS-I-MRD, which is based
on a measured data set expressing dynamic response of the MRD, is employed to specify
current supporting the MRD to generate the required control force estimated by the FSMC
and NUO, in total. Finally, surveys for evaluating the method are carried out together with
the comparison with the results from another controllable system and the passive one.

The two main contributions of this work are as follows. The first one is to propose the
FSMC for improving the competence to adapt to the random chassis mass. The FSMC relies
on the framework created by the optimal SMC and the adaptive fuzzy inference laws of the
FLSop in order to expand UAD’s permitted varying range. Seen as the second contribution
is the ANFIS-I-MRD built via a real MRD and an experimental apparatus.

2. CONTROL STRATEGY

Fig. 1 shows the quarter model of a semi-active MRD train-car suspension system. It
is noted here that in trains two suspension systems are normally used; one is installed for
vertical chassis vibration control as shown in Fig. 1 while the other is to stamp out its
transversal vibration. In this work, the first system is considered. The chassis mass ms(t) is
varied due to many reasons such as the change in the passengers and load mass as well as
the normalized impact of wind on the train. The unsprung mas mu consisting of the mass
of the wheel, shaft, brake and suspension linkage is assumed to be a constant parameter.
In this model, u is the control force generated by the semi-active actuator, MRD; ks is the
stiffness coefficient of the linear spring; kt is the wheel deflection stiffness; cs is the damping
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coefficient of the suspension; ct is the damping coefficient of the wheel. Displacement of ms(t)
and mu are presented by zs and zu, respectively, while the vertical track-profile disturbance
denoted by zy. Parameters fs, fts, fd, ftd respectively denote sprung and damper forces
corresponding to ks, kt, cs, ct.

Figure 1. Quarter train-car MRD suspension model

A state vector x(t) is expressed as below

x(t) = [x1 x2 x3 x4]
T , (1)

x1 = xs; x2 = ẋs; x3 = zu; x4 = żu. (2)

Let mm be the maximum chassis mass defining the maximum passenger and load mass;
δm(t) be the normalized wind load; ∆m(t) be the less passenger and load mass than mm.
By applying x(t) as in (1) and Newton’s second law, we get the dynamic equation of the
system in the presence of UAD as follows:

mm(t)z̈s + fs(x, t) + fd(x, t) = −u(t) + d(t), (3)

where,

fs = ks(x1 − x3); fd = cs(x2 − x4); fr = fts + ftd = k1(x3 − zy) + ct(x4 − ży). (4)

In (3), the uncertainty aspect depicted in d(t) relates mainly to the difference ∆m(t)
between mm and the real chassis mass (or the real sprung mass) ms(t) actually impacting
on the system at time t. While the disturbance aspect participating in d(t) mainly derives
from the unknown impact of the normalized wind load δm(t) as well as from the vertical
disturbance exciting of the track profile which cannot be accurately measured during the
operating process. Now, using expressions from (1) to (4), the state space model can be
written as follows {

ẋ(t) = f(x, t) + g1(x, t)u(t) + g2d(t)
y(t) = x1(t),

(5)
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where

f(x, t) =


x2(t)

1

mm
(−fs − fd)

x4(t)
1

mu
(fs + fd − fts − ftd)

 ; g1 =


0

− 1

mm
0

+
1

mu

 ; g2 =


0
1

mm
0

+
1

mu

 . (6)

The semi-active control force u = u(t) in (5) needs to be estimated such that vertical
acceleration of the chassis is extinguished as much as possible. With this purpose, we propose
a control strategy relied on SMCT, ANFIS, and the lumped UAD quantity as in Fig. 2. The
method is described upon two phases. The first one is to design a nonlinear controller
for the system without UAD, to which we obtain the controller FSMC for calculating the
principal control force part us(t). The second phase is to establish NUO to observe uc(t)
for compensating for UAD. As a result, semi-active control force u(t) = us(t) + uc(t) is
estimated. Finally, based on the ANFIS-I-MRD, current supporting the MRD to generate
the u(t) is specified, I(t) =ANFIS(u(t)) ≡ ANFIS-I-MRD(u(t)).

