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Abstract. Metagenomics is a powerful approach to study environment samples which do not require

the isolation and cultivation of individual organisms. One of the essential tasks in a metagenomic

project is to identify the origin of reads, referred to as taxonomic assignment. Due to the fact

that each metagenomic project has to analyze large-scale datasets, the metatenomic assignment is

computationally intensive. This study proposes a parallel algorithm for the taxonomic assignment

problem, called SeMetaPL, which aims to deal with the computational challenge. The proposed

algorithm is evaluated with both simulated and real datasets on a high performance computing

system. Experimental results demonstrate that the algorithm is able to achieve good performance

and utilize resources of the system efficiently. The software implementing the algorithm and all test

datasets can be downloaded at http://it.hcmute.edu.vn/bioinfo/metapro/SeMetaPL.html.

Keywords. DNA sequences, homology search, metagenomics, parallel algorithm, taxonomic as-

signment

1. INTRODUCTION

Metagenomics is the study of the genomic content derived directly from complex microbial environ-

ment, instead of from culture in laboratories. The discipline offers opportunities to discover microbial

communities, and thus brings benefits in many fields, e.g., biotechnology, agriculture, earth sciences

[5]. Earlier metagenomic projects usually take many costs to get genomic information directly from

microbial samples due to the limit of traditional sequencing technologies (e.g., Sanger sequencing).

Fortunately, the next-generation sequencing (NGS) techniques, e.g., 454 pyrosequencing, Illumina

Genome Analyzer, AB SOLiD [13], are able to process a large amount of biological data with small

costs, and make metagenomic projects feasible. However, it also poses computational challenges for

the analysis of metagenomic reads [9, 15].

The taxonomic assignment is an important task in a metagenomic project. The task aims to

group reads into bins and determines phylogenetic relationships between the reads and known taxa.

Taxonomic assignment algorithms can be roughly classified into composition-based methods and

homology-based methods. Composition-based methods (e.g.,TACOA [3], AKE [8]) classify reads

by extracting genomic signatures (e.g., oligonucleotide frequencies, GC-content) from themselves.
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Although these methods are fast, they are difficult to analyze short reads [10]. Recent taxonomic

assignment methods (MEGAN [7], CARMA3 [4], MetaCluster-TA [18]) are mainly based on the

homology feature. Blast [1] is one of the commonly-used tools to extract homology information

between sequences. Those algorithms are demonstrated to work well with both short and long reads.

However, a remaining challenge of the methods is that they are computationally expensive [9].

In previous works, we proposed a semi-supervised taxonomic assignment method for metagenomic

reads, so-called SeMeta [17]. It consists of two steps, and utilizes both composition and homology

features. In the first step, the method applies a clustering step and chooses representatives of clusters.

The second step performs homology search task by Blast algorithm to find the relation with known

species in reference databases. SeMeta is able to reduce much computational time comparing with

other homology-only based algorithms. However, It still requires much computational time. For

instance, SeMeta spends 187.67 hours to analyze a dataset of 428674 reads belonging to 10 genomes

[17] from the NCBI (National Center for Biotechnology Information) database. This raises the needs

of using high-performance computing techniques to boost classification performance.

Some metagenomic applications based on high-performance computing techniques are proposed

in literature. MrMC-MinH [12] is a map-reduce framework which aims to cluster metagenomic reads.

Another taxonomic clustering method for 16S environment datasets, proposed by Yang et al [19]

also achieves a cloud based implementation by using map-reduce framework. Parallel-META [14] is

a high performance computational pipeline for analyzing metagenomic data. It is based on GPU and

multi-core-CPU technology to parallelize a homology search process for speeding up computation.

Besides, mpiBlast is a parallel algorithm of the Blast tool. It separates a database into different

parts and is based on MPI (Message Passing Interface) technology to perform the homology search

distributedly.