Figure 2. Structure and operating principle of the FDIC

3. DESIGNING THE FDIC

3.1. Building the ANFIS-I-MRD

The ANFIS-I-MRD is built via two steps. The first one is to build a data set expressing
dynamic response of the MRD, while the second one is to identify the MRD upon the data
and an ANFIS. For the data set,

[
xi1 xi2 xi3

]
≡
[
drei vrei fMRi

]
is defined as the

input, while yi = Ii is the output of the ith sample. Where, drei = (x1 − x3) is the relative
displacement and velocity between chassis and unsprung mass; Ii is the current applying
to the MRD to generate the damping force fMRi corresponding to di, vi at the ith instant.
Based on the obtained data set and the recurrent mechanism and impulse noise filter for
establishing ANFIS presented by Nguyen et al. in [35], the ANFIS-I-MRD is established.
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Fig. 3 shows an experimental apparatus for building the data set. The load cell is fixed
to the piston shaft of the MRD and directed by the upper bed to connect to the shaft
of the DC servo motor via the translating rod. The cylinder of the MRD is fixed to the
lower bed. Based on the eccentric mass, the rotation of the motor shaft is transformed
into the translation motion of the damper piston. The signal from the load cell, damping
force fMR generated by the MRD, is then sent to the computer via the A/D converter and
signal processing equipment. By adjusting the rotation velocity ω of the DC motor using
the computer and motor driver, and also by adjusting the current I supporting the MRD,
we obtain the corresponding damping force fMR at each sampling time.

Figure 3. Experimental apparatus for building the data set: 1-eccentric mass, 2-translating rod,
3-upper bed, 4-load cell, 5-piston shaft, 6-MRD, 7-lower bed

3.2. Designing the FSMC

The FSMC is constituted of two parts: the optimal sliding mode controller (SMC) and
the optimal FLSop. First, in the presence of the normal load, by using Lyapunov stability
theory and the rank-DE [34], the optimal structure of the SMC is built. The FLSop is then
designed to expand the ability of the SMC to deal with the larger varying amplitudes of the
chassis mass.

Firstly, the initial SMC is built as in [1] via a sliding surface as follows

S(t) = k1x1(t) + x2(t), (7)

where, k1 is the positive coefficient. From (7), the following is obtained

Ṡ(t) =
dS

dt
= k1ẋ1(t) + ẋ2(t) = k1x2(t) + ẋ2(t). (8)

From (8), (2)-(6) we have

Ṡ(t) = k1x2 +
1

mm
[−fs − fd − u(t) + d(t)]. (9)

A Lyapunov candidate function V (x) = 0.5S(t)2, to which V̇ (x) = S(t)Ṡ(t), is employed.
It can infer that in order to meet the Lyapunov stability condition, the control law must be
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established such that the following clause is satisfied

Ṡ(t) = −k2(t) sat(S(t)), (10)

where k2(t) is the positive coefficient used to adaptively adjust the slope of S(t).

Due to V̇ (x) = S(t)Ṡ(t), from (10) we can infer the following relation

V̇ (S(t)) = −k2 |S(t)| ≤ 0, ∀k2(t) ≥ 0. (11)

Be noted V (x) ≥ 0 ∀x and V (0) = 0, based on (11) it can conclude that the dynamics
of the S(t)→ 0 is an asymptotically stable Lyapunov process. This means the control force
for the suspension such that the chassis vibration converges to zero stably can be inferred
from (9) and (10) as below

u(t) = mmk1x2(t)− fs − fd +mmk2 sat(S(t)) + d(t). (12)

Using the estimated value d̂(x, t) of d(x, t) quantified by the NUO, the control force can
be depicted as

u(t) = mmk1x2(t)− fs − fd +mmk2 sat(S(t)) + d̂(t). (13)

Be noted, the control quality of the SMC depicted in (13) deeply depends on d̂(t), k1
and k2. Changing too frequently of u(t) due to k2 and function sat() may result in the
chattering phenomenon. In the rest of this section, improving the SMC upon k1 and k2
to adapt to UAD is presented. By which the optimal parameter of k1 signed k̄1 and the
adaptive parameter of k2 signed k̄2ad(t) are obtained.

Expressions (10) shows that k2(t) is proportional to not only value of
∣∣∣Ṡ(t)

∣∣∣ but also

the quantity of S(t). Therefore, we propose an optimal fuzzy logic system signed FLSop for
setting up k̄2ad(t) as follows

k2 ≡ k̄2ad(t) = FLSop

(
S(t), Ṡ(t)

)
. (14)

The FLSop is designed by two steps as below.

Step 1. Optimizing structure of the SMC in the ideal operating condition:

From (13), by using the ideal operating condition depicted by the maximum chassis mass
mm without UAD, the suspension system is controlled via the following law

u(t) = mmk1x2(t)− fs − fd +msk2 sat(S(t)). (15)

Based on (15), k1 and k2 are then optimized using algorithm rank-DE [34] with an
objective function J(k1, k2) defined as follows

J(k1, k2) = max(|ẋ2(t)|)→ min . (16)

Thus, optimal parameters k̄1 and k̄2 of k1 and k2 respectively are addressed.

It should be noted that k̄1 and k̄2 as above mentioned only match with the ideal condition.
This operating condition is however different from the real one, to which the ms = ms(t) as
well as UAD always exist. To overcome this, the next step is then performed.
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Figure 4. The input fuzzy sets and the initial structure of the output fuzzy sets of the FLS: a and b
are specified based on simulation via the violent operating conditions of the system while the optimal
values of ci, i = 1...4, are specified via the algorithm rank-DE

Step 2. Designing the FLSop in an adaptable range centered by k̄2 to specify k̄2ad(t). This
work is carried out as follows:

1) Building fuzzy set structures
The fuzzy set structures of the FLS are illustrated in Fig. 4.
In the output space, k̄2 is used as a distribution center, by which k2(t) ≡ k̄2ad(t) is an

adaptive value belonging to [k̄2 − ρ, k̄2 + ρ], where 0 < ρ < k̄2 is an adaptive coefficient
chosen by the designer. For example, for the surveys in Section 4 we chose ρ = 0.95 k̄2 with
seven output fuzzy sets named large-negative (LN), medium-negative (MN), small-negative
(SN), zero (ZR), large-positive (LP), medium-positive (MP), small-positive (SP). In the input
space, the input fuzzy sets are named to be the same. The parameters a and b are specified
by loops with two following steps for each loop. In the first step of the first loop, they are
default options to perform the second step: specifying them via simulation surveys. While,
in the first step of the next loops, they are the results of the previous loop. We obtain these
parameters when the process converges. For example, as presented in Section 4, tracks No.
1 and 3 were employed in this work, by which we had a = 4.2; b = 5.4.

2) Optimizing the output fuzzy set structure to set up the FLS op

The optimal values of ci, i = 1...4 are then estimated via the algorithm rank-DE [34]
with the objective function defined as follows

J(ci, i = 1...4) = max(|ẋ2(t)|)→ 0. (17)

3) Determining the control law
Based on Lyapunov stability analysis as mentioned in Subsection 3.2, it is inferred that

the fuzzy inference laws have to make the system states reach to the condition S(t) ∆S(t) < 0.
There are relations as follows, Ṡ(t) or ∆S(t) increases as u(t) increases. In case S(t) > 0, if
u(t) increases then S(t) ∆S(t) reduces while in case S(t) < 0, if u(t) reduces then S(t) ∆S(t)
reduces [36]. These are expressed via fuzzy rules given in Table 1.