This work proposes a parallel taxonomic assignment algorithm for metagenomic sequences using

MPI technique, called SeMetaPL. The proposed method is an improvement of SeMeta in which its

taxonomic assignment step is parallelized to reduce computational time. The algorithm is evaluated

on a cloud-based high performance computing system with both simulated and real datasets. Three

aspects of virtualized resources of the system considered are memory size, number of CPUs, and

number of virtual machines.

In the rest of the paper, Section 2 presents the details of proposed algorithm. Section 3 provides

experimental results. Some conclusions are presented in the final section.

2. METHODS

2.1. Classification of metagenomic reads with SeMeta

SeMeta [17] is a semi-supervised taxonomic assignment for classification of metagenomic reads.

It combinedly uses both composition and homology features of sequences in the classification process,

and works well with short reads of sufficient mutual coverage. The algorithm consists of two major

steps (figure 1) as follows.

- Step 1: Clustering

This step separates reads into clusters of closely related organisms basing on composition

features (l-mer frequency) and sequence overlapping information. The algorithm then selects
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a representative, so-called a core, of each cluster. The size of a core is usually smaller than

that of the corresponding cluster. Some reads of extremely low-abundance genomes are not

clustered in the step, but still considered as a cluster.

- Step 2: Taxonomic assignment

The step firstly performs the homology search between reads in cores of clusters and reference

databases using Blast tool. The algorithm measures of the homology locally instead of attempt-

ing to align two sequences over entire sequence lengths. It firstly tries to detect the similarity

location between sequences, and then inserts gap-free into them. Finally, a substitution matrix

is used to compute the similarity degree between sequences.

After the homology search task is performed, cores of clusters are then assigned into a taxon in

phylogenetic tree. Each cluster is labeled with the taxon assigned to its core. In post processing

task, clusters having the same label are merged into a larger cluster. Some reads not matching

with reference database or assigned at the highest level of the phylogenetic tree are regarded

as unassigned reads. Experimental results in [17] show that the step is a bottleneck of SeMeta

because it requires much computation time.

reads

similarity search 
using Blast

clusters

core

unclustered 
reads

unassigned 
reads

reference 
database

taxon A

taxon B

Step 1: Clustering Step 2: Taxonomic Assignment

Figure 1. Process of SeMeta using Blast algorithm. Step 1 separates reads into clusters, and
builds cluster cores. Step 2 does homology search between the cores and reference sequences,
then labels each cluster [17].

2.2. Proposed algorithm

Due to the limit of SeMeta when processing large-scale datasets, this work proposes a parallelized

algorithm, SeMetaPL, which is able to reduce much computational time and utilize resources of

high-performance systems efficiently. The method consists of following steps (Figure 2).



122 LE VAN VINH, et al.

- Step 1: Clustering in single mode

This step is performed at server node in single mode as same as the clustering step of SeMeta.

List of reads in cores of clusters are selected from input file and delivered to all computer nodes

(or put them in shared storage).

- Step 2: Taxonomic assignment in parallel mode

+ Homology searching with mpiBlast

The task uses mpiBlast algorithm [2] to determine the similarity degree between reads

in cores of clusters and a reference database. It is a parallelization of Blast using MPI

(Message Passing Interface) technique. The algorithm attempts to boost the homology

search between sequences and a reference database by segmenting the database. mpiBlast

allows each node in computing systems only to search on a portion of the database, and

thus it helps reducing disk input/output significantly. Furthermore, the segmentation of

databases does not generate heavy intercommunication between nodes.

Let n be the number of computer nodes. The reference database is divided into at least

n fragments and stored in shared disks. There are two scenarios of using the fragments.

The first scenario is that the database fragments are always stored in a shared storage and

computer nodes have to do remote access at runtime. In the second scenario, database

fragments are distributed to local storage of each computer node, and accessed locally.

+ Labeling cores of clusters

Let k be the number of clusters generated by step 1. k/(n − 1) clusters are labeled at

each computer nodes. If k < n− 1, only k nodes are used to perform labeling clusters.