Remark 1. The above analysis reflects that ∆S(t) or Ṡ(t) should be used to establish fuzzy
inference laws so as to exploit fully their varying tendencies to improve the effectiveness of
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Table 1. Fuzzy rules of the FL

the updating control law. In view of this, the solution based on the one-dimensional fuzzy
input variable for reducing the time delay as presented [16], to which S(t) is employed only
to update u(t), is hence not an optimal option. Instead of this way, based on both S(t) and
Ṡ(t) we set up states NC (No Change) as given in Table 1 to improve the calculating cost.

• Fuzzy inference rules. In the surveys presented in Section 4 we used 49 laws. Among
them there are 18 laws typed NC as in Table 1. For example, the one depicted in Fig.
4 is as below

If S(t) is LN and Ṡ(t) is SN then k̄2ad(t) is MN. (18)

• Estimating output value. There are various methods to achieve this. In this work, the
center-point method is adopted to calculate k̄2ad(t) as follows

k̄2ad(t) =

∑n
i=1 k2iµB′

i
(k2i)∑n

i=1 µB′
i
(k2i)

, (19)

where N is the number of output fuzzy sets; B′
i is the output fuzzy set corresponding

to the ith fuzzy set and dynamic response status of the system at the surveying time;
k2i is abscissa of the central point of B′

i.

• The control force. By using the result of (19), the control force for the suspension
calculated based on k̄2ad(t)is given by

u(t) = k̄1mmx2(t)− fs(x, t)− fd(x, t) + k̄2ad(t)mm sat(S(t)) + d̂(t). (20)

3.3. Establishing the NUO

As presented in [1], in this system the estimation of d(x, t) can be expressed by d̂(t) via
the theory shown in [24] as

d̂(t) = z(x, t) + p(x), (21)

where z(x, t) is the internal state of the nonlinear observer calculated by

ż(x, t) = −l(x)[g1u(t) + g2z(x, t) + g2p(x) + f(x, t)]. (22)
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In (21), p(x) is the nonlinear function to be designed; g1, g2 and f(x, t) are from (6),
while l(x) = ∂p(x)/∂x. By choosing l(x) to be a constant vector, l(x) = [l1, ..., l4]

T ∈ <,
p(x) is then inferred as p(x) = l(x)Tx(t). Whereby d̂(t) is specified as follows

d̂(t) = z(x, t) + l(x)Tx(t). (23)

From (20) and (23), the control signal for the suspension is calculated as below

u(t) = mmk̄1x2(t)− fs − fd + k̄2ad(t)mm sat(S(t)) + z(x, t) + l(x)Tx(t). (24)

4. STABILITY AND CONTROL PERFORMANCE

4.1. Analyzing stability

It can observe that stability of the active suspension system shown in Fig. 1 controlled by
the proposed FDIC (24) depends on special features of uncertainty and disturbance (UAD)
aspects impacting on the system. When the time varying rate of UAD is slow, the system is
asymptotically stable. This can be inferred as follows.

For the FSMC, the FLSop as in Fig. 4 based on the fuzzy rules as in Table 1 makes
k̄2ad(t) > 0 (see (19)) with the following tendencies. If S(t) > 0 then u(t) is increased
to reduce S(t)∆S(t); if S(t) � 0, then u(t) is increased quickly to reduce S(t)∆S(t) fast.
Conversely, if S(t) < 0 then u(t) is reduced to reduce S(t)∆S(t); if S(t) � 0 then u(t) is
reduced fast to reduce S(t)∆S(t) quickly. In case S(t)∆S(t) < 0 or S(t) ≈ 0, then there is not
any change in u(t) so as to improve the calculating cost. As a result, either S(t)∆S(t)→ 0
quickly or S(t)∆S(t) < 0. This is viewed as a necessary condition for the following processes

k̄2ad(t) sat(S(t))→ −Ṡ(t), and V̇ (x) < 0. (25)

With reference to (7) as well as V (x) = 0.5S(t)2, V̇ (x) = S(t)Ṡ(t), taking note of
V (x) ≥ 0 ∀x and V (0) = 0, in view of Lyapunov stability theory, it can conclude that
S(t) → 0 is an asymptotically stable process. Therefore, from (9) and (25) we can infer
control law (26) as below

u(t) = mmk̄1x2(t)− fs − fd + k̄2ad(t)mm sat(S(t)) + d(t). (26)

Subsequently, related to the NUO we have to prove that

if ḋ(t)→ 0 then d̂(t) = z(x, t) + p(x)→ d(t). (27)

Let e(t) = d(t)− d̂(t) be the estimate error. By using d̂(t) = z(x, t) + p(x)l(x) in which
l(x) = [l1, ...l4]

T ∈ < is a constant vector, the following equation can be inferred

ė(t) = ḋ(t)− ˙̂
d(t) = ḋ(t)− ż(x, t)− l(x)T ẋ(t). (28)

Substituting ż(x, t) from (22) and ẋ(t) from (5) into (28) we have

ė(t) = ḋ(t) + l(x)T g2 e(t). (29)

From (29) and (6), if UAD is a slow time varying factor, then ė(t) + ke(t) = 0, where
k = l2/mm + l4/mu. By choosing l2,4 > 0 then k > 0, so e(t) = d(t) − d̂(t) → 0 or
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Table 2. Parameters of the suspension system

ms = 19600±3000 kg

mu =1440 kg

ks =392.104 N/m

kt =2804.104 N/m

cs =5.390.104 Ns/m

ct =6.838.104 Ns/m

d̂(t) = z(x, t) + p(x)→ d(t) is an asymptotically stable process. Finally, due to d̂(t)→ d(t),
by using the NUO to estimate d(t) in (26) we obtain control law (24). Because both S(t)→ 0
and d̂(t)→ d(t) are asymptotically stable processes as presented above, hence the suspension
system controlled by the proposed FDIC (24) is asymptotically stable.

Remark 2. For vector l(x), it is noted that the larger value of k will improve better the
settling time but the overshoot may reduce the quality of the suspension system. The solution
to this is to consider the value of k such that the both terms are appropriately determined.
In this work l(x) is chosen as follows l1 = 120, l2 = 55, l3 = 18 and l4 = 255.

4.2. Verifying the method via surveys

In this section, design parameters of the suspension system given in Table 2 are applied
to estimate the proposed FDIC. Firstly, three typical track profiles of the railway roads
are collected to perform two functions. The first one is to calculate optimal parameters
the FDIC. This phase is so-called the training process. The second one is to excite the
suspension systems. By this way, the FDIC may only match with the special features of the
track profiles used for the training. In order to consider the adaptive ability of the created
FDIC, it is then tested via the remainder track profiles. Besides, the passive suspension
system as well as another controlable suspension are also employed to compare the obtained
surveys with each other. For this work, the controller built based on ANFISs, SMC and
uncertainty observer named NFSmUoC presented in [7] is used.

As expressed by Simon [37], real tracks are neither constantly straight nor perfect, and
they are collaborated by straights, curves, and track irregularities by different ways. These
geometric features of track profiles impact directly on dynamic responses of the railway
vehicles. Based on Garg [38], generally a real track profile can be seen as a summation of the
isolated track geometry variations consisting of cusp, bump, jog, plateau, trough, sinusoid,
and damped sinusoid with track irregularities. The bump-shaped profile with a disturbance
surface expresses the locations where two adjacent rails to be connected (joints), or soft spots,
washouts, mud spots, fouled ballast, spirals, grade crossings, bridges, overpasses, turnouts
and interlockings. The sinusoid profile expresses the track’s uneven status at spirals and soft
spots. While the track profile like trough with irregularities illustrates special areas such as
soft spots, soft and unstable subgrades, or at spirals. In this work, three track profiles, which
are combined between the above-mentioned typical track types, are used for experiments. A
mathematical model expressing the vertical co-ordinate x0(t)x0(t) of a general track profile
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containing the abovementioned factors is adopted

x0(t) =


0.5X0(1− cos (ωt)) if 0 ≤ t ≤ T/2 or 3T/2 ≤ t ≤ 2T

X0(1 + 3r) if T/2 ≤ t ≤ 3T/2
X0(sin (0.03ωt) + sin (0.2ωt)) + 3rX0 if t > 2T.