The remaining node is used to label unclustered reads. Algorithm 1 shows activities of

master node. It computes ranges of clusters and sends to workers which have to process

them. The master then determines labels for unclustered reads. Finally, it receives

labeling results of clusters from worker nodes. Each worker receives a range of clusters

from the master, and labels the clusters (Algorithm 2). It then send cluster labels to the

master.

+ Post processing

This task is done at master node to merge clusters having the same label, and determine

unassigned reads.

2.3. Performance metrics

Two metrics sensitivity and precision are used to evaluate the proposed method. They can be

defined as follows (as same as in [11, 17]). Let N be the number of reads, and C be the number of

reads assigned by classification algorithms. Assuming that we consider at taxonomic level i, let Xi

be the number of reads which are assigned to the correct taxa exactly at or under at the level. The

two metrics can be calculated by the following formulations.

sensitivity (at level i) =
Xi

N
,
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Algorithm 1 Cluster labeling - master

Input: A list of clusters, a list of workers
Output: Labels of clusters
1: for Worker i do
2: Compute range of clusters xi to yi for worker i
3: for Cluster z, xi ≤ z ≤ yi do
4: Send z to worker i
5: end for
6: end for
7: Determine labels of unclustered reads
8: for Worker i do
9: for Cluster z, xi ≤ z ≤ yi do

10: Receive labels of z from worker i
11: end for
12: end for

Algorithm 2 Cluster labeling - worker

1: Receive range of cluster x to y from master
2: for Cluster z, x ≤ z ≤ y do
3: Determine label of cluster z
4: Send label of z to master
5: end for

Labling 
cluster 1

Labling 
cluster 2

Labling 
cluster 3

Step 1: Clustering Step 2: Taxonomic Assignment

reads

Clusters

unclustered reads
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Figure 2. Process of SeMetaPL, using mpiBlast

precision (at level i) =
Xi

C
.
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For example, given a read originating from Bordetella avium, when we consider at genus level,

a labeling of the read as Bordetella, Bordetella bronchiseptica or Bordetella pertussis would

increase Xi. The metrics are computed at four taxonomic levels: species, genus, family, and order.

2.4. Datasets and reference databases

In order to generate datasets, we download real bacterial genomes from the NCBI (National Center

for Biotechnology Information) database. Three simulated datasets are created by ART tool [6]

following whole genome shotgun sequencing techniques. The datasets, presented in Table 1, contain

single-end reads with the length of 150bp and follows the Illumina error profile. SeMetaPL also is

used to classify the Acid Mine Drainage (AMD) dataset [16] - a real metagenome. It consists of

180,713 sequences, downloaded from NCBI trace archive.

Table 1. Simulated datasets

Dataset Species/Strain Coverage No. of
reads

ds1
Borrelia burgdorferi JD1 15 450
Methylobacterium extorquens DM4 20 600

ds2
Marinomonas mediterranea MMB1 10 270
Mycobacterium liflandii 128FXT 15 405
Nitrosopumilus maritimus SCM1 15 405

ds3

Bordetella avium 197N 10 250
Burkholderia xenovorans LB400 10 240
Methanosarcina mazei Go1 15 375
Neisseria meningitidis Z2491 15 375

Reference database used for analyzing the real metagenome is entire bacterial RefSeq database

(release 69, downloaded from the NCBI database) with approximately 24 GB after formatted by

mpiBlast. In case of simulated dataset, because we needs to conduct a lot of running scenarios, it

is better to analyze with a smaller database. Thus, a part of the bacterial RefSeq database with

approximately 5.3 GB (after formatted) is used. All of species in the tested datasets are contained

in the database.