(30)

In the general track profile (30), r = |random(0, 0.05)| is the positive value chosen ran-
domly distributing around zero with a radius of 0.05, X0 = |random(0, 0.01)| ≤ 0.01 [m] is
the vibration amplitude of the signal which also is chosen randomly such that it distributes
around zero with a radius of 0.0. ω = k0(2π)/V [rad/s] and T = 2π/ω = V/k0 [s], respec-
tively, is the angular frequency and cycle of the surveyed sine-typed road profile in which k0
is the positive coefficient (k0 = 10 in this work) and V is the proportional rate to be chosen
to be equal to the velocity [m/s] of the train in this survey. By choosing three different values
of V to be 50, 200 and 250 km/h, three track profiles named track No. 1, 2, 3, respectively
are obtained as shown in Fig.5.

Figure 5. Three track profiles used for surveys

The quantitative analysis is also considered by referring to the standard ISO 2631-1997
which is utilized to test the ride quality by the Association of American Railroads [39].
Guided by the ISO 2631, the magnitude maxima of acceleration, Aa as well as average
absolute value of acceleration ā as depicted in (31) are employed.

Aa = max
i=1...P

∣∣z̈is∣∣ ; ā =
1

p

∑P

i=1

∣∣z̈is∣∣, (31)

where i is the ith data sample; P is the number of data samples.

4.2.1. Survey results

The obtained results coming from the surveys are shown in Figs. 6-9 and Tables 3–4. In
Fig. 6, vertical chassis accelerations of the three suspensions excited by Track No.1 in which
the FDIC has been trained by one of the three tracks (signed FDIC: TNo.1-ENo.1, or FDIC:
TNo.2-ENo.1, or FDIC: TNo.3-ENo.1, respectively) are shown. Be noted that TNo.i-ENo.j
reflects the FDIC is trained by Track No. i while the suspension is excited by Track No. j.
It is much the same between the contents depicted in Figs. 6-8. The only difference between
them is that in Fig. 6 Track No.1 is used to excite the three suspensions, while that in Fig.
7 and Fig. 8 respectively are tracks No.2 and No.3.
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Figure 6. Vertical chassis accelerations of the three suspension systems excited by Track No.1 in
which the FDIC has been trained by one of the three tracks (No. 1 or No. 2, or No. 3) signed FDIC:
TNo.1-ENo.1, or FDIC: TNo.2-ENo.1, or FDIC: TNo.3-ENo.1, respectively

Besides, the dependence of chassis acceleration on the time-varying rate of the chassis
mass (ḋ(t)) is depicted in Fig. 9. Fig. 9a describes ḋ(t) via the angular frequency (f) in case
the chassis mass ms(t) is a function with respect to time, ms(t) = 19600 + 1000 sin (ft) [kg].
The corresponding chassis accelerations along with some extractions are shown in Fig. 9b
and 9c, respectively.