3. EXPERIMENTS RESULTS

3.1. Experimental setup

Experiments for simulated datasets are conducted on a virtualized system hosted on two physical

machines. Each machine consists of 12 CPUs, 120G RAM, and 100GB disk storage. The performance

of SeMeta is evaluated with different aspects of virtual resources (memory sizes, number of virtual

machines, number of processors). The performance of SeMetaPL is compared with SeMeta in cases

of using similar virtual resources. Besides, classification qualities of the two algorithms are also

considered. SeMeta uses Blast tool (version 2.4) which is downloaded from the NCBI website to do

homology search task. SeMetaPL performs the search task by using the latest version of mpiBlast

(version 1.6.0). This version of mpiBlast uses Blast 2.2.20.
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In case of real metagenome, a system with higher computing resources is used. It consists of 9

virtual machines with 200G RAM, and 5TB shared disk storage.

3.2. Results

3.2.1. Effects of the numbers of processors on running time

In order to measure the performance of SeMetaPL on multiple processor machines, this work generates

7 virtual machines with numbers of processors of 1, 3, 5, 7, 9, and 11, respectively. Other resources

of the machines are similar. The number of processes running concurrently on each machines is set

by 15. It is noted that, memory of each machine is enough for running all processes at the same time.

Those machines are also used to run SeMeta algorithm for the same datasets (ds1, ds2, and ds3).

Line chart in figure 3 presents average running time of SeMetaPL and SeMeta for the three

datasets. It can be seen that using multiple processors is able to boost the performance of SeMetaPL.

For instances, the case of using five processors is approximately six times faster than the one of using

one processor. When the number of processors used increases from 5 to 11, running time of SeMeta

slightly decreases.

SeMeta runs at single mode, thus it does not utilize the advantages of multiple processor machines.

The performance of SeMeta still keeps stable with the increase of the number of processors. When

the number of processors is higher than 3, SeMetaPL achieves much better performance compared

with SeMeta. In case of 1 or 3 processors, SeMetaPL requires similar or higher running time than

SeMeta. It can be understood because SeMetaPL spends time for scheduling tasks and exchang-

ing jobs between processes. Besides, because there are many unshared-memory processes running

concurrently, SeMetaPL consumes larger amount of memory than SeMeta.
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Figure 3. The performance of SeMetaPL and SeMeta with different numbers of processors
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3.2.2. Effects of the number of virtual machines and memory sizes on running
time

This experiment considers the strength of SeMetaPL when running on a cluster of machines. Twenty

virtual machines are used in the experiment. Each machine consists of one processor. Two cases of

memory sizes are considered. The first case tests on 10 machines having memory size of 3GB, while

the second one tests on 10 machines with 6GB memory size.

Figure 4 shows results of the experiment. Line chart in the figure presents that the performance of

SeMetaPL is proportional to the number of virtual machines. The increase of the number of machines

from 2 to 5 helps reducing running time significantly. When the number of machines increases from

5 to 10, running time of SeMetaPL decreases moderately. It can be explained that disk input and

output costs required rise when the number of machines increases, and thus it reduces the performance

of the application.

The results also demonstrate that there is an effect of memory size on the performance of

SeMetaPL. In the first case, machines have less memory size, and thus spend more running time

than those of the second case for all tests.
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Figure 4. The performance of SeMetaPL with different numbers of virtual machines, with
cases of using 3GB RAM and 6GB RAM.

3.2.3. Classification quality

The classification qualities of SeMetaPL and SeMeta are also computed for three dataset ds1, ds2, and

ds3. Table 2 presents the precision and sensitivity of the two methods. It can be seen from the table

that, SeMetaPL and SeMeta return the same results for most of the test cases. The results can be

understood because the classification technique in SeMetaPL is as same as the one in SeMeta. There

are some different results at species and genus levels. The difference is due to that the mpiBlast

algorithm used in SeMetaPL is derived from a Blast algorithm having different version with the
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one in SeMeta. Because the blast tool used in SeMeta has better quality in determining similarity

degrees between sequences comparing with the one in SeMetaPL (from BLAST+ Release Notes,

NCBI website), the proposed algorithm returns lower sensitivity and precision values compared with

SeMeta at species level.

In addition, both methods identify labels for clusters instead of individual reads. Thus, if one

of them fails to predict a label of a cluster at a specific level, their precision and sensitivity values

will much lower than those of the remaining one. For instance, SeMetaPL gets 56.95% sensitivity

and 57.12% precision higher than SeMeta for dataset ds1 at genus level. Conversely, SeMeta achieves

23.06% sensitivity and 50.64% precision higher than those of SeMetaPL at species level for dataset

ds3. At higher levels (family and order level), two algorithms achieve the same both sensitivity and

precision values for all cases.

3.2.4. Results on AMD dataset

A previous study in [16] recovered that the AMD dataset contains several dominant species. Among

the species, Leptospirillum sp. Group II, Leptospirillum sp. Group III belong to bacteria, and

three other species belong to archaea.

It takes approximately 606 hours to analyze the dataset. There are approximately 67.32% of

the AMD sequences assigned by SeMetaPL. Results of the experiment, presented in table 3, support

the previous studies. Our algorithm has detected genus Leptospirillum that account for 52.48% of

assigned sequences, and other bacterial organisms (47.52%). Although the reference database does

not contain two species Leptospirillum sp. Group III and Leptospirillum sp. Group II, SeMeta

identified their genus due to the presence of other species belonging to the taxon in the database.

Besides, because the experiment uses bacterial RefSeq database, SeMetaPL could not detect the

existence of archaea organisms.

4. CONCLUSIONS

Most of current taxonomic assignment algorithms developed to be used on a single computer are

difficult to adapt to the increasing of metagenomic data. In this work, we present a parallel taxonomic

assignment algorithm to boost the speed of processing large-scale metagenomic sequences. The main

idea of SeMetaPL is to reduce costs of the homology search and labeling task. Comparing with another

single-mode algorithm, SeMetaPL could reduce much computational time, while still obtaining similar

accuracy results. Besides, our algorithm has proved to work well with a large-scale metagenome, and

promises to be a useful tool for real metagenomic projects.

The proposed algorithm could be improved in several ways. Firstly, the implementation of

SeMetaPL is based on mpiBlast - an available parallel algorithm. It currently does not get the

regular updating of Blast tool. Thus, applying other tools or developing a parallelized homology

search tool should be considered. Secondly, SeMetaPL still does not take advantages of multi-core

technology which is supported by most of high-performance systems. It motivates us to improve

the performance of SeMetaPL in future research direction. Finally, the enhancement of SeMetaPL

to improve classification quality by utilizing resources of high-performance systems will also be our

concern.
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Table 2. The classification quality of SeMetaPL and SeMeta on the datasets at different
taxonomic levels

Method Species Genus Family Order
level level level level

Dataset ds1

SeMeta Sen. 42.76% 42.76% 99.71% 99.71%
Pre. 42.88% 42.88% 100% 100%

SeMetaPL Sen. N/A 99.71% 99.71% 99.71%
Pre. N/A 100% 100% 100%

Dataset ds2

SeMeta Sen. 24.72% 30.24% 61.94% 61.94%
Pre. 39.91% 30.34% 100% 100%

SeMetaPL Sen. 24.72% 30.24% 61.94% 61.94%
Pre. 39.91% 30.34% 100% 100%

Dataset ds3

SeMeta Sen. 46.69% 64.84% 64.84% 64.84%
Pre. 67.09% 93.16% 93.16% 93.16%

SeMetaPL Sen. 23.64% 64.84% 64.84% 64.84%
Pre. 16.45% 93.16% 93.16% 93.16%

N/A= Not Available. The bold values indicate the best results among the algorithms in
the aspect of sensitivity (Sen.) or precision (Pre.).

Table 3. Results of SeMetaPL on the AMD dataset using bacterial ReqSeq database

Detected organisms Number of sequences Ratio

Leptospirillum 63846 52.48%

Other organisms 57815 47.52%
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