Table 3. Acceleration of the chassis mass excited by one of the three tracks while the FDIC trained
via Track No.2

Track No. 1 Track No. 2 Track No. 3
Aa (m/s2) a (m/s2) Aa (m/s2) a (m/s2) Aa (m/s2) a (m/s2)

Passive 1.1261 0.1546 0.8477 0.1057 1.6400 0.1786

NFSmUoC 0.9140 0.0356 0.1693 0.0063 0.2291 0.0143

FDIC 0.1171 0.0041 0.0960 0.0038 0.1630 0.0071
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Table 4. Aa (m/s2) of the chassis mass controlled by the FDIC which is trained by Tracks No1-No3
exciting

Exciting Source
For training No. 1 No. 2 No. 3

No. 1 0.0889 0.1171 0.1597

No. 2 0.2241 0.0960 0.1655

No. 3 0.1028 0.1630 0.0685

Figure 7. Vertical chassis accelerations of the three suspension systems excited by Track No.2 in
which the FDIC has been trained by one of the three tracks (No. 1 or No. 2, or No. 3)

4.2.2. Discussion

The results in Figs. 6-8 and Tables 3–4 reflect accelerations of the chassis mass con-
trolled by the FDIC to be smallest. They are smaller than that deriving from the controller
NFSmUoC, and much smaller than that coming from of the passive. The effectiveness is
maintained event if FDIC’s training tracks are different from the exciting tracks. These
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Figure 8. Vertical chassis accelerations of the three suspension systems excited by Track No.3 in
which the FDIC has been trained by one of the three tracks (No. 1 or No. 2, or No. 3) signed FDIC:
TNo.1-ENo.1, or FDIC: TNo.2-ENo.1, or FDIC: TNo.3-ENo.1, respectively

aspects show that the FDIC is not too sensitive to the features of the training tracks.

Another factor to be the dependence of the chassis acceleration on the time-varying rate
of the chassis mass, ḋ(t) is described in Fig. 9. Fig. 9 (b), (c) illustrates the increase of
both the average absolute acceleration (ā) and maximum absolute acceleration (Aa) when
the angular frequency (f) of the chassis mass ms(t) = 19600 + 1000 sin (ft) increases (or
ḋ(t) increases). As usual, system dynamic response depends on the time-varying rate of
the chassis mass, however, controlled by the proposed FDIC this dependence is not much.
It can be seen via Fig. 9 (b) that although Aa grows up fastest when frequency f passes
over the value of 3 rad/s to reach to 7 rad/s compared with the other frequency ranges, the
changing in Aa is not violent. In case f = 3 rad/s, Aa < 0.1 m/s2 while Aa < 0.15 m/s2

when f = 7 rad/s. The disturbance from the chassis mass in these two cases is depicted as in
Fig. 10. It should be denoted that for each application, based on the required effectiveness
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a.

b.

c.

Figure 9. The dependence of chaassis acceleration ( and (31)) on the time-varying rate of the
chassis mass: (a) is expressed via the angular frequency of the function; (b) the corresponding chassis
accelerations; and (c) some extractions

(such as ā ≤ |ā| or Aa ≤ |Aa|) of the suspension system and the relation shown in Fig. 9 we
can specify specifically the permitted limitation of ḋ(t) (or the permitted maximum bound
of the time derivative of UAD).

5. CONCLUSION

In this work, in order to deal with the random varying status of the chassis mass, the
controller FDIC for the MRD-based train-car suspension systems was formulated. The FDIC
consists of three main parts: the ANFIS-I-MRD, FSMC and the NUO. The FSMC is featured
by the optimal SMC and the optimal FLSop. The FLSop expanded the ability of the SMC to
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Figure 10. The time-varying chassis mass in the two cases f = 3 and f = 7

deal with the external disturbance related to the chassis mass and track profile. While the
NUO compensated for UAD. By using the ANFIS-I-MRD and the control force estimated
by the FDIC, the current for the MRD to stamp out chassis vibration was then determined.
The stability of the FDIC was analyzed via Lyapunov stability theory. The effectiveness of
the FDIC was validated via a comparative work with the NFSmUoC and the passive method.
It has verified that the obtained results from the proposed FDIC can provide considerable
ability to extinguish and isolate vibration in the large varying ranges of the chassis mass.
The control method is not too sensitive to the features of the track profiles. Based on the
method, for each application, the permitted limitation of ḋ(t) could be specified if ā and Aa

were given.
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